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1. Introduction 

 
Steel frames, which undergo plastic strains and 

are subjected to variable repeated load, are considered in 
the paper. Under repeated loading a structure can lose its 
serviceability because of its progressive plastic failure or 
because of alternating strain (usually both cases are called 
cyclic-plastic collapse). The third case when the structure 
adapts to the existing load and further behaves only elasti-
cally is also possible. For civil engineering, the calculation 
of any complexity elastic–plastic frames subjected to vari-
able repeated load is relevant. Growing number of scien-
tific works dedicated to adapted structure calculation 
shows importance of these researches [1 - 8]. But there is 
especially small number of works concerning the optimiza-
tion of adapted structures under stiffness constraints. This 
had an influence on the topic of this paper: optimal shake-
down design of frames, subjected to variable repeated load, 
under stiffness constraints. Herein two types of problems 
can be considered [9]. The first problem is optimal shake-
down design of cross-sectional parameters (design prob-
lem) and the second one - load optimization problem for a 
frame subjected to variable repeated load (checking prob-
lem). By solving checking problem maximal load variation 
bounds, ensuring adapted state of the frame and satisfying 
stiffness requirements of the structure, are to be found. 

Solution of frame optimization problems at 
shakedown is complicated as stress–strain state of dissipa-
tive systems depends on loading history [10 - 14]. These 
difficult optimization problems are implemented applying 
extremum energy principles and the theory of mathemati-
cal programming [15]. That enables to create new iterative 
algorithm based on Rosen project gradient method [16- 

19]. Numerical examples of the frames are presented. The 
results are valid for small displacement assumptions. 
 
2. General mathematical models of optimization  

problems at shakedown 
 

General mathematical models presented in Table 
are the basis for the development of optimization mathe-
matical models of frames at shakedown considered in this 
paper. In both design and checking problems objective 
functions are described by formulas (1) and (6), where the 
vectors ,  and  contain coefficients of weight. 

Yield conditions 

L supT infT

jϕ ( Jj∈ ) are shown in formulas (2) and 
(7) , where  is the number of all possible combinations 

 of load bounds , . Formulas (3) and (8) repre-
sent complementary slackness conditions of mathematical 
programming, (4) and (9) are constraints for the problem 
unknowns. Stiffness constraints  are shown in (5) and (10). 

j

jF supF infF

Discrete model of the frame at shakedown con-
sists of s  ( s,...,,k 21= , ) finite elements. Limit 
force  (

Kk ∈

kS0 Kk ∈ ) is assumed as constant in the whole 
finite element. The degree of freedom is m , corresponding 

 - vector of displacements - u . 
Nodal internal forces of the element compound one n  – 
vector of discrete model forces 

m ( )1 2
T

e eu ,, e, e,mu ,..., u=

( ) ( )1 2

T T
v, ,..., ,..., Sζ= =S S S S S z  and strains – –vector n

( ,,...,, vΘΘΘΘ 21= ) ( )T T
z..., ζΘ Θ= ,  

 
Table 

General mathematical models of optimization problems 
Design problem Checking problem 

find  
 ( )0Sψmin 0

Tmin= L S  (1)
subject to  
 ( ) 0≥+−= ejj SG λΦS 0ϕ (2)

 
0T

j j =λ  ϕ 0≥ jλ

∑
j

jλλ = Jj ∈

0≥0S

max,rsup,rinf,rmin,r , uuuu ≤≤

,  

,  (3)

  (4)
  (5) 

find  
 ( )T T

sup sup inf infmax +T F T F  (6)
subject to  
 ( ) 0≥+= − ejj SGλΦS0ϕ  (7)

 
0T

j j =λ  ϕ 0≥ jλ,  

∑
j

jλλ = Jj ∈,  (8)

 0≥supF 0≥infF

max,rsup,rinf,rmin,r , uuuu ≤

,      (9)
 ≤  (10) 
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ζ...,,,v 21=  ( ), . The total number of 
design sections is 

Zv∈ n,...,,z 21=
ζ . 

Load  is characterized by time ( )tF t , independ-

ent variation bounds ( ,F,F sup,sup,sup 21=F )T

m,,F sup...  and 

 ( ). Elastic 
displacements  and forces  of the structure are 
determined using influence matrixes of displacements and 

forces, 

( )T
inf,minf,inf,inf F,...,F,F 21=F ( ) supinf t FFF       ≤≤

( )teu ( )teS

( ) 1T −
=β AK A , , respectively: 

, ,  . Here  is a 
coefficient matrix of equilibrium equations 

T=α KA β

( ) ( )tte Fβu = ( ) ( )tte FαS = 1−= DK A
FSA =  and 

 is a quasi-diagonal flexibility matrix. Residual dis-
placements  and forces  are related to the vector of 
plasticity multipliers  by influence matrixes 

D
ru rS

λ H  and G : 
T

r =u HΦ λ H λ= , T
r = =S GΦ λ G λ , 

( ) 1T −
=H AKA AK  and T= −G KA H K . Here Φ  – the 

matrix of peace-wise linearized yield conditions jϕ  (2) 
and (7). The number of all possible combinations  of 

load bounds ,  is  (
jF

supF infF mp 2= supjinf FFF        ≤≤ ): 

, , ( ). In the case of two loads 
, , a domain of elastic force variation (locus) is 

shown in Fig. 1.  

jej FαS = p,...,,j 21= Jj∈

1F 2F

 

α1 F1,inf

α2 F2,sup

α2 F2,inf

α1 F1,sup

Se1

Se2

Se3

Se4

S2

S1

 
Fig. 1 Locus of elastic forces 

Residual displacements r  of the structure at 
shakedown can be nonunique: they depend on particular 
loading history . If load is defined only by variation 
bounds , , the calculation of exact values of re-
sidual displacements becomes problematical because of 
unloading phenomenon appearing at cross-sections: then 
displacements  are varying nonmonotonically, it is pos-
sible to determine only their lower  and upper  
variation bounds ( sup,rrinf,r ). Stiffness condi-
tions (5) and (10) are realized by the restriction of the 
structure nodal displacement lower and upper variation 
bounds .  

u

)(tF

infF supF 

ru

inf,ru sup,r  u
t uuu    )(    ≤≤

max,rsup,rinf,rmin,r

Mathematical programming theory, the widely 
used method of the solution of extremum problems, helps 
not only for the formulation of shakedown problems the-
ory, but also for its solution. Problems (1)-(5) and (6)-(10) 
can be solved by various computer programs but in this 
case mechanical interpretation possibilities of optimality 

criterion of applied algorithms are not revealed. In our 
works mechanical interpretation of optimality conditions 
for Rozen algorithm is revealed – it is 

, uuuu ≤≤

strain compatibility 
equations [20]. 

 
3. Rozen project gradient method
 

Rosen project gradient algorithm is universal 
enough, that it can be applied when objective function and 
constraints are linear (1) - (5), (6) - (10), or nonlinear [20]. 
For the optimization problems of volume minimization and 
determination of maximal load variation bounds containing 
linear objective function and constraints, application of the 
Rosen algorithm will be shown. Generally the convex 
problem of linear programming reads 
find 

max ( )xF  (11) 

subject to 

( ) 0≤= xax T
iiϕ ,  , ... , l, i 21= ,  (12) Ii ∈

As function ( )xiϕ  is linear, its gradient is ( )i i∇ϕ =x a ; 
here  is n-vector of multipliers near unknown quantities. 
In the case of linear constraints (12) gradient matrix of 
active constraints is noted  i.e. 

ia

κA

( ) [ ]κiκ ...... aaaaAxΦ 21==∇  (13) 

here  is κA ( )κn ×  – order unit matrix, where n is the 

measure of Euclidian space  and  is the number of 
active constraints. Constraints, which are satisfied as 
equalities, (

nE κ

( ) 0k =xiϕ , Ii ∈ ) are called active ones. Vec-
tors from n-dimensional  space, satisfying conditions (12) 
as equalities, compound ( )κn × -order formation noted as 

G .κ  In Euclidian space  movement from  is per-
formed in the direction of vector  (Fig. 2), 

which is calculated according to the formula  

nE kx

( )k
κ∇P xF

( ) ( ) ( ) ( )( ) ( )kkTk
κ

kk
κ xxΦxVxΦIxP FF ∇∇∇∇  -=  (14) 

