A TEST ROAD SECTION OF EXPERIMENTAL PAVEMENT STRUCTURES IN LITHUANIA (I)

Donatas Cygas¹, Alfredas Laurinavicius², Audrius Vaitkus³, Zigmantas Perveneckas⁴, Algirdas Motiejunas⁵

¹23.5 Dept of Roads, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10223, Vilnius, Lithuania E-mail: ¹dcyg@ap.vgtu.lt, ²alfla@ap.vgtu.lt, ³akml@ap.vgtu.lt, ⁴algirdas.motiejunas@ap.vgtu.lt
⁵Lithuanian Road Administration under the Ministry of Transport and Communications E-mail: ⁴zigmantas.perveneckas@lra.lt

Abstract. The rapid growth of heavy traffic, the increase in the standard axle load from 10 to 11.5 tonnes on the main roads of Lithuania make the scientists to look for new durable road building materials and their mixes. The continuously increasing need for the strengthening of road pavement structures induces to use new road reconstruction technologies, to search for new methods in constructing pavement structural layers, to investigate pavement structures under real conditions. The article gives the program of experimental investigations of a test road section constructed for the first time in the road history of Lithuania and consisting of 24 different pavement structures. The article also describes the initial results of investigations. Further investigation results, their analysis and evaluation will give a possibility to choose road pavement structures the most suitable to Lithuanian climatic and traffic conditions.

Keywords: road pavement structure, test road section, investigation of the structural parameters of road pavement, transducers.

1. Introduction

The rapid growth of heavy traffic on the motor roads of Lithuania (main roads, in particular), the increase in the standard axle load from 10 to 11.5 tonnes, plastic deformations (ruts, waves) in the wearing courses of road pavement and other defects (cracks, alligator cracking, potholes) induce the scientists to look for new durable road building materials and their mixes [1,2]. A fast increase in the prices of road building materials create a necessity to look for new cheaper possibilities of using local materials and their mixes in building, reconstructing and repairing roads and streets [3]. In order to increase the strength of road pavement structures and their separate layers the requirements for road building materials and their mixes are getting more and more strict [4], geosynthetic materials are installed between the pavement structural layers [5,6]. Various laboratory investigations showed that the mentioned measures are efficient and gave a positive effect. However, Lithuania still lacks experimental investigations to model the performance of new materials, their mixes and the combinations of separate pavement structural layers under real conditions.

The scientists of other countries made an attempt to determine the performance of road pavement structures under real conditions by constructing and testing them in special test polygons. One of the largest test polygons of road pavement structures was established in 1989 in the French Central Laboratory of Roads and Bridges [7]. Here the scientists of various European countries tested and evaluated the performance of three different pavement structures. Three experimental road pavements – two flexible and one semi-rigid structure – were tested under the effect of different loads, the readings of the transducers of stresses, pressure, temperature and moisture were recorded, the tendencies for defects’ development in the wearing courses were identified, etc.

In 2006 – 2007 the test of road pavement structures was carried out in the University of Maine by using six different transducers [8]. The transducers were installed in different pavement structural layers to determine seasonal effects on the structural strength of road pavement.

In USA the investigations of experimental pavement structures were carried out in order to find out the change in the strength of separate layers during freeze – thaw periods [9]. The Falling Weight Deflectometer (FWD) was used to measure pavement structures in different periods of the year and to define the resistance of each pavement layer to frost effect.

The models of pavement performance under real conditions have been comprehensively analyzed by the
Professor of the Technical University of Denmark P. Ullidtz [10]. The scientist made the analysis of the models of elasticity, stress distribution, etc. which influence the service life and condition of pavements, the tendencies for the occurrence and development of pavement defects.

The impact of heavy vehicles on pavement structures was thoroughly investigated by the scientist of the Cambridge University D. Cebon [11]. His investigations were focused on the interaction between heavy vehicles and pavement structure, development of defects in pavement structure, dependency between the formation of defects and the speed of load movement, type of tyres and other factors [12].

2. The aims of erecting a test section and the program of experimental investigations

What type of pavement structure will serve for a longer period? Which of the road building materials are more durable under heavy traffic? Is it possible to replace the imported mineral materials with the local ones? These and other questions have initiated construction of a test section.

The aims of constructing a test section were as follows:

- to analyze and evaluate the design methods of road pavement structures under Lithuanian conditions;
- to evaluate suitability of materials suggested for the construction of road pavement structures;
- to determine the impact of heavy vehicles on pavement structures.

The structural strength of road pavements depends directly on the strength of subgrade, thickness and composition of pavement structure. The strength of pavement structures of the same thickness (of the same class of pavement structure), but erected from different materials significantly differ. The use of high-strength or high quality materials (for example, granite, modified bitumen, etc.) for the construction of sub-base and pavement layers increases the costs of road construction. Therefore, there is a continuous search of techniques to construct the pavement structure of the required strength and durability either using the local cheaper road building materials or the expensive high-strength materials to achieve the largest possible economic effect.

