Abstract. In 2003–2004 soil depth profile sampling was carried out at Juodkrantė in the Curonian Spit. The activity concentrations of anthropogenic radionuclide ^{137}Cs in soil samples from the terrestrial and coastal environment of the Curonian Spit were determined and a study of their distribution was performed. The range of activity concentrations of accumulated deposits of ^{137}Cs in a 0–30 cm soil layer is $0.2–370.9\text{ Bq}\cdot\text{kg}^{-1}$ and $2.2–11.2\text{ Bq}\cdot\text{kg}^{-1}$ in samples of the forest soil and beach sand, respectively. Soil depth profiles display higher activity concentration levels in their upper layer of the forest soil and insignificant variations of lower activity concentrations in the surf zone–the dune ecosystem.

Keywords: the Curonian Spit, soil, radionuclide, ^{137}Cs.

1. Introduction

The presence of artificial radionuclides in the terrestrial environment may be conditioned by nuclear weapon tests, nuclear accidents and unauthorized releases.

The Lithuanian territory was contaminated substantially by artificial radionuclides due to nuclear weapon tests in the atmosphere in the period 1945–1980 and the Chernobyl Nuclear Power Plant (ChNPP) accident in 1986. One of the most important radionuclides in the releases was ^{137}Cs. Owing to the global shedding of radioactive substances ^{137}Cs surface activity density in the soil of the Lithuanian region is $1.1–2.2\text{ Bq}\cdot\text{m}^{-2}$ [1]. After the ChNPP accident values from 7.4×10^{7} to $3.0\times10^{8}\text{ Bq}\cdot\text{m}^{-2}$ were obtained [2]. It was established that the territory of Lithuania was contaminated non-uniformly, and thus far the Southern, South-Eastern and Western regions are the most contaminated by ^{137}Cs [3]. Major part of ^{137}Cs is still accumulated in the upper soil layer [3].

The Curonian Spit is one of the regions where the highest radionuclide concentrations after the ChNPP accident were detected. ^{137}Cs surface activity concentration in a 0–5 cm deep undisturbed soil layer in the Curonian Spit was studied at Institute of Physics in 1992–1995 and 1999–2000 [4]. It was found that an average ^{137}Cs surface activity density changed from 2760 to $2130\text{ Bq}\cdot\text{m}^{-2}$ in the period of time between investigations. Few amount of information on ^{137}Cs distribution according to the depth in the mentioned region was obtained. The activity concentrations determined only for two points in the Curonian Spit in 1999–2000 show non-uniform distribution of ^{137}Cs in the soil with two peaks at 0–2 cm and 8–10 cm depth [4].

The assessment of the radioceasium inventory and distribution in the soil layers down to 20 or 25 cm depth is of great interest due to its relevance to the research of caesium uptake by plants [5] and its importance for the calculations of caesium contribution to the total absorbed gamma dose rate in the air [6], which strongly depends on radionuclide concentration in the upper 25 cm soil layer [7].

The Curonian Spit is a significant recreational area. The objective of our study was to assess spatial variations in the radionuclide activity concentrations in the soil of dune and forest ecosystem for further investigations of ^{137}Cs migration on the Lithuanian seaside.

2. Sampling and measuring methods

In 2003–2004 soil sampling at Juodkrantė in the Curonian Spit was carried out. Soil samples were collected from 19 locations (Fig 1). The sampling area was plotted out in 2 transects (a and b) and 10 longitudinal sections. The transects were chosen 30–50 m apart on the beach and in the pine wood the distance between them reached 200–300 m.

The soil samples were collected by a corer 12 cm \times 12 cm and 30 cm depth, segmented in 0–5, 5–10, 10–15, 15–20, 20–25 and 25–30 cm layers. Then they were weighed and transported to the laboratory in plastic
Fig 1. The Curonian Spit and location of soil sampling points

bags, dried in an oven at 100–110 °C for about 24 h, weighed again, and placed in 100 ml volume plastic containers.

The 137Cs activity concentration of the soil samples was determined with the help of a high-resolution hyper pure germanium (HPGe) gamma ray spectrometer system (CANBERRA) (resolution 2 keV, efficiency 15 %). The spectrometer was calibrated by means of the solid 152Eu + 137Cs standard of various densities.

