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Appendix A. Adaptive Meshes

Appendix A.1. The Galerkin finite element method

Let us define the test functions space

V =

{
v :

∫
Ω

(|v′|2 + v2) dx <∞, v(0) = v(1) = 0

}
and we take the trial functions space V 1 = V . We apply the standard Galerkin
method to problem (2.4) and integrate the differential equation by parts, this
gives the variational problem formulation: find u ∈ V such that∫ 1

0

(
ε2u′v′ + quv

)
dx =

∫ 1

0
fv dx ∀ v ∈ V. (A.34)

We consider piecewise linear trial and test functions. Let Wh : 0 = x0 <
x1 < . . . < xN−1 < xN = 1 be a partition of [0, 1] and let Vh ⊂ V be the
corresponding finite element space of continuous piecewise linear functions.
The finite element method is obtained by applying the Galerkin method to
(A.34) with the finite dimensional space Vh ⊂ V replacing V and reads: find
U ∈ Vh such that∫ 1

0

(
ε2U ′v′ + qUv

)
dx =

∫ 1

0
fv dx ∀ v ∈ Vh. (A.35)

Let ϕi be nodal basis functions

ϕi =


(x− xi−1)/hi−0.5, x ∈ [xi−1, xi)

(xi+1 − x)/hi+0.5, x ∈ [xi, xi+1]

0, otherwise

,

where hj−0.5=xj−xj−1, then any v ∈ Vh can be written as

v(x)=
N−1∑
j=1

µjϕj(x), where µj are coefficients. We write U in terms of nodal

basis functions ϕj , j = 1, . . . N − 1,

U(x) =

N−1∑
j=1

Ujϕj(x), (A.36)
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and substitute this expression into (A.35). Choosing v in (A.35) to be ϕi, i =
1, . . . , N − 1, we obtain the system of equations for Uj which is tridiagonal.
Solving this system gives U(x) from (A.36).

Appendix A.2. Mesh generation using duality-based
technique

In this section, we apply the well-known duality-based error estimates for
the problem (2.4). A standard technique described e.g. in (Eriksson, Estep,
Hansbo, Johnson 1995) for general second order boundary value problems
is used. We make no attempt to construct special uniform in small parameter
ε error estimates, since boundary layers should be resolved by special layer-
resolving transformations based on adaptive meshes. The error is estimated in
the L2 and energy norms.

Error estimation in the L2 norm

Let us define Au := −ε2u′′ + qu, then problem (2.4) can be written as{
Au = f, in x ∈ (0, 1),

u(0) = 0, u(1) = 0.

A scalar product and the L2 norm are defined as

(u, v) =

∫ 1

0
uv dx, ‖u‖ =

√
(u, u).

Let us denote the error e = u− U . In order to estimate this error, we find z as
a solution of the dual problem{

A∗z = e, in x ∈ [0, 1],

z(0) = 0, z(1) = 0.
(A.37)

In our case A∗ = A. Multiplying (A.37) by e, integrating by parts and consid-
ering v = πhz in (A.35), where πhz ∈ Vh is the piecewise linear interpolant
of z, we get the estimate

(e, e) ≤
∥∥h2(qU − f)

∥∥ ∥∥h−2(z − πhz)
∥∥ . (A.38)

Here h = h(x) = xi − xi−1 in xi−1 < x ≤ xi. The error of the the piecewise
linear interpolant πhz can be estimated as (Eriksson, Estep, Hansbo, Johnson
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1995) ∥∥h−2(z − πhz)
∥∥ ≤ Ci ∥∥z′′∥∥ . (A.39)

To estimate the term ‖z′′‖ in (A.39) we consider the following problem{
Aw = ψ, in x ∈ [0, 1]

w(0) = 0, w(1) = 0,
(A.40)

where ψ = ψ(x) ∈ V are functions that represent all possible error functions
e = e(x). Then the strong stability factor S is defined by

S = max
ψ∈V

‖w′′‖
‖ψ‖

.