I  is ( )nn× -order unit matrix, )( kxF∇  is the gradient of 

objective function and ( )κκ× -matrix  is expressed 

as follows: 

( k
x xV )

( )=k
x xV  ( ) ( )( ) 1−kkT xΦxΦ ∇∇ .  is a projec-

tive matrix. 
κP

 

 
Fig. 2 Rosen algorithm for linear constraints 
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Kuhn-Tucker conditions Optimality criterion  
 

              
 

2x                                    ( )xF∇−  
( )x2ϕ∇  

 ( )x1ϕ∇  
                        02 =ϕ                                  

   
                                        

               
 

 
 
       01 =ϕ  

                                                       

 
 

  1x  

 
 

( ) ( )
( )
0

0

0

≥
=

=+

λ
xλ

λxx

ϕ

ϕ
T

Τ∇∇F
 

 
 

 
 

nd ions e strain compatibility equations of the d ic 

Vecto

 
 

 

Fig. 3 Kuhn-Tucker optimality co it

Theory of elasticity 
 

S  aint-Venant equations

ar eformable body mechan

Theory of plasticity 
 

Stra ons 
(associative flow rule)
in compatibility equati

r ( )k
κ

kk ' xPxx F∇τ+=+1 , where 
{ ,'' 0>min' = τττ I  }l,...,,i 21 ++= κκ  is the step of the 

move. Only so vector 1+kx  “does not leave” admissible 
field ( ){ } 210 l,...,,,i ≤= xx ϕL . If the vector does 
not exist i the a ange '

i =
n dmissible r ττ <<0 , for which the 

magn ld be greater than at 
point  1+kx  then it is assumed that 1+= k

itude of objective function w
+k

ou
1~ xx and the cal-

culation process is continued.  If 
( ) ( ) 01 <+k

κ
T xPx k FF ∇∇ , then the objective function 

he  radius between points kx  and 
x . The new size of the step is calculated as follows 

reaches  its maximum in t
1+k

( ) ( )
( ) ( ) ( ) ( )1+−

= k
κ

kk
κ

kT

k
κ

kT

'
xPx

''
xPxxPx FFFF

FF ∇∇
τ  (15)

∇∇∇∇
τ  

In this case  is determined according to the formula: 
kk '' P

1+kx
( )k

κ xxx F∇+= . Vector τ+1 x  is the solution if the 
following conditions are satisfied 

( ) 0=xP F∇κ , (16) 
( ) ( ) ( ) 0≤xxΦxV F∇ (17) ∇ T

x  

For correct mechanic
ditions (16), it falls to use Kuhn-Tucker conditions [17]. So 
it is don

al interpretation of the con-

e in the research [20], where it is shown that equa-
tion (16) is strain compatibility equation (Fig. 3) and the 
left side of inequality (17) in absolute value  is a vector of 
plastic multipliers λ  

( ) ( ) ( )xxΦxVλ ∇x= F∇T  (1

4. Design of minimal volume f
 

s per-
rmed when yield limit 

8) 

rame at shakedown 

Design of the frame for optimal parameters i
fo ykσ  of the frame material and 

 sha  var
s pa

lengths kL  of its all elements k  ( Kk ∈ ) and load varia-
tion bounds supF , infF  are know epending on the 
cross-sectional pe ious yield conditions can be con-
sidered. In thi per, the focus is placed on yield condi-
tions for rolled I steel sections (Fig. 4). Relation 

n. D

kN 0

t 

kM
c 0= , Kk ∈  should be prescribed in advance. Limk it 

nmome ( )kykk,pl A,WM σσ0 ykk ξ==  and limit axial force 
AkykkN σ0 =  of 

area  and yield limit of
the element are functions of cross-

sectional  material ykkA σ . True, 
r the other specific dimension of the cross-

section (for instance, flange thickness ft  of I-section while 
the width of flange b  is fixed; see Example 1) participate 
in functional relation 

usually one o

( )kykk A,M σ0 ξ=  instead of cross-

sectional area kA . The problem of frame optimal parame-

ters distribution design   ∑
k

kk ML 0 , sub-

ject to the struc rength and stiffness constraints 
find 
 

reads: minimize

ture st

min  ∑
k

kk ML 0  (19) 

subject to 

( ) 0≥+−= ejSλGΦM 0jϕ   (20) 

j j 0T

j
∑ λ , 0≥ jλ , ∑=

j
jλλ  ϕ =  (21)  

max,k MMM 0 ≥≥ ,  ,  min,kk 00 2) Kk ∈ Jj∈  (2

inf,rmin uu ≤ ,     maxsup,r uu ≤   

Limit moments M e
plasticity multipliers  are unknowns of 

matic
t com ent

ica

(23) 

 k0  of the fram  elements and vectors of 
0≥jλ , Jj∈

nonlinear mathe al programming problem (19)-(23). 
Formulas (21) represen plem ary slackness condi-
tions of mathematical programming [21]. Constructive 
requirements of frames max,kM 0  and min,kM 0  are shown in 
conditions (22). Problem (19)-(23) is not exactly the vol-
ume minimization probl oments kM 0  
are used in objective function. When volume of the frame 
is directly included into objective function mathemat l 
model of the frame volume minimization is as follows 
find 

min 

em, because limit m

∑
k

kk AL  (24) 
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subject to 

( ) 0≥+−= ejj SλGΦM 0ϕ  (25)

ϕ  (26) 

,    
    r,uu

 

0T
j j

j
=∑ λ , 0≥jλ , ∑=

j
jλλ , Jj∈

min,kk AA ≥ Kk ∈ (27) 

inf,rminr, uu ≤ ,  xsup,r  ma≤  

Cross-sectional areas 
sion of the cross-se e e
of plasticity multipliers  are unknowns of 

l p gram

(28) 

kA , Kk ∈  (or other specific dimen-
ction) of lements and vectors  the fram

0≥jλ , Jj∈
nonlinear mathematica ro ming problem (24)-(28).  

 

1

O−M

−N0

4

0

0N

2

N

M M

3

0
⎥
⎥
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⎥

⎦
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⎢
⎢

⎣ −−
−

−
=

k

k

k
v

c
c
c

1
1
1

Φ  

Zv∈  

Fig. 4 Linear yield conditions 

Lower bounds of cross-sectional areas  are included 
into constructi . It is not dif-
ficult to introduce elastic displacem stiffness con-

influ

⎤
⎢
⎡ kc1

min,kA
ve constraints (27) min,kk AA ≥

ents into 
straints (28). Limit moments 0M  and ence matrixes 
α , β , G , H  are related with un k , Kkknowns A ∈ ; the 

listed matrixes are recalculated during solution of the prob-
lem (24)-(28). If stiffness cons ns are neglected, cyclic-

 of the frame is reached. 
When only bending moments 

trai
plastic collapse

M  are taken in to 
account in the frame calculation, the following mathemati-
cal model of the frame volume minimization is obtained 
find 

min ∑
k

kk AL  (29) 

subject to 

 (30) 

 (31) 

 
,     

Extreme tic 

0≥−−= e,maxmax MλGM 0ϕ

0≥++= mine,minϕ MλGM 0

0=max
T
maxϕλ , 0=min

T
min ϕλ , 0≥maxλ , 0≥minλ

( )T
min, λλλ max=  (32) 

min,kk AA ≥   (33) Kk ∈

maxr,r,sup   (34) r,infminr, , uuuu ≤≤

elas bending moments 

infinfsupsupe, FαFαM −=max , supinfinfsupe, FαFαM +=min  
are known in the problem (29)-(34). Matrix α  is for-

trieved from the influence m the rest components

 sup

mated in the following way: only positives values are re-
atrix  

are set to zero and respectively matrix infα  - only nega-
tives values are retrieved from α , the rest components are 

set to zero. Unknowns are cross-sectional areas kA , Kk

α , 

∈  
of the elements and vectors of plasticity ultipliers maxλ , 

minλ .  
In case of monotonically increasing load

 m

 1=j  
conditions (25), (26) of all discretized frame obtain the 

 and

following form: ( ) 0≥+−= eSλGΦM 0ϕ , 0=ϕTλ , 
 ome

u≤ . Scope  the p

hould be noted that 

min ⎜
⎝

++∑ min
T
minmax

T
max

k
kk AL ϕϕ λλ  (35) 

subject t  

 (36) 
 (37) 

0≥λ . Stiffness constrains (28) of the frame bec  

more simplified: λHu of rob-
5)-(28) becomes reduced and computer realization 

 is simpler.  
It s numerical solution of the 

problems (24)-(28), (29)-(34) is easier when complemen-
tary slackness conditions are moved to objective function. 
Then the

maxr,minr, ≤

lem (2
of the problem

 problem (29)-(34) obtains the following form 
[16] 
find 

⎞⎛ ⎟
⎠

o

0≥−−= e,maxmax MλGM 0ϕ

0≥++= mine,minϕ MλGM 0

0≥maxλ , 0≥minλ

( )T
minmax , λλλ =   

,   
(38) 

min,kk AA ≥   Kk ∈   (39) 

maxr,r,sup u≤   (40) r,infminr, , uuu ≤

5. Shakedown l ptim
 

In the case of variable repeat
ion is impor-

nt also. It stated as follo  shakedown load varia-
tion bou

oad o ization of frames 

ed load, the problem 
of load variation bound supF , infF  determinat
ta ws: find

nds supF , infF , satisfying the prescribed optimal-

ity criterion }{ infinfsupsup
T FFT +max , also strength and 

stiffness requ ents of the structure. Here supT , infT  are 
the optimality nt vectors.  

