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Appendix B. The Finite Difference Scheme

In this appendix we present numerical techniques which are used to approxi-
mate solutions of system (3.1)—(3.3). A comprehensive treatment of theoretical
and implementation issues of discretization methods for advection-diffusion-
reaction problems are given in the monograph by Hundsdorfer and Verwer
Hundsdorfer, Verwer (2003). Very interesting applications of these results for
biomedical problems are described by Gerisch and Chaplain Gerisch, Chaplan
(2006), Gerisch and Verwer Gerisch, Verwer (2002) (see also references given
in these publications).

Here we propose to use a linearized implicit backward Euler method for
the approximation of the diffusion-reaction subproblems and the explicit for-
ward Euler method for solution of the advection subproblem. We have re-
stricted to the first order methods due to their robust stability. Note that our
main goal is to investigate the influence of a possible ill-posedness of the PDE
system to the asymptotical behaviour of the solution.

Appendix B.1. The method of lines. Discretization in space

We use the method of lines (MOL) approach (see, Gerisch, Chaplan (2006);

Hundsdorfer, Verwer (2003)). At the first step we approximate the spatial

derivatives in the PDE by applying robust and accurate approximations tar-

geted for special physical processes described by differential equations.
Domain [0, 1] is covered by a discrete uniform grid

wh:{xj:xj:jh,j:O,...,N—l}, :L’N:1

with the grid points x ;. On the semidiscrete domain wy, (k) x [0, 7] we define
functions Uj(t) = U(x;,t), Vj(t) = V(x;,t),j =0,...,N — 1, here U;, V;
approximate solutions u(x;,t), v(x;,t) on the discrete grid wp, at time moment
t.

We also define the forward and backward space finite differences with
respect to x:

Uj+1 = Uj

_Ui-Uj
h ’ '

0,U; = -

0:U;

Using the finite volume approach, we approximate the diffusion and reac-
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tion terms in the PDE system (3.1) by the following finite difference equations:

ADRl(Uvj) :D&E&EUJ —|—")/T'Uj(1—Uj), (B.57)

Up
Apra(V, U, j) = 0:0.Vj + (Héva - Vj) .
J

The stencil of the discrete scheme requires to use functions defined outside of
the grid wy,. We apply periodicity boundary conditions (3.3) to define discrete
functions for 7 < Oorj > N:

U,j = UN_j, UN—H—j =Uj-1 for 57 > 0. (B.58)
The advection term in equation (3.1) depends on the variable velocity

X v

a(x,t) == m%a

therefore the maximum principle is not valid for the respective transport equa-
tion. But problem (3.1) still has non-negative solutions, and this property can
be preserved on the discrete level by applying proper upwinding approxima-
tions. The discrete spatial approximation of the velocity is computed by

X
(1+a(Vi +Vj41)/2)

a]+%(t = 5 ax‘/]

In the following we consider the upwind-based discrete fluxes Gerisch, Chap-
lan (2006); Hundsdorfer, Verwer (2003):

FT(U7a7j+ 1/2) =
Fr(U,a,j+1/2) =a;,

21 [Uj +00) (Ui = U3)], aj1 20, (B59)
[Ujr1 +9(1/8541) (U — CG+4)} a1 <0,

w\»—‘

1
2

with the Koren limiter function

¥ (0) = max (0, min (1, é + é@, 0))

The limiter ) depends on the smoothness monitor function

_Ui—Uj
Ujr —Uj
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For ¢ = 0 we get the standard first-order upwind flux
Fruyw(U,a,j +1/2) = max (aj+%,0) U; + min (aj+é,0) Ujta.
Let us denote the discrete advection operator as
1

AT(U7 Vv]) = h

(Fr(U,a,j +1/2) — Fr(U,a,j — 1/2)).

Then we obtain a nonlinear ODE system for the evaluation of the approximate
semi-discrete solutions

dU; . .

dtj = AT(Ua Vva]) + ADRI(Ua.])a Zj € wh, (B60)
dv; .

— =A .

7 pr2(V, U, j)

Appendix B.2. Operator splitting methods

In order to develop efficient solvers in time for the obtained large ODE sys-
tems we apply the splitting techniques. They take into account the different
nature of the discrete operators defining the advection A7 (U,V,j) and the
diffusion-reaction Apgr1(U,j), Apra(V,U,j) terms. The system resolving
the semi-discrete advection process can be solved very efficiently by using
explicit solvers, while the diffusion-reaction semi-discrete system is stiff and
it requires an implicit treatment. Also we are interested in preserving at the dis-
crete level the positivity and/or boundedness of the solution, if such properties
hold for the differential ODE system.

First we consider the symmetrical splitting method (also known as the
Strang splitting Strang (1968)). Given approximations U}*, V" at time ", we
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compute solutions at t"*1 = " 4+ 7 by the following scheme:

dU.:

% = Ar(U, V", j), U;(t")=Up}, t"<t< e =" 4 12,
(B.61)

dU; ntl

— = Aom(U.), U;(t") =T TR <<t (B.62)

dU;

ditj _ AT<U, Vn,j), Uj(tn) — U;-H_l, thr% <t< tn+1

—L = App(V.Uj), Vi) =V, <t <t (B.63)

Here we also have splitted the given ODE system into two blocks with respect
to U; and V; functions.

Lemma 1. Solutions of the splitting ODE problem (B.61)—(B.63) are non-
negative if Uj* > 0 and V" > 0 for all xj € wp,.

Proof. The proof for the advection subsystems follows from the construc-
tion of the discrete fluxes by using the upwinding technique. The proof for
the diffusion-reaction subsystems follows from the lemma in Gerisch, Verwer
(2002) that the solution of an initial value problem for systems of ODEs

dY
i F(t,Y(t), t>0, Y(0)=Y),

is non-negative if and only if for all £ and any vector V € R™ and all 1 < i <
m

v; =0, v; >0 forall j#i = fi(t,V)>0.