Consider there ψ = e, then from (A.37) we get that w = z and obtain the
estimate ∥∥z′′∥∥ ≤ S ‖e‖ . (A.41)

Finally, from (A.38), (A.39) and (A.41) we obtain the aposteriori error estimate
in the L2 norm

‖e‖ ≤ C̄i
∥∥h2q(U − f)

∥∥ . (A.42)

Here C̄i = SCi is a constant and it has no effect on construction of adaptive
meshes.

Error estimation in the energy norm

Let us define the energy norm ‖e′‖ =
√

(e′, e′). Replacing v ∈ V with an
error function e ∈ V in variational problem (A.34), considering v = πhe in
(A.35), where πhe ∈ Vh is a piecewise linear interpolant of e, integrating by
parts and using the Cauchy inequality, gives

ε2
∥∥e′∥∥2 ≤ ‖h(qU − f)‖

∥∥h−1(e− πhe)
∥∥ . (A.43)

The interpolation error can be estimated as (Eriksson, Estep, Hansbo, Johnson
1995) ∥∥h−1(e− πhe)

∥∥ ≤ C̃i ∥∥e′∥∥ ,
where C̃i is a constant. Using this inequality in (A.43) we get an aposteriori
error estimate in the energy norm

∥∥e′∥∥ ≤ C̃i
ε2
‖h(qU − f)‖ . (A.44)
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We note that in both aposteriori error estimates (A.42) and (A.44) the residual
R(U) = qU − f of the FE scheme multiplied by hp defines the contribution
to the total error from the element [xj−1, xj ].

Adaptive mesh generation

The adaptive mesh is obtained by solving the minimization problem

min
x1,...,xN−1

N∑
j=1

rj−0.5,
N∑
j=1

hj−0.5 = 1, (A.45)

where rj−0.5 is a local error estimate on the interval [xj−1, xj ]. To minimize
the total error the standard local error equidistribution technique is applied
for a given monitoring function (Eriksson, Estep, Hansbo, Johnson 1995). It
reads: find hj−0.5, j = 1, . . . , N , such that rj−0.5 = const, j = 1, . . . , N .

Using aposteriori error estimates (A.42), (A.44) we get the following error
equidistribution problem

rj−0.5 = h2p
j−0,5

∫ xj

xj−1

(qU − f)2 dx = const, j = 1, 2, . . . , N, (A.46)

here p = 1 for the energy norm and p = 2 for the L2 norm, respectively.
Problem (A.46) can be solved by the inverse interpolation method.

Appendix A.3. Comparison with apriori adaptive meshes

In this section we compare the adaptive mesh based on aposteriori error esti-
mates with the well known Shishkin and Bakhvalov meshes.

Comparison with the Bakhvalov mesh

The Bakhvalov mesh (Bakhvalov 1969) is generated by equidistributing∫ xj

xj−1

MB(x) dx = const, j = 1, 2, . . . , N (A.47)

the monitoring function

MB(x) = max

{
α, e(−

ρx
σε), e

(
− ρ(1−x)

σε

)}
, (A.48)
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where % = min
x∈[0,1]

√
q(x), σ is a freely defined parameter, and α is a regular-

ization parameter.
The information on function f is not used in the Bakhvalov mesh. Also,

we note, that in the Bakhvalov mesh the function q(x) is approximated by the
constant % = min

x∈[0,1]

√
q(x).

In order to find a relation between duality-based a posteriori mesh and the
Bakhvalov mesh we consider the problem{

−ε2u′′ + ρ2u = f̄ , in x ∈ (0, 1),

u(0) = 0, u(1) = 0,
(A.49)

where f̄ = const. To obtain an analytical formula of the adaptive meshes in
the L2 and energy norms we use the exact solution of (A.49) instead of the
Galerkin approximation (A.46):

u(x) =
f̄

ρ2

−e(
ρx
ε ) + e(−

ρx
ε ) − e

(
ρ(1−x)

ε

)
+ e

(
− ρ(1−x)

ε

)
− e(−

ρ
ε ) + e(

ρ
ε )

e(
ρ
ε ) − e(−

ρ
ε )

.

