A GIS BASED URBAN TRANSPORT SYSTEM ANALYSIS AND RANKING IN TRANSPORTATION ZONES OF VILNIUS CITY

Marius Jakimavicius

Department of Urban Engineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania,
E-mail: mjakimavicius@hnit-baltic.lt

Abstract. Fixing the accessibility is a standard issue of transport analysis, which can be of interest to many socioeconomic applications. In the paper we propose and discuss accessibility and other indicators based urban transport system analysis and GIS (geographic information systems) calculation method for indicating problematic transportation zones in Vilnius city. The main parameter is time based accessibility from/to the central part of Vilnius and other transportation zones in the city. Created GIS application computes the ranks for transportation zones of Vilnius city according accessibility and Vilnius statistics in transportation zones (street network density in city zones, number of working places, number of equipped parking places, number of attractive objects in transportation zones). The GIS decision support system is based on two calculation methods Topsis (Technique for Order Preference by Similarity to Ideal Solution) and SAW (Simple Additive Weighting). Application of transportation zones analysis improves quality of basic environment statistics and fills many data gaps related to urban statistics, providing information to decision makers and the general public concerning key factors determining the state of urban transportation environment. This paper outlines criteria and models used in Vilnius to develop urban transportation indicators and the reasons why the selected indicators represent a first important step to achieve a comprehensive system of indicators of urban transportation sustainability in Vilnius city. This model could be integrated to systems of urban transport planning and sustainable development planning.

Keywords: Urban transportation, geographic information system, sustainable transport, transport planning, traffic analysis zone, decision support system

1. Introduction.

The motivation for this research arose from an effort to assess transportation system performance in the Vilnius city. The approach taken in that research [1] was to preselect a series of origin destination pairs for which public transportation might compete well with private automobile, and test the sensitivity of modal split, and overall system performance, to changes in transit service provided and the cost of auto travel. A review of the literature suggests that transit is most competitive in high-density commercial areas, and to a lesser extent residential, areas [2]. To preselect the origin and destination pairs, it was necessary to have a quantitative definition of “high-density” areas.

The urban studies literature contains definitions of activity centers, typically defined as areas with higher than adjacent concentrations of employment at the traffic analysis zone (TAZ) level. This definition has proven satisfactory in the analysis of polycentric areas’ employment patterns, residential location theory, and overall economic analysis.

The accessibility concept can be applied to many spatial problems; e.g. service centre location, hospitalsitting, school closure and many others. Analysis based
on the concept of accessibility is therefore ideally suited to be integrated within geographic information systems (GIS). This paper expands the work in modeling accessibility fields taken by Donnay and Ledent [3] for the urban region of Liège (Belgium) and Julião [4] for Tagus Valley Region (Portugal), as well as one-stage model for Slovene municipalities [5,6]. In this paper, travel time (by car) and territorial allocation to the Lithuanian administrative regions have been modeled using the road network and GIS approach.

Accessibility matrix was implemented with origin-destination (OD) matrix computation used in travel demand analysis in transportation geography. In both cases, GIS is used in determination of user-defined arbitrary analysis zone or area of interest (AOI), corresponding to TAZ [7].

The research presented here proposes an extension to a commonly used activity center definition to improve that definition’s applicability to transportation research. This extension involves identifying activity centers based on the trip-attracting strength of disaggregate employment types within TAZs. This approach identifies areas that are responsible for a disproportionate number of regional trips. The proposed methodology has two positive characteristics. First, the approach computes attraction strengths using standard socio economic data available at the municipality planning organization level. Second, employment is still the fundamental unit of the activity center definition, and the pedagogical approach of identifying sub areas that exceed certain thresholds remains unchanged.

Accessibility from the centre of traffic analysis zone to the central part of Vilnius was taken as the main factor for transport system analysis in Vilnius city. Also have been included other factors like population density in TAZ, number of working places in TAZ, street network density in traffic zone, public transport density, average number of daily trips in each analysis zone. By comparing the georeferenced data like street network, the territorial allocation and statistical data for each traffic analysis zone in Vilnius can argue about the equity of investments distribution for each TAZ. Also created GIS application could be used for transport analysis zones ranking by various aspects and problematic zones identification.