Each sample was counted from 24 to 168 h. 137Cs activity was determined according to the peak at 662 keV. The background radiation spectrum was evaluated for 168 h counting time. The maximum fractional measurement error didn’t exceed 12 %.

3. Results and discussion

The soil sample analysis results are presented in Table 1. As can be seen, the widest range of 137Cs activity concentrations (2.5–370.9 Bq·kg$^{-1}$) was observed in the upper 0–5 cm soil layer. In the surf zone and dunes (points 1–4) they varied in the limits 2.5–11.2 Bq·kg$^{-1}$, while in a pine forest (points 5–8) they were 10.1 to 370.9 Bq·kg$^{-1}$. The concentration ranges in deeper forest soil layers were getting narrower. The lowest levels of 137Cs activity concentration (0.2–10.4 Bq·kg$^{-1}$) were determined in the forest soil in 25–30 cm layer. In the surf zone and the sand dunes 137Cs activity concentrations variations were insignificant, except the point behind the dune, where the activity concentration increased up to 11.2 Bq·kg$^{-1}$.

Current studies show that the distribution of 137Cs in the surface soil may be attributed to the topographical situation. A characteristic property of radiocaesium distribution was observed – an increment in 137Cs activity concentration before the dune (point 2) and its decrement on the top (point 3) and behind the dune (point 4) (Fig 2). As for the forest, it was observed that 137Cs activity concentration was getting lower when passing from the sea upward a hill. The lowest activity concentrations were observed on the top of hills (point 7 (transect a)) and the highest ones – in forest lowlands (points 8 (transect a) and 7 (transect b)). Radionuclide concentration on lowlands probably occurred under the impact of contaminated water runoff from hills. On the other hand, the influence of organic matter could take place as well.

The obtained 137Cs surface activity density results in a 0–5 cm undisturbed soil layer in the Curonian Spit with analogical results of other authors [4] were compared (Table 2). We can see from the data that an average surface activity density of 137Cs decreased approximately by the factor of two in comparison with the data of measurements in 1999–2000. Significant decrease in maximum values are observed as well. It could be probably related to inadequacy of sampling points.

137Cs activity concentration distribution according to depth was investigated, and it was established that 137Cs activity concentrations varied in a wide interval of values (Fig 3).

Table 1. Statistical data of 137Cs specific activity (Bq·kg$^{-1}$) in Juodkrantė environment soil in 2003–2004

<table>
<thead>
<tr>
<th>137Cs</th>
<th>0–5 cm</th>
<th>5–10 cm</th>
<th>10–15 cm</th>
<th>15–20 cm</th>
<th>20–25 cm</th>
<th>25–30 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surf zone and sand dunes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>2.5–11.2</td>
<td>2.8–4.8</td>
<td>2.4–4.5</td>
<td>2.7–4.5</td>
<td>2.4–4.0</td>
<td>2.2–6.8</td>
</tr>
<tr>
<td>Arithmetical mean (AM)</td>
<td>4.5</td>
<td>3.8</td>
<td>3.7</td>
<td>3.7</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td>Forest soil:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>10.1–370.9</td>
<td>1.6–173.7</td>
<td>0.4–67.6</td>
<td>0.3–29.2</td>
<td>0.2–19.6</td>
<td>0.2–10.4</td>
</tr>
<tr>
<td>Arithmetical mean (AM)</td>
<td>153.8</td>
<td>67.5</td>
<td>24.0</td>
<td>12.1</td>
<td>7.4</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Profiles 1–4 present the vertical distribution of 137Cs activity concentration in the surf zone and dune ecosystem. It is found that the distribution of mentioned radionuclide is non-uniform, the activity concentration increases and diminishes at different depths but the variations observed are not significant. A maximum 137Cs activity concentration value of 6.8 Bq·kg$^{-1}$ was found in the surf zone in a 25–30 cm layer, and a minimum value of 2.2 Bq·kg$^{-1}$ was on the top of the dune at the same depth. The observed 137Cs depth profiles in the surf zone can be formed by the sea water wash. Radiocaesium distribution in sand dunes may be influenced by the wind and rain in the case of the absence of vegetation.