Then hakedown load op-
timization problem for the frames reads 
find 

TT

i efficie
 mathematical model of s

irem
 criter on weight co

 T T T
sup sup inf inf j jmax

j

⎧ ⎫⎪ ⎪+ −⎨ ⎬
⎪ ⎪⎩ ⎭

∑T F T F λ ϕ  (41) 

subject to 

( ) 0≥+−= ejSj λGΦM 0ϕ   (42) 

0≥λ j , ∑=
j

jλλ , Jj∈  (43) 

 (40≥supF , 0≥infF 4) 

inf,rminr, uu ≤ ,  u maxr,su,r up  (45) ≤
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The vector of limit bendi
limits of residual displacements nown in 
the prob he 

d λ

ng moments 0M  and the 

minr, maxr,

lem (41)-(45). Optimal solution of t problem 
(41)–(45) is vectors ∗

supF , ∗
infF  an j , . 

When only bending moments 

u , u  are k

 ∗ Jj∈
M  are taken in to 

account, the follow  m hemat al deing at ic mo l of frame 
shakedow  

sup sup inf infmax + −T F T F −λ ϕ  (46) 

subject to 

maxe,MλGM 0   

infinfsupmine, FαFαM +−=  (4
 (4

)min,=λ λ λ

u ≤ ru

Load variation bound F
plasticity

ming pr

orey frame shown in Fig. 5 is subjected 
y two independent loads: vertical forces of the magnitude 

2V, 3V a

n load optimization is obtained
find 

T T T{ max max }min min
Tλ ϕ

0≥−−=maxϕ

0≥++= mine,min MλGM 0ϕ  (47) 

infinfsupsupmaxe, FαFαM −=  

sup 8) 
0≥supF , 0≥infF 9) 

( T
max  (50) 
0≥maxλ , 0≥minλ  (51) 

≤inf,rminr, u maxr,sup, u  (52) , 

sup , infF  and vectors of 
 multipliers 0λ ≥j , J e unknowns of 

nonlinear mathematical program oblem (46)-(52). 
 
6. Numerical examples 

j∈  ar

 
6.1. Example 1 
 

The two-st
b

cting in the middle of each beam and horizontal 
forces 2H, H. Variation limits of the load are defined by 
inequalities kN400 =≤≤ supHH , kN650 =≤≤ supVV . The 
main task is to determine minimal volume of adapted 
frame (Fig. 5 ma  (24)-
(28) and (29)-(34), when the frame is made from steel, 
which elasticity modulus 210=E  GPa and the yield limit 

200=y

) according to the thematical models

σ  MPa. Cross-sections of the frame columns and 
beams are shown in Fig. 6. Parameters b  and h′  remain 

during all optimization process, only thickness of 
the flanges is varying. Initial thickness of  the flanges is 
assumed mm140 =col,ft  for the frame columns and 

20 =beam,ft beams. Thus, initial cross-sectional 

umns and beams are 20
2

0
1

0 cm56=== AAAcol  

and 20
4

0
3

0 cm80=== AAAbeam , respec  

of the struct 3cm0 . Limit forces of cross-
sections are calculated accord lowing formu-
las:  

the same 

mm0  for the 

areas of the col

 Init volume

2=V
ing to the fol

tively. ial 

ure is 0 5920

 

i rces of the columns are col,M

and 0 , limit forces of the beams are 

20
hAhbtM yy

′
=′= σσ , AbtN yy σσ == 20  

Initial lim t fo kNm160=  0
0

kN11200 =col,N

kNm3200
0 0=beam,M  and 1600 kN0 ; relations =beam,N

ccol 20.=  and 1250.mcbea = . Yeld conditions are 
r lines (c es described 

vΦ  are sh  in Fig. . 
aproximated by fou oefficients of lin
in matrix own  4)
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Fig. 5 Discretized frame 

searching is performed in the two follow-

inner forces of discre-

Minimal volume 
ing cases: 

A1 – when the vector of 
tized frame is ( ) ( 1 2 3 14

T, M ,M ,M ,...,M ,= =S M N  

)6
T...,N ( )T

zS= , 2021 == n,...,,z , i.e. both 
bending moments 

1 2N , N ,
M  and axial forces N  are taken into 

ve ces of discre-
tized frame is 

account. 
A2 – when the ctor of inner for

( ) ( )TT
z M,...,M,M,MM 1431==M , 

21
2

14== n,. , i.e. only bending moments ..,,z M  are evalu-
ated. 

In the case A1 -
ng to the mathematical mod  (24)-(28). 

Unkno

 frame volume minimization is per
formed accordi el

wns are cross-sectional areas of the frame columns 
and beams kA , Kk∈  and vectors of plasticity multipliers 

jλ , 321 ,,j = .  In the case A2 the frame volume minimiza-
tion problem is solved using the mathematical model (29)-
(34). Unkno ns are cross-sectional areas kA , Kk

 
w ∈  and 

vectors of plasticity multipliers maxλ , minλ .  
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Fig. 6 Geometry of cross-sections 

Without any residual displacement constr
(28) or (34), f the frame 
were obtained: 

t before cyclic pla

aints 
 the following minimum volumes o

3cm 265288=minV  in the case A1 and 
3cm 246812=minV  in the case A2 (in both cases elastic-

plastic state is jus stic failure). 



 32

Later, th
 

0

ter, th
 

u ≤≤0

e following residual displacement con-
straints were imposed for displacement 2,ru  (Fig. 5):

e following residual displacement con-
straints were imposed for displacement 2,ru  (Fig. 5):

max,r,r u2  (here 232015105 ,,,,u max,rmax,r,r u2  (here 232015105 ,,,,u max,ru ≤≤ =  mm). 
Variation of the frame volume depending prescribed 

ig. 7 for 
both cases A1 and A2. 

 

on 
limit on residual displacement r ,maxu  is shown in F
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Fig. 7 Variation of minimal volume in terms of 2,ru  

 
me is subjected by repeated variable load 

22 ,  ir . Dis-
cretized 
plication place is shown in Fig. m

 s l,

minV  

6.2 Example 2 

The fra
FF ≤≤ sup,0 sup,FF 330 ≤≤ sup,FF 440 ≤≤

frame, direction of forces 2F , 3F , 4F  and its ap-
5. Th ns HE 

300A and beams IPE 450 are made om tee  which elas-
ticity modulus GPa210=E  and yield limit 

MPa235=y

e frame colu
fr

σ . The main task is to determine maximal 
load variation bounds sup,2 sup,3  and sup,F4 , i. e. find  F , F
max ( )sup,sup,sup, FF32 + . 

Vector of the inner f  of discretized frame 
(Fig. ents 

F 4+
orces

5), when bending mom M  and axial forces 
are ta

N  
ken into account is:  ( ) T,=S M N  

( ,M,...,M,M,M 14321= )1 2 6
TN , N ,...,N ( )TS=

2021 == n,...,,z . Limit bending moment M

the following formulas: pyW

z  

0  and limit 
s are calculated axial force 0N  of the columns and beam

according to M σ=0 , 
AN yσ=0 . 
Load optimization problem x  ma

( )sup,sup,sup, FF3F 42 ++  is solved according to the mathe-
matical 
4, is taken into account.

ic plastic failure - the following 
load var

model (41)–(45), when matrix vΦ , shown in Fig. 
  