Then the residual of the Galerkin scheme can be computed as

R(u) =
f̄

e(
ρ
ε ) − e(−

ρ
ε )

(
−e(

ρx
ε ) + e(−

ρx
ε ) − e

(
ρ(1−x)

ε

)
+ e

(
− ρ(1−x)

ε

))
.

We are interested to analyze the adaptive mesh only in the neighbourhood of
boundary layers 0 ≤ x ≤ cε/ρ and 0 ≤ 1 − x ≤ cε/ρ, thus it is sufficient to
take the following asymptotical approximation of the residual

R̃(u) = −f̄
(
e−

ρx
ε + e−

ρ(1−x)
ε

)
. (A.50)

Then from (A.46) we get the following error equidistribution problem

h2p
j−0,5

∫ xj

xj−1

(
e−

ρx
ε + e−

ρ(1−x)
ε

)2
dx = const, j = 1, 2, . . . , N. (A.51)

First, let us consider a left boundary layer at x = 0. Since ε � 1, equations
(A.51) can be simplified to

h2p
j−0,5

∫ xj

xj−1

e−2ρx/ε dx = const, j = 1, 2, . . . , N/2.
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Applying the standard midpoint rule for numerical integration after simple
computations we derive the mesh equidistribution equations in the following
form ∫ xj

xj−1

e
− 2ρx
ε(2p+1) dx = const, j = 1, 2, . . . , N/2. (A.52)

A boundary layer at x = 1 is considered similarly. Thus the duality based
adaptive mesh can be obtained by using the monitoring function

M(x) =

e
− 2ρx
ε(2p+1) , in x ∈ [0, 0.5),

e
2ρ(x−1)
ε(2p+1) , in x ∈ [0.5, 1].

(A.53)

By taking σ = 2p+1
2 in (A.53) we get the monitoring function (A.48), which

was used to construct the Bakhvalov mesh. In addition we have derived a rule
to define parameter σ for the Bakhvalov mesh: σ = 5

2 , if the global error is
estimated in the L2 norm, and σ = 3

2 , if the energy norm is used.
At the end of this subsection we present explicit formulas for the adap-

tive mesh, generated by the monitoring function (A.53). From (A.52) we get a
system of nonlinear equations∫ xj

0
e(−

ρx
σε) dx =

2j

N

∫ 1/2

0
e−( ρxσε) dx, j = 1, . . . , N/2,

from which xj is defined by:

xj = −σε
ρ

ln

(
1− 2j

N

(
1− e−

ρ
2σε

))
, j = 1, . . . , N/2. (A.54)

Since the mesh is symmetric with respect to point x = 0.5, then xj = xN−j
for j = N/2 + 1, . . . , N .

The Bakhvalov mesh is exponentially fitted at boundary layers. In
Fig. 2.14a an example of the Bakhvalov mesh is shown for f = q = k =
p = 1, ε = 0.05, discretization nodes are marked by vertical lines, N = 40.

Numerical experiments

In this section we investigate how assumptions used to construct the Shishkin
mesh affect the accuracy of the discrete solution. For error computations we
have computed numerical solutions by taking a very big number of mesh points
N = 16000 of the Bakhvalov mesh, the mesh regularization parameter α
in formula (A.48) is defined by the technique offered by Beckett, Mackenzie
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Fig. A.6. Results for Example 1 with ε = 0.01: a) an adaptive mesh based
on a posteriori error estimates and the Galerkin solution, b) the global error

|e(x)| for problem (A.55)

(2001). In all computations we use σ = 5
2 . Computational experiments are

done for the Shishkin mesh and adaptive mesh based on a posteriori error
estimate in the L2 norm. Nodal errors e(x) = u(x) − U(x) in the maximum
norm are also presented.