This research attempt is carried out to continue scientific researches and to seek for the most suitable and economically effective pavement structures the functioning of which would be investigated under natural conditions and subject to the specific heavy-weight traffic volume.

The cross-section parameters of a test section of experimental pavement structures meet the road category III and class III of pavement structure according to the Regulation of Motor Roads STR 2.06.03:2001. A test section, the total length of which is 710 m, consists of 24 segments of the same length (30 m) and 1 segment - 20 m long. In each segment the pavement structure of different composition was constructed. Three 30 m long segments are of the same pavement structure with the different type of geosynthetic materials installed in asphalt layers and sub-base. As the main (base) structure for the investigation purposes the most widely used pavement structure was assumed. The cross-section of the base pavement structure and the required values of static deformation modulus of the sub-base and subgrade are given in fig. 1.

![Fig 1. The base structure of experimental pavements](image-url)

Other pavement structures were selected by varying the materials of all structural pavement layers compared to the base structure.

For the frost blanket course, besides the base material - sand 0/11, the sand 0/4 was used.

For the sub-base layer, besides the base material, the crushed dolomite mix 0/56 was used:
- crushed granite mix 0/56;
- crushed granite and sand mix 0/32;
- crushed fine sand mix 0/32;
- gravel and sand mix 0/32;
- aggregate – milled asphalt concrete.

Base material of asphalt concrete road base – asphalt concrete 0/32 C on the basis of crushed dolomite. Also:
- 0-32 C crushed fine sand;
- 0/32 C crushed dolomite and crushed fine sand.

Base material of asphalt concrete base course – asphalt concrete 0/16 A on the basis of crushed dolomite. Also in other variants:
- 0/16 A (bitumen PMB);
- 0/16 A (crushed granite 11/16 and crushed dolomite 5/8);
- 0/16 A (crushed granite 8/11, 11/16 and crushed fine sand (fine particles));
- 0/16 A (crushed dolomite 8/11, 11/16 and crushed fine sand (fine particles));
- 0/16 A (crushed granite and sand);
- 0/16 A (crushed granite);
- 0/16 A (crushed fine sand).

Base material of asphalt concrete wearing course – asphalt concrete 0/11 S-V. Other variants:
- 0/11 S-M;
- 0/11 S-M with bitumen PMB;
- confalt.

A test section of experimental pavement structures was constructed in the following order:
1. The existing asphalt pavement was milled up to the sub-base from aggregate;
2. The sub-base layers were excavated up to a design height of subgrade;
3. When constructing the sub-grade and the sub-base layers of a test section the design deformation moduli were achieved.
4. When constructing a test section in each different pavement structure under each of asphalt concrete layers a transducer of horizontal deformation of asphalt concrete and 11 pressure transducers under the aggregate layers were installed.

The following investigations will be carried out in an experimental test section:

During the 1st year:
1. taking of subgrade soil from each separate segment, determination of soil type;
2. during the construction of pavement structure taking of materials from sub-base layer and frost blanket course from each separate segment, determination of grading and filtration coefficient;
3. taking of asphalt concrete specimens from each pavement layer to determine mechanical properties (fatigue resistance, stiffness);
4. taking of asphalt concrete cores, determination of compaction, type of mixtures, physical and mechanical properties of all asphalt concrete layers in each separate segment;
5. measuring of deformation modulus of subgrade, frost blanket course and sub-base layer in each separate segment by static beam.

During the 1st year and subsequent years:
1. measuring of evenness of the asphalt concrete wearing course in each separate segment;
2. measuring of the asphalt concrete wearing course in each separate segment by the Falling Weight Deflectometer (FWD);
3. measuring of the asphalt concrete wearing course in each separate segment by the Mini Falling Weight Deflectometer (FWD);
4. measuring of the cross-section, longitudinal section and texture of each separate segment;
5. measuring of skid resistance of asphalt concrete wearing course in each separate segment;
6. measuring of stresses in the structural layers of pavement of each separate segment (monitoring of all points after the passage of 20 000 equivalent axles of heavy vehicles).

Duration of investigations will depend on pavement condition and the passage of equivalent axles of heavy vehicles but not less than 5 years.

3. Investigation methods and measuring equipment

The strength of road pavement and its separate structural layers in Lithuania is regulated by a static deformation modulus. Most frequently deformation modulus is determined by non-destructive static and dynamic methods. In static method deformation modulus is determined using the Benkelman Beam (for flexible pavements) and static press (for sub-base layers from unbound materials). In dynamic method the following equipment are used: light dynamic device (for sub-base layers from unbound materials) and Falling Weight Deflectometer (for all pavement structural layers). When taking measurements by dynamic devices a load pulse is imparted on the pavement surface. The load is produced by dropping a large weight and transmitted to the pavement through a circular load plate. Dynamic load cause the deflections in the pavement structure. When taking measurements by static device a certain area of the pavement structure is being gradually loaded and unloaded.