Without residual displacement constraints (45) - 
i.e. in the state near cycl

iation bounds were obtained: kN472572 .F sup =∗ , 

kN561513 .F sup, =∗  and kN651644 .F sup, =∗  (max 
( ) 685734 .FFF sup, =++ ).  

sidual displ ints (45)  
0

32 sup,sup,

When re acement constra
2 .uu ,r =≤≤ .uumm0100 2 max,r 33 max,r,r, mm015=≤   

and 0 ≤

bounds were o tai

kN9  (max 

≤

 mm01544 .uu max,r,r =≤  are evaluated, load varia-

tion b ned: kN551312 .F sup = , 

3 189 81kN,supF .= , 42164 .F sup, =

( ) 8553732 .FFF psup,sup, 4 su,+ + = ). 
 

7. Conclusions 

ain difficulty in solving the problem of 
etermin

nces 

., Maier, G. Optimum design of plastic struc-
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5. 
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11.
 deflections of hyperstatic framed 
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1. The m

d ating the optimal parameter distribution of 
adapted frame is the reasoning of more realistic relation 
between the area and limit bending moment of different 
shape cross-sections. For that purpose it is useful to obtain 
a correlation between the mentioned quantities. 

2. There are created mathematical models of the 
optimization problem for shakedown frames, which evalu-
ate steel plastic deformations and serviceability require-
ments. 

3. There is created a new algorithm that solves 
problemV

o
um

e 
V

l
 (c

m
3 ) 

m
in

s, which considers for the displacements non-
monotonic variation of shakedown frames. 

4. There is presented the possibility to use section 
databases

Residual displacement ur2 (cm) 
 in the real minimal volume frame design prob-

lems. 
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s solution. It helps for the investigation of shake-
down problems from creating of it's mathematical models 
till receiving numerical solution results. Common mathe-
matical models of optimization are adapted to find optimal 
parameters or load distribution of elastic perfectly-plastic 
shakedown frames. Rosen project gradient method is ap-
plied to solve the problems. Mechanical interpretation of 
optimality criterion is presented for the mentioned method. 
Numerical results of frame optimization problems are re-
ceived with small displacements assumption.

Ю. Аткочюнас, Д. Меркявичюте, A. Венскус
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ных задач, сопутствует исследованию задачи 
теории пластичности от ее постановки до окончатель-
ного решения. В статье общие математические модели 
оптимизации отнесены к определению оптимального 
распределения параметров или нагруэки идеально уп-
руго-пластических рам в условиях прислособляемости. 
Для решения полученых нелинейных задач применен 
метод проектируемых градиентов Розена. Приведена 
механическая интерпретация критерев оптимальности 
этого метода. Численые результаты оптимизации рам 
получены в рамках теории малых перемещений. 
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Abstract

Using the concept of a variable repeated load and shakedown theory, a unified technique is proposed for formulating mathematical
models for the optimization of frame- and truss-like structures under different loads. Strength, stiffness and stability (for trusses only)
constraints are included in non-linear mathematical models of structure volume minimization and load optimization problems. Even
though the load is prescribed within certain limits, the mathematical models allow the variational bounds of the displacement (the stiff-
ness of the structure depends on them) to be evaluated in the deformed state. Numerical example concerning calculation of frame struc-
ture is presented. The results are valid for small displacements.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Optimal shakedown design; Elastic–plastic bar systems; Energy principle; Mathematical programming

1. Introduction

This paper, which considers elastic–plastic bar systems
(frames, trusses) adapted to a variable repeated load, is
an updated and extended version of conference material
[1,2]. A variable repeated load is a system of forces that
may vary independently within prescribed bounds. Usually
variable repeated forces are not characterized by the load-
ing history F(t), but only by time-independent lower and
upper bounds of the forces Fsup, Finf, (Finf 6 F(t) 6 Fsup).

A variable repeated load and the related concept of
shakedown theory not only enable mathematical models
for the optimization of elastic–plastic structures at shake-
down to be formulated using a unified technique, but also
allow these models to be extended to cases of load and
effect combinations, and a monotonically increasing or
moving load. This possibility of a variable repeated load
interpretation is a distinctive feature of this paper.

An adapted structure is safe with respect to cyclic–plas-
tic collapse, but does not satisfy its serviceability require-

ments, such as those related to stiffness [3–10]. Therefore,
not only strength, but also stiffness and even stability
requirements ensuring conditional constraints should be
included in the mathematical models of the optimal design
of structures at shakedown [10]. The stiffness conditions are
realized by the restriction of structural deflections or nodal
displacements u = ue + ur (here the subscripts e and r refer
to the elastic and residual parts of the displacement, respec-
tively). The stress–strain state of a dissipative system
depends on its loading history. The problem of determining
the displacement of an elastic–plastic structure becomes
particularly difficult when variable repeated forces F(t)
are prescribed only by their limits of variation Fsup, Finf.
In this case, it is possible to find only variational bounds
ur,inf, ur,sup of the residual displacements ur(t) such that
ur,inf 6 ur(t) 6 ur,sup [11–20]. Knowing that during the
adaptation process the residual displacements ur(t) can
vary non-monotonically, the determination of the limits
of the residual displacement ur,inf, ur,sup becomes an impor-
tant constituent of mathematical models of optimization
problems. Different references can be found proposing
many techniques for calculating the variational bounds of
the residual displacement ur,inf, ur,sup [18]. In this paper,
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the technique for determining these bounds is based on
compatibility equations of the residual strains and on the
solution of a linear programming problem.

Non-linear mathematical models of the volume minimi-
zation of an adapted structure and load optimization prob-
lems are considered. In the mathematical models of
optimization problems, the non-linearity results from the
yield conditions (for frames with more complicated cross-
sections they are non-linear) and the complementary slack-
ness condition of mathematical programming. The comple-
mentary slackness condition does not allow a possible
unloading phenomenon of the cross-sections of the struc-
ture to be directly fixed. This phenomenon means that after
the appearance of plastic strains Hp, the yield condition sat-
isfied as an equality can become an inequality during a
future deformation process but the plasticity multiplier
remains positive, k > 0 [21–23]. The phenomenon of unload-
ing cross-sections leads to a non-monotonic variation of the
residual displacement ur(t). Only the process of holonomic
deformation can be related to the complementary slackness
condition of mathematical programming. Unfortunately,
the adaptation of a structure is not such a process (it is
important to notice that not all the research dealing with
shakedown problems pays attention to this). That is why
the stiffness conditions, related to the determination of the
limits of the residual displacement ur,inf, ur,sup of an adapted
structure, should be checked during the solution of the
structure optimization problem. Thus, in this paper, the
problem of the optimal shakedown design is not a classical
one: during the volume minimization of a frame (or truss)
it is necessary to determine the variational bounds ur,inf,
ur,sup of the residual displacement because of the constant
checking of the stiffness conditions. Only in this way is it
possible to avoid the influence of the complementary slack-
ness condition of mathematical programming, which does
not simulate and in the general case distorts the physical
meaning of displacement variation at shakedown.

Using our long experience in the application of the
Rosen project gradient method [24–26] for the solution of
non-linear optimization problems of elastic–plastic struc-
tures, we have developed a new computational procedure
for the volume minimization of bar systems at shakedown.
This procedure enables structures to be optimized under
different load combinations; this is very relevant in civil
engineering.

The organization of this paper is as follows. In the next
section, the main dependencies of the discretized frame are
presented. Section 3 deals with the calculation of the resid-
ual forces and displacements of a structure at shakedown
(analysis problem). In Section 4, the determination of the
variational bounds of the residual displacement is pre-
sented in detail. The description of a moving load case is
presented in Section 5. Section 6 is devoted to the problem
of frame volume minimization at shakedown. Section 7
deals with the optimal shakedown design of trusses. Here
the mathematical models are constructed using the ones
stated for frames in the earlier sections. Numerical example

of minimum volume determination of three-stories frame is
presented in Section 8. It shows the peculiarities of the pro-
posed technique. The results were obtained based on the
assumption of small displacements.