2. Case in Vilnius city

Average percentage number of Vilnius city automobiles quantity is increasing per year about 3%. Number of personal cars in Vilnius city rose from 265 automobiles for 1000 inhabitants in 1999 till 450 in 2005 year. Sharp bounce of motorization level invokes a lot of transportation problems. Many scientific researches analyze transportation system from the point of system sustainability, which influences economical, social and environmental implications [8, 9, 10]. Number of public transport passengers rose from 229.5 mln. in 1999 year till 277.1 till 2004 year. This indicator increases about 3.7% each year. The main Vilnius city transport system indicators are presented in Table 1.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>1999</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street network density (km/km²)</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Public transport network density (km/km²)</td>
<td>0.55</td>
<td>0.62</td>
</tr>
<tr>
<td>Bicycle paths network density (km/km²)</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td>Average traffic flow in peak hours (aut./h)</td>
<td>1275</td>
<td>1521</td>
</tr>
<tr>
<td>Percentage number of trucks in average flow</td>
<td>3.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Average speed in peak traffic flow (km/h)</td>
<td>37.5</td>
<td>29.3</td>
</tr>
<tr>
<td>Modal split</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- pedestrian trips in %</td>
<td>31.3</td>
<td>34.8</td>
</tr>
<tr>
<td>- trips by bicycles in %</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>- trip by public transport in %</td>
<td>45.4</td>
<td>34.2</td>
</tr>
<tr>
<td>- trips by car in %</td>
<td>23.0</td>
<td>30.7</td>
</tr>
<tr>
<td>Maximum number of public transport passengers in peak hours</td>
<td>5300</td>
<td>3600</td>
</tr>
<tr>
<td>Transit of trucks in peak hours in %</td>
<td>21.3</td>
<td>13.2</td>
</tr>
<tr>
<td>Number of traffic accidents for 1000 inhabitants</td>
<td>1.07</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Vilnius city is divided into 51 traffic analysis zones. TAZ and population density (inhabitants in hectare) in each traffic analysis zone are shown in Fig.1.

![Fig. 1. Traffic analysis zones and population density in Vilnius city](image)

Analysis of modal split of Vilnius city transportation system showed that trips by public transport decreases (see Fig. 2) and trips by private transport are increasing.
The most concentration of working places is in the central part of Vilnius city (see Fig. 3). Largest density of working places in the central part of Vilnius involves parking and traffic flow problems.

2. Methodology

For this research, several changes to the Bogart and Ferry [11] model are implemented. First, three “levels” of activity centers are defined: major urban centers of large cities, secondary urban centers of smaller cities and suburban centers. Decreasing employment and employment density thresholds are utilized in each case. Establishing differing thresholds for inclusion ensures that the method will identify those TAZ’s with higher than adjacent employment characteristics, the essence of an activity center. A second set of modifications involves formation of activity center clusters. Recall that in the Bogart and Ferry method, those zones which by themselves do not meet the activity center employment thresholds may be clustered with adjacent zones and so meet the criteria to form larger areas. Bogart and Ferry added zones until the whole cluster density fell below the threshold. The author have adopted this method, but only for suburban activity centers, to avoid the case where a single ultrahigh density zone in an urban center dominates such that all adjacent zones would be included to form a “superzone.” Further, we require that individual zones being added meet a minimum employment density threshold. This requirement avoids the case where open space adjacent to a high density employment center is considered part of a suburban activity center. Finally, we relax the adjacency requirement such that any two zones are considered adjacent if they share a common border of any length. The most significant change we propose is motivated by the following observation. A hypothetical TAZ with 100 mining jobs attracts far fewer trips than a TAZ with sufficient retail development to employ 100 persons. Furthermore, Targa [12] has shown that different employment types tend to respond to agglomerative location forces more readily than others, with retail among the most responsive. Transportation models specifically for retail activity have been developed by Hamed and Easa [13]. Generally, retail activities produce more trips, are more likely to agglomerate, and therefore are likely to have stronger impacts on regional transportation patterns. For transportation analysis, then, the method to identify transportation activity centers TACs should not be based solely on employment density, but rather on the trip-attracting strength of the disaggregate employment types present in a TAZ. To incorporate trip attraction strength into the TAC definition, one could compute the product of employment and trip attraction rate per job for each disaggregate employment type. Those zones that exceeded a threshold value of trips and trip density trips per unit of area would then be considered part of a TAC. The decision statistic, however, would then no longer be the well established gross employment and employment density thresholds frequently used in the literature. The approach advanced here is to define a hypothetical “mean trip-attracting” MTA job. Suppose that there is a TAZ with exactly one job in each of the 11 standard disaggregate employment types: agriculture, mining, construction, manufacturing, transportation, whole sale, retail, fire, service, government, and military employment. In this case, a total number of daily trips would be attracted to this zone, and an average number of trips per job could be computed. The relative strength of each employment type can be calculated as the ratio of each employment type’s attraction rate to the mean attraction rate. This ratio can be used to express each actual job in terms of equivalent MTA jobs. A zone that exceeds the gross employment and employment density levels in terms of MTA jobs would then be considered for inclusion in a TAC. Trip attraction to TAZs in their metropolitan region equals:

\[TA = 1.4Ag + 1.2Mi + 3.0Re + 2.4Se \]

Where:

- \(TA \) - number of trips attracted;
- \(Ag \) - number of agricultural jobs;
Mi - number of mining jobs;
Re - number of retail jobs; and
Se - number of service jobs.

If a TAZ had only four jobs, one in of the above categories, the zone would attract eight trips, or two trips per job. Thus, an MTA job would attract two trips. Retail, in contrast, attracts three trips per job; thus, a retail job can be considered 3/2 or 1.5 MTA jobs. Similarly, an agricultural job attracts only 1.4 trips per job, and therefore can be considered 1.4/2 or 0.7 MTA jobs. The example is generalized as follows. If \(\alpha_k \) is defined as the trip attraction rate for employment type \(k \) then:

\[
\chi_k = \frac{\alpha_k \cdot n}{\sum_{k=1}^{n} \alpha_k}
\]

Where \(\chi_k \) = MTA factor for each employment type, \(k \); and \(n \) total number of employment types. A TAZ would be considered as a TAC if:

\[
\sum_k E_k \chi_k \geq \xi
\]

and

\[
\frac{\sum_k E_k \chi_k}{A} \geq \varphi
\]

Where \(E_k \) - actual employment of type \(k \); \(\xi \) - gross employment threshold (MTA jobs); \(A \) - area of the TAZ (hectares) and \(\varphi \) - employment density threshold (MTA jobs per hectare). Thus, TAZs that meet or exceed the employment and employment density thresholds using MTA jobs are considered TACs. The creation of TAC clusters is done by adding adjacent candidate zones (those with MTA employment density greater than 3.0 MTA jobs per acre) such that the total cluster remains above the threshold level. For our research, we utilized MTA employment and MTA employment density thresholds equal to gross employment thresholds typically used in the literature.

The following sections demonstrate the analysis of the Vilnius city area using standard activity center definitions and the TAC method presented here.

The map of traffic analysis zones of Vilnius city (see Fig. 4.) presents the areas where traffic analysis zones could be considered like transport activity centers (these zones are presented in black colour).

This analysis showed TAZ could not be consider like TAC that in central part and old town of Vilnius, also in areas of Vilnius city which are in a distant of central part of Vilnius city. The main reason is that in the central part of Vilnius is big concentration of working places and in areas around Vilnius city are dominating residential houses and less working places.

Fig. 4. Traffic activity centers in Vilnius city

Second stage is to perform estimated traffic analysis zones ranking using various transportation indicators. For TAZ ranking were used two methods of decision support system – Topsis and Saw. GIS based application computes the ranks of transport analysis zones.

3.1. SAW (Simple Additive Weighting) method in GIS application

For a fragment of input from Vilnius traffic analysis zones socio-economic data for GIS application (see Fig. 5.).