Profiles 5, 7, 8 show the distribution of radiocaesium in the pine forest soil. It is found that in the hillside (profile 5) and on the top of the hills (transect a (profile 7)) the maximum values of 137Cs activity concentration are located in the uppermost part of the soil (0 to 5 cm in depth). In the deeper 5–10 cm layer the specific activities decrease significantly and keep the same level up till 25–30 cm. The different situation has been observed in the lowland (transect b (profile 8)), where the highest activity concentration exists in the uppermost part of the soil and then it decreases exponentially with depth. Here the changes in caesium activity concentration with depth can be described by an exponential law which in general form is written as

$$ A = A_0 \cdot e^{-kz}, $$

(1)

here A_0 is the caesium activity concentration in the soil on the zero level, A is the activity concentration at depth z (Bq·kg$^{-1}$), k is the parameter.

The vertical distribution of 137Cs activity concentration in some profiles of the soil in the Curonian Spit (Fig 3) can be expressed as

$$ A = 570 \cdot e^{-0.69z}, \quad \text{for transect } b \text{ profile 7}; $$

(2)

$$ A = 584 \cdot e^{-0.91z}, \quad \text{for transect } a \text{ profile 8}; $$

(3)

$$ A = 526 \cdot e^{-0.71z}, \quad \text{for transect } b \text{ profile 8}. $$

(4)

The various depth distributions of 137Cs content in the forest soil on the top of the hills and in the lowland may possibly be due to the different amount of litter and influence of precipitation in these topographically so different places.
Fig 3. Depth distribution of 137Cs activity concentration (Bq·kg$^{-1}$) in soils of the Curonian Spit in profiles 1, 2, 3, 5, 7, 8 of transects a and b
4. Conclusions

1. 137Cs activity concentration values in the upper 0–5 cm soil layer of the Curonian Spit varied at an interval of 2.5–370.9 Bq kg$^{-1}$. In a pine forest the arithmetical mean (AM) of 137Cs activity concentration values was by the factor of 30 greater than that in beach sand.

2. The present studies show that the distribution of 137Cs in the surface soil may be possibly attributed to a topographical situation.

3. Insignificant variations of 137Cs activity concentrations by depth in beach sand was observed, while in the forest soil their maximum values were located in the uppermost part of the soil (0 to 5 cm in depth).

References

TARŠA 137Cs IR JO VERTIKALUSIS PASISKIRSTYMAS KURŠIŲ NERIJOS DIRVOŽEMIJE

R. Morkūnienė, V. Valuntaite, A. Girgždys, N. Astrauskienė

S ant rau k a

Nustatytas dirbtinės kilmės radionuklidio 137Cs savitasis aktyvumas kranto smėlyje bei miško dirvožemyje, tam tikslui atlikta 2003–2004 m. Kuršių nerijos bandymo punktų grunto savitasis radionuklidų analizė. 137Cs savitasis aktyvumas miško dirvožemio 0–30 cm sluoksnyje kito nuo 0,2 iki 370,9 Bq kg$^{-1}$, o kranto ir kopų smėlyje – nuo 2,2 iki 11,2 Bq kg$^{-1}$. Didžiausias radionuklidų savitasis aktyvumas nustatytas paviršiniame 0–5 cm miško dirvožemio sluoksnyje, gilesniuose, o kranto ir kopų smėlyje – nuo 2,2 iki 11,2 Bq kg$^{-1}$.

Raktažodžiai: Kuršių nerija, dirvožemis, radionuklidai, 137Cs.

Rasa MORKŪNIEŅĖ. Dr, senior research worker, Laboratory of Nuclear Hydrophysics, Vilnius Gediminas Technical University (VGTU), Saulėtekio al. 11, LT-10223 Vilnius, Lithuania. E-mail: radioch@fm.vtu.lt

Vaida VALUNTAITĖ. Master, junior research worker, Dept of Physics, Vilnius Gediminas Technical University (VGTU), Saulėtekio al. 11, LT-10223 Vilnius, Lithuania. E-mail: VaidaValuntaite@one.lt

Aloyzas GIRQŽDYS. Dr, head of Laboratory of Nuclear Hydrophysics (since 2002), Vilnius Gediminas Technical University (VGTU), Saulėtekio al. 11, LT-10223 Vilnius, Lithuania. E-mail: algi@fm.vtu.lt

Nijolė ASTRAUSKIENĖ. Dr, Assoc Prof, Dept of Physics, Vilnius Gediminas Technical University (VGTU), Saulėtekio al. 11, LT-10223 Vilnius, Lithuania. E-mail: nijole.a@takas.lt