2. The main dependencies of discretized frames

The geometry of the frame, the cross-sectional shape of
the elements and the yield limit of the material ry are
known (it is assumed that the joints of the frame can be
fully rigid or fully pinned). The numerical solution of opti-
mization problems is related to the construction of a dis-
crete model of the structure. The frame is discretized by
means of s equilibrium finite elements (k = 1,2, . . . , s,
k 2 K, where K is the set of finite elements), which ensure
that the equilibrium equations are exactly satisfied [27–
29]. In this case, the approximated forces are the bending
moments M and axial forces N. The kth element has sk

nodal points (l = 1,2, . . . , sk). The nodal bending moments
and axial forces of an element compound an n-vector of
generalized forces S = (S1,S2, . . . ,Sf)

T = (Sz)
T and general-

ized strains compound an n-vector H = (H1,H2, . . . ,
Hf)

T = (Hz)
T, f 6 s � sk, z = 1,2, . . . ,n. Here f is the total

number of design sections; in the future, checking of the
yield conditions will be performed on these sections. If
the degree of freedom of the discretized frame is m,
i = 1,2, . . . ,m (m is the total number of equilibrium equa-
tions of the joints and elements) and the vector of forces
S has n components, the order of the coefficient matrix A

of the equilibrium equations AS = F is m � n. The number
of components of the load vector F = (F1,F2, . . . ,Fm)T is
the same as the degree of freedom of the discretized frame
m. It is known from mathematical programming theory
that each extreme principle of structural mechanics formu-
lated in terms of forces corresponds to the dual principle
expressed in terms of the state of strain. Therefore, in the
case of small displacements, it is easy to get equilibrium
equations from geometrical equations; then the dual pairs
become the forces S and strains H, and the displacements
u and loads F. That is why the vector of all displacements
of the discretized frame u is variable dual to the load vector
F and is included in the linear geometrical equations
ATu = H (both F and u are m-vectors).

The characteristics of the frame’s cross-sectional resis-
tance are the limit bending moment M0 = ryWpl and the
axial force N0 = ryA; here Wpl is the plastic modulus of a
section and A is a cross-sectional area. Though the shapes
of cross-sections can be different, the problems in this
paper are more oriented towards an I shaped cross-section,
i.e. when the shape factor l = 1,15, . . . , 1,17 (for a rectan-
gular cross-section l ¼ W pl

W e
¼ 1; 5). This allows a more exact

approach to elastic perfectly plastic behaviour (Prandtl’s
diagram). Thus, the following linear yield condition will
be used in mathematical models of the problems (Fig. 1):

jM j þ cjN j 6 M0; c ¼ M0

N 0

: ð1Þ
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The forces satisfying the equilibrium equations AS = F and
the yield conditions (1) at each design section v = 1, 2, . . . ,f
(v 2 Z), are called the statically admissible ones.

For shakedown analysis, it is useful to introduce resid-
ual forces Sr, displacements ur and strains Hr besides the
elastic forces Se, displacements ue and strains He:

S ¼ Se þ Sr; u ¼ ue þ ur; H ¼ He þHr: ð2Þ

The structure adapts to a variable repeated load if statically
admissible time-independent residual forces Sr resulting
from any loading history F(t), exist [28,29].

Shakedown analysis is based on the assumptions of geo-
metrical linearity (small strains and displacements) and the
validity of an associated flow law.

A variable repeated load F(t) = (F1(t),F2(t), . . . , Fm(t))T

is characterized by its lower and upper limits Finf = (F1,inf,
F2,inf, . . . ,Fm,inf)

T, Fsup = (F1,sup,F2,sup, . . . ,Fm,sup)T, which
are not related to the time t. The loading history is
unknown, but it fits in the range Finf 6 F(t) 6 Fsup. The
elastic displacements ue(t) and forces Se(t) of the structure
are determined using the influence of the matrixes of dis-
placement and forces, b and a, respectively:

ueðtÞ ¼ bFðtÞ; SeðtÞ ¼ aFðtÞ; ð3Þ

b = (AKAT)�1, a = K ATb, K = D�1, where D is a quasi-
diagonal flexibility matrix.

When the loading history is unknown, all possible com-
binations Fj of the load bounds Fsup, Finf should be taken
into account for calculating the elastic forces (number of
combinations p = 2m):

Sej ¼ aFj; Finf 6 Fj 6 Fsup; j ¼ 1; 2; . . . ; pðj 2 JÞ: ð4Þ

In the case of plastic collapse Eq. (4) allow to determine the
type of collapse (incremental or alternating plasticity). In
the case of two loads F1, F2, the domain of the elastic force
variation (locus) is shown in Fig. 2. The number of locus
apexes is p = 4. For each apex j = 1, 2, 3, 4 of the locus four
inequalities of the yield condition (1) should be written:

f ð1Þkl;j ¼ M0k �Mkl;j � ckNkl;j P 0;

f ð2Þkl;j ¼ M0k þMkl;j � ckNkl;j P 0;

f ð3Þkl;j ¼ M0k �Mkl;j þ ckNkl;j P 0;

f ð4Þkl;j ¼ M0k þMkl;j þ ckNkl;j P 0;

9>>>>>>>>=>>>>>>>>;
Mkl;j ¼ M ekl;j þM rkl; Nkl;j ¼ N ekl;j þ N rkl;

k ¼ 1; 2; . . . ; s; l ¼ 1; 2; . . . ; sk; j ¼ 1; 2; . . . ; p: ð5Þ

In the expressions (5), it is taken into account that the limit
bending moment of an element is M0k = const, k 2 K; the
upper subscript of f is the index of the linear yield condition
edge (see Fig. 1). For each design section, the linear yield
conditions (5), using matrix Uv, are written as follows:

fv;j ¼M0v �UvSv;j P 0; Sv;j ¼ ðM ev;j þM rv;N ev;j þ N rvÞT;
v ¼ 1; 2; . . . ; f; j ¼ 1; 2; . . . ; p: ð6Þ

Here the vector of limit moments M0v = (M0v,M0v,
M0v,M0v)

T has the same four components for each section
v and the relation ck ¼ M0k

N0k
is prescribed in advance in the

4 � 2 matrix

Uv ¼

1 ck

�1 ck

1 �ck

�1 �ck

26664
37775; v 2 V ; k 2 K:

The yield conditions for the whole structure read

fj ¼M0�USj P 0; Sj ¼ ðMe;jþMr;Ne;jþNrÞT; j 2 J :

ð7Þ

Here fj = (f1,j, f2,j, . . . , ff,j)
T, U = diagUv is a matrix of the

linear yield conditions of the whole structure. The vector
of limit moment M0 = (M01,M02, . . . ,M0f)

T is compatible
with the yield conditions (6) in dependencies (7).

It is possible directly evaluate not only variable repeated
load Fj but also other loads Fc (for example self weight of

α1 F1,sup

Se3

α2 F2,inf

Se4

M

N

Se2

α2 F2,sup
Se1

α1 F1,inf

Fig. 2. Domain of elastic force variation.
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O−M
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0
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2
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Fig. 1. Linear yield condition.
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the structure) additionally including them into set J. Elastic
forces Sec, resulted by loads Fc, can be included into yield
conditions (6) as follows:

fv;j ¼M0v �UvðSv;j þ SecÞP 0; v ¼ 1; 2; . . . ; f;

j ¼ 1; 2; . . . ; p: ð8Þ

In the case of Finf = Fsup = F and j = 1 it is possible evalu-
ate only monotonically increasing load.

When the loading history is unknown, vectors of the
maximum and minimum values ue,sup, ue,inf of the elastic
displacements ue(t) = bF(t) are introduced such that
ue,inf 6 ue(t) 6 ue,sup. The relation between the displace-
ments ue,sup, ue,inf and load bounds Fsup, Finf reads as
follows:

ue;sup ¼ bsupFsup þ binfFinf ; ue;inf ¼ bsupFinf þ binf Fsup: ð9Þ

Here b = bsup + binf, and the components of matrix bsup

are positive members of matrix b or equal to zero.
The residual forces S�r ¼ ðM�

r ;N
�
r Þ

T and displacements u�r
of the shakedown state are obtained via the solution of the
stress–strain analysis problem [6,14,22].