It is easy to see that for the diffusion-reaction subsystems the diffusion parts
of the matrices are diagonally dominant and all off-diagonal entries are non-
positive. For the reaction parts the required estimates are also trivially satisfied.
O

Lemma 2. If0 < U} < C for all xj € wy, then a solution of the splitting
ODE problem (B.62) is also bounded U; < max(C, 1).

Proof. Here we use the fact that U = 1 is a stable attractor of the reac-
tion function. Let U;® = max; U;". Then it follows from the definition of
Apr1(U, j) that in the worst case

U, v,

0, ifC<1l, —=0, ifC=1
dt>,1 <1, I , 1 ,
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and
dU;

dt
The lemma is proved. o

<0, if C>1.

Appendix B.3. Numerical integration of ODEs

There are many numerical integration methods for solution of non-stiff and
stiff ODEs. For detailed discussions of these schemes we refer the reader
to Gerisch, Chaplan (2006); Hairer, Norset, Wanner (1993); Hairer, Wanner
(1996); Hundsdorfer, Verwer (2003).

Let w; be a uniform time grid

wr=A{t":t"=nr,n=0,...,M, M7 =Ty},

here 7 is the time step. For simplicity this step size is taken constant.
In the following, we consider numerical approximations U}*, V/"* to the
exact solution values u(x;,t"), v(z;,t") at the grid points (z;,t") € wp, X wy.

Remark 1. In Baronas, Simkus (2011), the explicit forward Euler scheme is
used to solve problem (3.1). Since no details are given in Baronas, Simkus
(2011) on approximations of spatial derivatives, we use discrete operators
introduced in previous sections and write the explicit forward Euler scheme
as:

U?+1—an n trn - n
——— = Ap(U" V", j) + Apri(U", ),
yntl _yn

J

I = Apro(V"™, U™, j).

T

We note that this scheme can be written as a splitting algorithm:

1

A

f:AT(U 7V 7])7
n+ i

ot -t 0o

f:ADRl(U 7.7)7

‘/jn+1_vp

J - ADRQ(V”, Una.])

T
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Thus the explicit Euler scheme can be considered as a special case of splitting
algorithms. Despite easy implementation and good parallel properties of ex-
plicit algorithms, the main drawback of the explicit Euler method is that due
to the conditional stability we must restrict the integration step to T < Ch?
for stiff discrete diffusion-reaction subproblems.

The Rosenbrock and implicit Runge-Kutta methods are successfully ap-
plied for integration of a stiff part of the splitting semidiscrete-scheme, i.e.
diffusion — reaction equations (B.62), (B.63), see Gerisch, Chaplan (2006);
Gerisch, Verwer (2002); Hundsdorfer, Verwer (2003).

Here we propose to use a linearized implicit backward Euler method for
the approximation of the diffusion-reaction subproblems and the explicit for-
ward Euler method for solution of the advection subproblem. We have re-
stricted to the first order methods due to their robust stability. Note that our
main goal is to investigate the influence of a possible ill-posedness of the PDE
system to the asymptotical behaviour of the solution.

We discretize the semidiscrete problem (B.61)—(B.63) with the fully dis-
crete scheme

1

vt -y -
T = AT(U 7V a])? (B64)

n+2 nti
u. 2-U. 3 na-2 nal n+2

n—42

U;L+1_Uj+3 n+2 n
e = Ap(UTS V), (B.66)
vt _yn

J - J —_ ADRQ(V”+1,Un+1,j)~ (B.67)

We apply two splittings of the advection term, because then we use only half
of the splitting step size for the explicit method. This doubles the stability and
positivity domains of the explicit method (see Gerisch, Verwer (2002)).

Next we prove that statements of Lemma 1 and 2 hold also for solutions
of the fully discrete finite difference scheme (B.64)—(B.67)

Lemma 3. For a sufficiently small time step 7 < T1¢ solutions of the finite
difference scheme (B.64)—(B.67) are non-negative if U;* > 0 and V" > 0 for
all vj € wy,.

Proof. The proof for the advection problems (B.64) and (B.66) follows from
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the construction of the discrete fluxes by using the upwinding technique and
selection of a sufficiently small time step 7 < 7.

The proof for the diffusion-reaction problems (B.65) and (B.67) follows from
the maximum principle Samarskii (2001). For example, consider problem
(B.65). We assume, that

2

. n+3
= min U, 3.
0<j<N 7

Ut

)

win

2
We write the discrete equation (B.65) for Uz-n "5 inan explicit form

3 Z 1 Dr 2 2 2
(rerar )i = (om0 Ul o)
ince U3 nid ol nt?
Since U; >0and U, ° > U, we get that U, > 0. 0

1
Lemma 4. [f0 < U;+3 < C for all xj € wy, then a solution of the finite
difference scheme (B.65) is also bounded

2
U;Jr?’ <max(C,1), Vz; € wp.

Proof. The proof is based on the maximum principle and a special form of
2
the discrete reaction term. First, we consider the case C' < 1. Let Uin 5 Z
2
max; U, . Then it follows from (B.65) that

nt1 nt2 _ "
<(I4mr)U; 2 = U, * <

1 =

14+ 7yr)U; 1

1
1+ T’)/T‘Uin+3

1 2
<1+7‘77“U1-n+3 ) U'ts

1

Next we consider the case C' > 1. Then we get that

+1 n+i
1 Ut U -1
Qtry) * Ui P-1 o

1
1+ 7"y7"UinJr3

Ut <

7

1
1+ T’yrUinJr?’

The lemma is proved. O