When constructing a test section of experimental pavement structures the deformation moduli of separate structural layers and of the whole pavement structure were determined by static and dynamic methods using the following equipment:

In static method:
1. static press „Strassentest”;
2. Benkelman Beam „Infratest.
3. In dynamic method:
4. light dynamic device „ZORN ZSG 02”;
5. Light Weight Deflectometer „Prima 100”;
6. Falling Weight Deflectometer (FWD) „Dynatest 8000”.

In each different pavement structure of a test road section the stress and strain transducers were installed. At the bottom of the asphalt wearing course, binder course and base course special strain transducers were installed (Fig 2, a). The transducers were installed in the right-of-way, along which the loaded heavy-weight vehicles travel from the query, in the axis across the first track from the road shoulder at a 0,7 m distance from the road edge. In the main pavement structure under the asphalt wearing course an additional strain transducer was installed in the axis along the first track from the road shoulder. Totally, 80 strain transducers were installed in asphalt pavement layers of a test road section. On the surface of the crushed stone sub-base, frost blanket course and subgrade of specific and the main pavement structures 11 stress transducers were installed (Fig 2, b). The stress transducers were also installed in the axis of the first track from the road shoulder. The cables of transducers erected in a different pavement structural layer were connected to the data registration boxes erected in the roadside of a test section. When connected to special equipment the boxes register the transducer readings. During this investigation readings of the transducers will be registered each time after the passage of 20 000 ESAL’s (estimated to 100 kN) of the loaded heavy-weight vehicles travelling along the right-of-way from the query.
4. Initial results of measuring strength, stresses and strains of a test road section

This chapter gives the results of measuring strength, stresses and strains of experimental pavement structures. The strength measurements were carried out during the construction of pavement structures and after final completion of a test road section. Measurements of stresses and strains were taken before the opening of the road section to traffic. Fig 3 gives the distribution of the mean values of equivalent deformation modulus of different pavement structures measured by the Falling Weight Deflectometer (FWD) on the asphalt wearing course. Measurements by the FWD were taken in 3 points in each section of a different pavement structure.

When measuring stresses and strains the loading of transducers was carried out by a two-axle vehicle having twin-wheels of the rear axle. The load of twin wheels was 50 kN. The tyre pressure was 0.65 MPa. The speed of the moving vehicle - 50 km/h, mean temperature of the pavement surface +5.6°C. Transducer readings were registered by a universal digital measuring device “Spider 8” and a computer program „CatmanEasy“. The maximum values of stresses and strains of the main pavement structure of a test section are given in Table 1, variation charts of stresses and strains are presented in Fig 4.

Table 1. Maximum values of stresses and strains of the main pavement structure of a test section

<table>
<thead>
<tr>
<th>Transducer No.</th>
<th>Transducer location in pavement structure</th>
<th>Measuring results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Strains, microm/m</td>
</tr>
<tr>
<td>19.1 IS</td>
<td>At the bottom of the asphalt wearing course / longitudinal direction</td>
<td>7.99 tension, -19.17 compression</td>
</tr>
<tr>
<td>19.1</td>
<td>At the bottom of the asphalt wearing course / transverse direction</td>
<td>-26.76 compression</td>
</tr>
<tr>
<td>19.3.7</td>
<td>In the contact of the base course and the sub-base</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig 4. The charts of stresses and strains of the main pavement structure of a test road section: a) longitudinal strain at the bottom of the asphalt wearing course, b) transverse strain at the bottom of the asphalt wearing course, c) stresses in the contact of the base course and the sub-base

5. Conclusions and recommendations

1. In order to check the results of long-lasting laboratory investigations of the road building materials under natural field condition it became a necessity to construct a test section of experimental pavement structures.

2. The location in Pagiriai settlement selected for the construction of a test section fulfil all the conditions required for such an experiment: it has a sufficient heavy traffic volume, lies in an open terrain, has no horizontal plan curves or vertical curves in longitudinal section, could be distinguished by the same irrigation conditions within the whole route of the road section.

3. A test road section was constructed from 24 different pavement structures of the class III. The total length of the section - 710 m. 80 strain transducers and 11 stress transducers were installed in experimental pavement structures of a road section.

4. When constructing the sub-grade and the sub-base layers in each road segment the design layer thickness and the deformation modulus were achieved.

5. When constructing a test section and after it was opened to traffic the strength of the subgrade and of the separate pavement structural layers was measured using different measuring devices, the cross fall and the gradient were determined, also pavement roughness, skid resistance and pavement defects.

6. The mean values of equivalent deformation modulus of different experimental pavement structures measured by the Falling Weight Deflectometer vary from 591 MPa to 777 MPa. Equivalent deformation modulus show that the structural strength of pavements attributed to the same class of pavement structures differs between each other up to 25%.

7. Before opening a test section to traffic the stress and strain measurements were performed in the structural pavement layers. The measurements will be carried out each time after the passage of 20 000 ESAL’s (estimated to 100 kN).
References