3. Analysis of the residual force and displacement at

shakedown

The residual force and displacement of an adapted
frame can be analysed when the load variation bounds
Fsup, Finf (i.e. elastic forces Sej, j 2 J), limit moments M0

and the relation ck ¼ M0k
N0k

(k 2 K) are given. The residual
forces Sr = (Mr,Nr)

T and displacements ur of the adapted
frame are to be found when it adapts to a variable repeated
load Finf 6 F(t) 6 Fsup. The mathematical model of the
analysis problem is formulated on the basis of the mini-
mum complementary deformation energy principle
[5,6,20]:

find

min F0ðSrÞ ¼ min
1

2
ST

r DSr ð10Þ

subject to ASr ¼ 0; ð11Þ

f j ¼M0 �USj P 0; Sj ¼ Sej þ Sr

for all j 2 J : ð12Þ

F0 is the objective function of the problem (10)–(12). As
mentioned above, the blocks of the quasi-diagonal matrix
U are matrixes of the section yield conditions Uv, v 2 Z.
The optimal solution S�r of the quadratic programming
problem (10)–(12) is unique. Though a particular loading
history is not considered, an F(t) in the range
Finf 6 F(t) 6 Fsup exists that ensures the shakedown state
after the appearance of residual forces S�r .

The dual problem to the initial one (10)–(12) is stated as
follows:

find

max F00ðSr; ur; kjÞ ¼ max � 1

2
ST

r DSr �
Xp

j¼1

kT
j USr

(

�
Xp

j¼1

kT
j ðM0 �UðSej þ SrÞÞ

)

¼ max � 1

2
ST

r DSr �
Xp

j¼1

kT
j ðM0 �USejÞ

( )
ð13Þ

subject to DSr þ
Xp

j¼1

UTkj � ATur ¼ 0; ð14Þ

kj P 0; j 2 J : ð15Þ

Here F00 is the objective function of the problem (13)–(15),
the dependencies (14) are the geometrical equations Hr �
ATur = 0, and Hp ¼

Pp
j¼1U

Tkj ¼ UTPp
j¼1kj are the plastic

strains. The optimal solution of the kinematic analysis
problem formulation (13)–(15) is S�r , u�r , k�j and also
H�p ¼ UTPp

j¼1k
�
j , j 2 J. The maximum value of the energy

dissipated during the shakedown process is Dmax ¼Pp
j¼1k

�T
j M0, j 2 J.

However, the deformed state of the adapted structure
depends on its loading history, i.e. on time t. In other
words, the vector of plastic strains H�p may be non-unique,
resulting in the same residual forces S�r but different resid-
ual displacements �u�r . Reselecting the components of all the
obtained vectors �u�r , the vectors of the minimum and max-
imum values �u�r;inf , �u�r;sup are constructed. Unfortunately, the
mathematical model (13)–(15) does not simulate the possi-
bility of finding all the vectors of plastic strains H�p here
with vectors �u�r . Thus, the main reason for solving the prob-
lem (13)–(15) is to determine the magnitude of the energy
dissipation Dmax (which is widely explained in Section 4).

An adapted frame is safe with respect to cyclic–plastic
collapse (alternating plasticity or incremental collapse). It
is important to mention that the shakedown of a structure
is not determined by the minimum (maximum) value
(min F0ðS�r Þ ¼ max F00ðS�r ; u�r ; k

�
j Þ) of functions (10), (13)

but by the fact that any statically admissible forces Sr (sat-
isfying relations (11) and (12)) of any kinematically admis-
sible displacements ur (satisfying relations (14) and (15))
exist [30]. In terms of mathematical programming, this
means that the structure will shakedown if the set of admis-
sible solutions of the problems (10)–(14) is not empty
[22,24].

In Section 2, it was shown that the pseudo-elastic state
of a structure is defined by the vectors Sej, ue,inf, ue,sup.
When the load bounds Finf, Fsup are given, these vectors
can be found in advance according to formulas (4), (9),
independently of the shakedown analysis. Meanwhile the
residual forces Sr, strains Hr and displacement ur satisfy
the equations

ASr ¼ 0; ATur ¼ Hr; Hr ¼ DSr þHp: ð16Þ
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Having solved Eq. (16), the expressions of residual forces Sr

and displacements ur are obtained in terms of the plastic
strains Hp: Sr ¼ GHp, ur ¼ HHp. The influence matrixes G,
H of the residual forces Sr and residual displacements ur read

G ¼ aAK� K; H ¼ aT: ð17Þ
Hp are plastic strains in the formulas for calculating the
force Sr and displacement ur. If the plastic strains
H�p ¼ UTPp

j¼1k
�
j that appeared during the deformation

process are known, then the residual forces S�r and dis-
placements u�r can be calculated according to the following
formulas: S�r ¼ GH�p ¼ GUTPp

j¼1k
�
j ¼ G

Pp
j¼1k

�
j ¼ Gk�,

u�r ¼ HH�p ¼ Hk�, k� ¼
Pp

j¼1k
�
j , j 2 J [31]. It remains to

mention that the influence matrixes G and H depend not
only on the geometry and physical parameters of the struc-
ture but also on the approximation matrix of the yield sur-
face U.

The main difference between elastic–plastic structures
subjected to a monotonically increasing loading F and a
variable repeated one F(t) (Finf 6 F(t) 6 Fsup) is the possi-
ble appearance of the unloading phenomenon in the sec-
tions of the adapting structure. More details about the
unloading phenomenon will follow. Plastic strains Hpv

occur in section v when the complementary slackness con-
ditions of mathematical programming are satisfied:

kT
v;jðM0v �UvSj;vÞ ¼ 0 ðor kT

v;jfv;j ¼ 0Þ; kv;j P 0;

v 2 Z; j 2 J : ð18Þ

The yield condition satisfied as an equality f = 0 can be-
come an inequality f < 0 during a future deformation pro-
cess, but the plasticity multiplier remains positive, k > 0.
Such behaviour of the structure cannot be evaluated
because of the complementary slackness conditions
kT

v;jfv;j ¼ 0, v 2 Z, j 2 J (these conditions are included in
the objective function (13) of the problem’s kinematic for-
mulation (13)–(15)). This is important, because during the
adaptation process the residual displacements ur(t) can
vary non-monotonically – they may increase then later de-
crease etc. To evaluate the non-monotonic variation of the
residual displacements, vectors of the minimum and maxi-
mum values ur,inf, ur,sup are introduced; they are not related
to the time t. Vectors of the displacement bounds �u�r;inf ,
�u�r;sup are obtained analysing all possible loading histories
F(t). Meanwhile vectors ur,inf, ur,sup are approximate, safe
bounds of the residual displacement such that

ur;inf 6 �u�r;inf ; �u�r;sup 6 ur;sup: ð19Þ

The stiffness conditions (restriction of displacements of
deflections) read:

umin 6 u 6 umax: ð20Þ
The vectors umin, umax, used in formula (20), are admissible
bounds of the displacement variation defined by construc-
tion regulations; they are always known in advance. The
stiffness conditions (20) can obtained in the following form:

umin 6 ueðtÞþurðtÞ 6 umax:

If a particular loading history is not considered, for in-
stance, by incremental methods [21,23], these constraints
due to expressions (9) can be rewritten as follows:

umin 6 ue;inf þ ur;inf ; ue;sup þ ur;sup 6 umax: ð21Þ

Often only the residual displacements are restricted in vol-
ume minimization problems, as the elastic components
ue,inf, ue,sup can be easily calculated according the formulas
(9). Then the stiffness conditions (21) read:

ur;min 6 ur;inf ; ur;sup 6 ur;max: ð22Þ

The optimal solution S�r , Dmax of the analysis problem
(13)–(15) helps to formulate a mathematical model for
determining the bounds ur,inf, ur,sup and to obtain the
numerical values of these bounds.