Example 1. Consider the following singular problem{
−ε2u′′ + u = x, in x ∈ (0, 1),

u(0) = 0, u(1) = 0.
(A.55)

The solution of this problem do not have boundary layer singularity on the
left side of interval. The adaptive mesh based on a posteriori error esti-
mate, the Galerkin solution and global errors of this solution are presented
in Fig. Fig. A.6. The most of mesh points are distributed on the right boundary
layer at x = 1 and they are adapted to local values of f .

At it was stated above, the Shishkin mesh does not depend on local values
of the function f(x) and the mesh points are adapted to both boundary layers,
though the left one is not presented in this example. We see in Fig. Fig. A.7,
that for the Shishkin mesh the largest errors of the Galerkin solution are dis-
tributed near the right boundary layer.

Next we have solved problem (A.55) and computed the error by using both
meshes with different numbers of nodes N . The errors in the L2 norm and the
experimental convergence rates are given in Table A.3.

It follows from the presented results, that the adaptive mesh based on



APPENDIXES 137

x

u

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

(a)

x

e

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.2 0.4 0.6 0.8 1

(b)

Fig. A.7. Results for Example 1 with ε = 0.01: a) the Shishkin mesh and
the Galerkin solution, b) the global error |e(x)| for problem (A.55)

Table A.3. Errors of the Galerkin solution in the L2 norm and the experimental con-
vergence rates for problem (A.55)
n the Shishkin mesh rate adaptive mesh rate
20 1.08E-2 –- 1.81E-4 –-
40 4.36E-3 1.31 3.78E-5 2.26
80 1.58E-3 1.46 8.70E-6 2.12
160 5.36E-4 1.56 2.09E-6 2.06
320 1.74E-4 1.63 5.11E-7 2.03
640 5.45E-5 1.67 1.26E-7 2.02

a posteriori error estimates gives more accurate Galerkin solution than the
Shishkin mesh. However the difference between both results is not big.

Example 2. In this example we consider a singular problem with different
thicknesses of boundary layers:{

−ε2u′′ + (1 + 2x2)u = 1, in x ∈ (0, 1),

u(0) = 0, u(1) = 0.
(A.56)

The thickness of the right boundary layer is smaller than the thickness of
the left boundary layer. The adaptive mesh based on a posteriori error esti-
mate, the Galerkin solution and global errors of this solution are presented in
Fig. Fig. A.8. We see that global error of the Galerkin solution is well balanced
at both boundary layers.

The Shishkin mesh does not depend on local values of the function q(x),
thus the thickness of both boundary layers is taken the same in this case. We
see in Fig. Fig. A.9, that for the Shishkin mesh the largest errors of the Galerkin
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Fig. A.8. Results for Example 2: a) an adaptive mesh based on a posteriori
error estimates and the Galerkin solution, b) the global error |e(x)| for

problem (A.56)
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Fig. A.9. Results for Example 2: a) the Shishkin mesh and the Galerkin
solution, b) the global error |e(x)| for problem (A.56)

solution are distributed near the right boundary layer, where the real thickness
is smaller than defined by the mesh and some mesh points are redundant there.

Next we have solved problem (A.56) and computed the error by using
adaptive and the Shishkin meshes with different numbers of nodes N . The
errors in the L2 norm and the experimental convergence rates are given in
Table A.4.



APPENDIXES 139

Table A.4. Errors of the Galerkin solution in the L2 norm and the experimental
convergence rates for problem (A.56)
n the Shishkin mesh rate adaptive mesh rate
20 1.28E-2 – 1.82E-3 –
40 5.33E-3 1.27E 3.31E-4 2.46E
80 1.96E-3 1.44E 7.02E-5 2.24E
160 6.70E-4 1.55E 1.66E-5 2.08E
320 2.18E-4 1.62E 4.14E-6 2.01E
640 6.84E-5 1.67E 1.04E-6 2.00E