Table 1

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>Criterions for analysis of automobiles transport system in Lithuania</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>criterion value</td>
</tr>
<tr>
<td>Workplaces</td>
<td>30.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Population</td>
<td>10.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Development</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Environment</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Accessibility</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Traffic</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Xij</th>
<th>Criterions for analysis of automobiles transport system in Lithuania</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td>Workplaces</td>
<td>30.0</td>
</tr>
<tr>
<td>Population</td>
<td>10.0</td>
</tr>
<tr>
<td>Development</td>
<td>5.0</td>
</tr>
<tr>
<td>Environment</td>
<td>3.0</td>
</tr>
<tr>
<td>Accessibility</td>
<td>2.0</td>
</tr>
<tr>
<td>Traffic</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fig. 5. Socio-economic Vilnius TAZ data

Input data for calculation is the criterions and their values of importance; criterions matrix is normalized according these conditions:

If criterion is maximized:

\[
X_{ij}^{\text{normalized}} = \frac{X_{ij}}{X_{ij}^{\text{max}}}
\]
If criterion is minimized:

\[X_{ij} = \frac{X_{ij}^{\text{min}}}{X_{ij}} \]

(6)

Normalized matrix for each criterion of concrete municipality is multiplied with its importance. Multiplied criterions are summed for each row (for each TAZ). The biggest value means the best transport situation in concrete traffic analysis zone.

3.2. TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method in GIS application

Criterions matrix is normalized by this formula:

\[X_{ij} = \frac{X_{ij}}{\sqrt{\sum_{i=1}^{n} X_{ij}^2}} \]

(7)

Criterions matrix is multiplied with matrix of importance values [14]:

\[P^* = [X] \times [q] \]

(8)

Where: q – matrix of creations importance values.

Normalized matrix is used for calculating ideal positive \(f_j^+ \) and negative \(f_j^- \) variants. Calculation of variant’s deviation to ideal positive variant is based on:

\[L_i^+ = \sum_{j=1}^{n} (f_{ij} - f_j^+)^2 \]

(9)

Calculation of variant’s deviation to negative variant is based on:

\[L_i^- = \sum_{j=1}^{n} (f_{ij} - f_j^-)^2 \]

(10)

Calculation of proportional variant’s deviation to ideal variant \(K_{BIT} \) is based on:

\[K_{BIT} = \frac{L_i^-}{L_i^+ + L_i^-} \]

(11)

The best variant of transport system situation in TAZ is the one with the highest \(K_{BIT} \) value.

Indicators of Vilnius city transport system analysis for each traffic analysis zone are presented in Table 2.

<table>
<thead>
<tr>
<th>Indicator description</th>
<th>Function</th>
<th>Importance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street network density (km/km²) in each TAZ</td>
<td>maximize</td>
<td>19</td>
</tr>
<tr>
<td>Public transport network density (km/km²) in each TAZ</td>
<td>maximize</td>
<td>15</td>
</tr>
<tr>
<td>Length of streets for 1000 inhabitants in each TAZ</td>
<td>maximize</td>
<td>16</td>
</tr>
<tr>
<td>Disproportion for population and employees densities</td>
<td>minimize</td>
<td>22</td>
</tr>
<tr>
<td>Density of parking places (parking places/hectare)</td>
<td>maximize</td>
<td>10</td>
</tr>
<tr>
<td>Accessibility from the central part from each transport activity centre to Vilnius city central part</td>
<td>maximize</td>
<td>9</td>
</tr>
<tr>
<td>Average number of daily trips in each analysis zone</td>
<td>maximize</td>
<td>9</td>
</tr>
</tbody>
</table>

Fig. 6. Results of ranking Vilnius TAZ’s

4. Conclusions

Research of traffic analysis zones in Vilnius city showed that not all traffic analysis zones could be possible to consider like transport activity centers. Such kind of problematic situation is in the central part of Vilnius and in the TAZ which are in a distant area of the central part of Vilnius. The main reason is a large disproportion of population and working places density in these areas.
The second stage of this research represents a GIS based methodology for Vilnius city traffic analysis zones ranking. Created GIS application with two calculation methods of decision support system Topsis and Sawper performs TAZ ranking. Analysis of Vilnius city TAZ showed that the best transport situation is in Santariskes and Zemieji Paneriai transport activity centers.

Investigation of TAZ identified major car parking and traffic problems in these traffic analysis zones: Centras I, Centras II, Lazdynai, Karoliniškės, Antakalnis, Senamiestis, Šnipiškės and Naujamiestis. Public transport problems were also identified in these Vilnius TAZ: Verkiai, Dvarčionys, Valakupiai, A. Paneriai and Tarandė.

Created methodology is flexible and could be successfully adopted for TAZ analysis and ranking in other cities. It is necessary to have TAZ GIS and socio-economic statistical data.

References