4. Problems of determining the variational bounds of the

residual displacement

4.1. The first problem

The components ~uri;inf ; ~uri;sup; i ¼ 1; 2; . . . ;m of the vari-
ational bound vectors ~ur;inf , ~ur;sup of the residual displace-
ment are obtained by solving the following linear
programming problem:

find

max

min
H�i

~k ¼
~uri;sup

~uri;inf

� �
; i ¼ 1; 2; . . . ;m; ð23Þ

subject to B�k
~k ¼ BrS

�
r ;

~k P 0; ð24Þ
~kTfM0 6 Dmax: ð25Þ

This mathematical model represents a fictitious structure,
i.e. a system having displacements ~ur;inf , ~ur;sup, which ‘‘enve-
lope” the displacements ur of the given structure at shake-
down [22,32] and conjoin main dependencies of the static
(10)–(12) and the kinematic (13)–(15) formulations of anal-
ysis problem. The unknown of the problem (23)–(25) is
f-vector ~k P 0, while the vectors S�r , fM0 and Dmax are
known. Vector S�r and the magnitude of Dmax are obtained
according to the optimal solutions of the problem (13)–
(15). fM0 is a vector of the limit moments of the fictitious
structure. The components of vector fM0 are such that at
least one yield condition would be satisfied as a strict equal-
ity in each section v 2 Z of the frame. Thus, the limit mo-
ment of the structure section fM0v is calculated according toeM 0v ¼ max UvðS�r þ Sev;jÞP 0; v 2 Z; j 2 J : ð26Þ

The elastic forces S�e and matrix U* of such linear yield con-
ditions fj = M0 � USj P 0, which satisfy condition (26),
are determined together with the vector fM0. Then the fol-
lowing equality is valid:fM0 ¼ U�ðS�r þ S�eÞ: ð27Þ

Thus, in formula (27), the number of vector fM0 ¼ ð eM 01;eM 02; . . . ; eM 0v; . . . ; eM 0fÞT components and rows of matrix
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U* is equal to the number of design sections f (f 6 s � sk).
The main purpose of applying formula (26) is to construct
a new matrix of the yield conditions U*, which has frows
and n columns. The matrix U* is used for formulating
the objective function (23) and condition (24) of the prob-
lem (23)–(25). The matrix H* used in the objective function
is calculated according to the formula H� ¼ HU�T. Equal-
ities (24), B�k

~k ¼ BrS
�
r , are compatibility equations of the

structure’s residual strains. The number of equations is
equal to the degree of static indeterminacy of the system
k0 = n � m. The compatibility equations of the strains B

Hp = BrSr are obtained from the geometrical equations
ATur = DSr + Hp after the elimination of displacements
ur. Here matrixes B and Br are B = [AT00(AT0)�1, � I],
Br = � AT00(AT0)�1D0 + D00. Matrixes AT0, AT00 and D0, D00

are sub-matrixes of AT and D, respectively; I is the identity
matrix. Using matrix U*, the equalities B�k

~k ¼ BrS
�
r are ob-

tained, where B�k ¼ BU�T.
The vector components of problem (23)–(25) with the

optimal solution ~k� P 0 are not related to the fulfilment
of the complimentary slackness conditions (18) and they
may not have the physical meaning of plasticity multipliers
(in contrast to the solution k* P 0 of the problem (13)–
(15)). The upper bound of the dissipated energy Dmax can
also be calculated by Koiter’s suggested formula [33]. The
fictitious structure method allows a more exact determina-
tion of the residual displacement variational bounds ~ur;inf ,
~ur;sup compared with Koiter’s global conditions.

4.2. The second problem

The values uri,inf, uri,sup i = 1,2, . . . ,m of the displace-
ment limits ur,inf, ur,sup can be obtained from the basic solu-
tion vectors of k0 P 0 of the strain compatibility equations
B�kk0 ¼ BrS

�
r . The basic variables k00 P 0 compounding the

vector k0 P 0 can be determined according to
k00 ¼ ðB

0�
k Þ
�1

BrS
�
r . Here the quadratic k0 � k0 matrix B0�k is

a sub-matrix of B�k. If the determinant of matrix B0�k is equal
to zero, the statically determinate system corresponding to
B0�k is geometrically unstable. In the general case, the num-
ber g of combinations constructing the sub-matrixes B0�k
can be smaller or equal to f!/[k0!(f � k0)!]. After all g vec-
tors k0 P 0 (here subscript g is omitted) are found, only
those vectors satisfying energy condition (25) are selected.
If k0,z P 0 satisfies conditions (25), the set of subscripts z

is N. The vectors of residual displacements ur0,z are calcu-
lated according to

ur0;z ¼ H�k0z; z 2 N: ð28Þ

The vectors ur,inf, ur,sup are constructed by picking the com-
ponents of all vectors ur0,z (z 2 N) with maximal and mini-
mal values. It is easy to see that one of the vectors k0,z P 0
will coincide with the optimal solution k* P 0 of the prob-
lem (13)–(15), i.e. k0,z = k*. Thus it is possible to write a
group of inequalities:

~ur;inf 6 ur;inf 6 urðtÞ 6 ur;sup 6 ~ur;sup: ð29Þ

Taking into account inequalities (19), the following
sequence of inequalities is obtained:

~ur;inf 6 ur;inf 6 �u�r;inf 6 urðtÞ 6 �u�r;inf 6 ur;sup 6 ~ur;sup: ð30Þ
The compatibility equations of residual strains (24) in-
cluded in the problem (23)–(25) as constraints can be de-
rived using the formulas GHp ¼ Sr, Hp ¼ U�T~k and
matrix Br as follows:

GU�T~k ¼ S�r ; ð31Þ
BrGU�T~k ¼ BrS

�
r ; ð32Þ

and the compatibility equations of the residual strains
B�k

~k ¼ BrS
�
r are obtained, where matrix B�k ¼ BrGU�T.

It is possible to change the constraints (24) of the problem
of optimizing the variational bounds of the residual displace-
ment (23)–(25) into condition (31) GU�T~k ¼ S�r , ~k P 0, hav-
ing eliminated the linearly dependant equations in advance.
However, it is more practical to use the compatibility equa-
tions of residual strains (24): the physical meaning of the sec-
ond problem of determining the residual displacement
variational bounds ur,inf, ur,sup becomes evident.

Both vectors ur,inf, ur,sup and ~ur;inf , ~ur;sup can be used in
the stiffness constraints (30) of mathematical models of
optimization problems.

5. Case of a moving load

A monotonically increasing load is described in this way:
F = Finf = Fsup, i.e. the lower and upper bounds coincide. In
this instance, the number of elastic force locus apexes is
equal to one and the elastic forces are Se (j = 1, this index
is omitted). If, for example, Finf = 0, and the components
of vector Fsup take in series the same values, then we get vec-
tors Fn that correspond to each position n of the moving
force system. In Fig. 3 a system of two forces (F1 and F2)
moving on the bottom bars of a truss and a load vector
Fn corresponding to each position n ðn ¼ 1; 2; . . . ; �pÞ is
shown. For the sake of simplicity the components of
Fn = (F1n,F2n, . . . ,F4n)T are related not to the degree of free-
dom m of the discretized truss model, but only to the verti-
cal forces of the bottom bars of the truss. The elastic forces
of locus apexes Sen of the construction in the case of a mov-
ing load are calculated by formula (4), replacing the index n
by j and thus considering p ¼ �p [34].

6. Mathematical models of adapted frame optimization

6.1. Design of minimum-volume frame at shakedown

A minimum-volume frame is designed when the yield
limit ryk of the frame material and the lengths Lk of all
its elements k (k 2 K) and load variation bounds Fsup, Finf

are known. The problem of frame volume minimization
reads: minimize

P
kLkAk, subject to structure strength and

stiffness constraints. As stated above, the relation
ck ¼ M0k

N0k
, k 2 K should be prescribed in advance. The limit

moment of element M0k = rykWpl,k = n(ryk,Ak) is a func-
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tion of the cross-sectional area Ak and the yield limit of the
material ryk. It is true that usually one or other specific
dimension of the cross-section (for instance, the flange
thickness tf of the I-section while the width of flange b is
fixed; see Section 8) participates in the functional relation
M0k = n(ryk,Ak) instead of the cross-sectional area Ak.
Then the mathematical model of minimizing the frame vol-
ume is as follows:

find

min
X

k

LkAk; ð33Þ

subject to fj ¼M0 �UðGkþ SejÞP 0; ð34ÞXp

j¼1

kT
j ½M0 �UðGkþ SejÞ� ¼ 0; kj P 0;

k ¼
Xp

j¼1

kj; j 2 J ; ð35Þ

Ak P Ak;min; k 2 K; ð36Þ
ur;min 6 ur;inf ; ur;sup 6 ur;max ð37Þ

The cross-sectional areas Ak, k 2 K (or another specific
dimension of the cross-section) of the frame elements and
vectors of plasticity multipliers kj P 0, j 2 J are the un-
knowns of the non-linear mathematical programming
problem (33)–(37). Formulas (35) represent the comple-

mentary slackness conditions of mathematical program-
ming [35]. The lower bound of the cross-sectional areas
Ak,min is included in the construction constraints (36)
Ak P Ak,min. It is not difficult to introduce elastic displace-
ments into the stiffness constraints (37) (see inequalities
(21)). The limit moments M0 and influence matrixes a, b,
G, H are related to the unknowns Ak, k 2 K; the listed ma-
trixes are recalculated during the solution of the problem
(33)–(37). If the stiffness constraints are neglected, cyclic–
plastic collapse of the frame occurs.

When only the bending moments M are taken into
account in the frame calculation, the following mathemat-
ical model of frame volume minimization is obtained:

find

min
X

k

LkAk; ð38Þ

subject to f max ¼M0 �Gk�Me;max P 0;

f min ¼M0 þGkþMe;min P 0; ð39Þ
kT

maxfmax ¼ 0; kT
minfmin ¼ 0;

kmax P 0; kmin P 0; ð40Þ
k ¼ ðkmax; kminÞT; ð41Þ
Ak P Ak;min; k 2 K; ð42Þ
ur;min 6 ur;inf ; ur;sup 6 ur;max: ð43Þ
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Fig. 3. Moving load realized by vectors Fn (n = 1, 2, . . . , 5).
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Extreme elastic bending moments Me,max = asupFsup + ainf

Finf, Me,min = asupFinf + ainfFsup are known in the problem
(38)–(43). The unknowns are the cross-sectional areas Ak,
k 2 K of the elements and the vectors of plasticity multipli-
ers kmax, kmin.

In the case of a monotonically increasing load, j = 1 and
conditions (34), (35) of all the discretized frame have the
following form: f = M0 � U(Gk + Se) P 0, kT[M0 � U(G
k + Se)] = 0, k P 0. The stiffness constraints (37) of the
frame are simplified: ur,min 6 Hk 6 ur,max. The scope of
problem (33)–(37) is reduced and computer realization of
the problem is simpler.

A brief description of the solution peculiarities of the
volume minimization problem will follow. From the solu-
tion algorithm scheme (Fig. 4), it is possible to see that in
the beginning both problems (33)–(43) are solved when
the stiffness conditions (37) or (43) are changed into the
constraints ur,min 6 Hk 6 ur,max of the corresponding holo-
nomic process. For instance, first the following simplified
variant of the problem (38)–(43):

find

min
X

k

LkAk; ð44Þ

subject to ð39Þ–ð42Þ and

ur;min 6 Hk 6 ur;max: ð45Þ

is solved. After an optimal solution of the problem (44) and
(45) is found, stricter stiffness constraints (43) are verified
using displacement bounds ~ur;inf , ~ur;sup or ur,inf, ur,sup. In
the scheme of the solution algorithm of the volume minimi-
zation problem (Fig. 4), the stiffness conditions are related
to the bounds ur,inf, ur,sup.

It should be noted that the numerical solution of the
problems (33)–(43) is easier when the complementary
slackness conditions are moved to the objective function.
Then, for example, the objective function of the problem
(38)–(43) has the following form:

min
X

k

LkAk þ kT
maxfmax þ kT

minfmin

 !
:

6.2. Shakedown load optimization of frames

In the case of a variable repeated load, there is also the
important problem of determining the limits of the load
Fsup, Finf, which is stated as follows: find the shakedown
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Fig. 4. Flowchart of the proposed solution algorithm.
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load variational bounds Fsup, Finf, satisfying the prescribed
optimality criterion maxfTT

supFsup � TT
inf Finfg, also the

strength and stiffness requirements of the structure. Here
Tsup, Tinf are the optimality criterion weight coefficient
vectors.

Then the mathematical model of the shakedown load
optimization problem for frames reads:

find

max TT
supFsup � TT

infFinf

n
�
Xp

j¼1

kT
j ½M0 �UðGkþ SejÞ�

)
; ð46Þ

subject to fj ¼M0 �UðGkþ SejÞP 0; ð47Þ

kj P 0; k ¼
Xp

j¼1

kj; j 2 J ; ð48Þ

Fsup P 0; �Finf P 0; ð49Þ
ur;min 6 ur;inf ; ur;sup 6 ur;max: ð50Þ

The vector of limit bending moments M0 and the limits of
the residual displacements ur,min, ur,max are known in the
problem (46)–(50). The optimal solution of the problem
(46)–(50) is the vectors F�sup, F�inf and k�j , j 2 J .

7. Optimal shakedown design of trusses

7.1. Evaluation of bar stability

The yield conditions of a discretized truss read:

fmax ¼ N0 �Nr �Ne;max P 0; ð51Þ
fmin ¼ N0;cr þNr þNe;min P 0: ð52Þ

where Ne,max = asupFsup + ainfFinf, Ne,min = asupFinf + ainf

Fsup are the vectors of the minimum and maximum values
of the elastic axial forces. Here N0 = (N0k)T,
N0,cr = (N0k,cr)

T, N0,k = rykAk, N0,k, cr = ukrykAk, k 2 K.
The possible failure of bars under compression because
of lost stability is evaluated by introducing the reduced lim-
it axial force vector N0,cr in the yield conditions (52). The
components N0,cr,k of the vector N0,cr are determined
according to the recommendations of Eurocode 3:

N 0;cr;k ¼ ukN 0;k; k 2 K; ð53Þ

uk ¼
1

Uk þ ½U2
k � �k2

k �
0:5
; ð54Þ

where Uk ¼ 0:5ð1þ að�kk � 0:2Þ � �k2
kÞ, �kk ¼ kk

k1k

ffiffiffiffiffi
bA

p
¼

kk

p½Ek=ry;k �0:5
ffiffiffiffiffi
bA

p
. Here ry,k and Ek are the material yield limit

and the modulus of elasticity of the kth bar; kk = Lk/ik is
the bar slenderness, where ik is the radius of gyration of
the kth bar. In the case of a bar under pure compression
bA = 1, the value of the imperfection factor a depends on
the shape of the cross-sections and the properties of the
material used (a = 0.21 for hot rolled pipes). A possible

failure because of loss of stability of the bar system is not
evaluated when N0,cr = N0.

7.2. The problem of truss volume minimization

The minimum volume of a truss can be determined by
solving the following problem:

find

min
X

k

LkAk þ kT
max½N0 � ðGkþNe;maxÞ�

þ kT
cr½N0;cr þ ðGkþNe;minÞ�; ð55Þ

subject to fmax ¼ N0 �Gk�Ne;max P 0; ð56Þ
fmin ¼ N0;cr þGkþNe;min P 0; ð57Þ
kmax P 0; kcr P 0; k ¼ ðkmax; kcrÞT; ð58Þ
Ak P Ak;min; k 2 K; ð59Þ
ur;min 6 ur;inf ; ur;sup 6 ur;max: ð60Þ

Here the load variation bounds Finf, Fsup are prescribed, so
in the mathematical model (55)–(60) the extreme forces
Ne,max, Ne,min are known. It is not difficult to introduce
elastic displacements into the stiffness constraints (60) by
applying formula (9). The unknowns of the problem
(55)–(60) are the cross-sectional areas Ak, k 2 K of the truss
elements and the vectors of plasticity multipliers kmax, kcr.
The stiffness constraints (60), requiring the solution of
problems (23)–(25), show that the main non-linear truss-
optimization problem is not also a classical mathematical
programming problem.

The minimum of the objective function (55) is obtained
by neglecting the possible loss of bar stability if the factor
of yield stress reduction is uk = 1 (k 2 K) in the yield con-
ditions (57) of the mathematical model (55)–(60). The min-
imum truss volume would be obtained according to the
conditions of cyclic–plastic collapse if the stiffness con-
strains (60) were neglected.

7.3. Problem of load optimization

The mathematical model of the shakedown load optimi-
zation problem for trusses is based on the problem (46)–
(50) and is stated as follows:

find

max fTT
supFsup � TT

infFinf � kT
max½N0 � ðGkþNe;maxÞ�

� kT
cr½N0;cr þ ðGkþNe;minÞ�g; ð61Þ

subject to fmax ¼ N0 �Gk�Ne;max P 0; ð62Þ
fmin ¼ N0;cr þGkþNe;min P 0; ð63Þ
kmax P 0; kcr P 0; k ¼ ðkmax; kcrÞT; ð64Þ
Fsup P 0; �Finf P 0; ð65Þ
ur;min 6 ur;inf ; ur;sup 6 ur;max: ð66Þ

The limit axial force vectors N0, N0,cr and the limits of
residual displacements ur,min, ur,max are known in the
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problem (61)–(66), the optimal solution of which is the vec-
tors F�sup, F�inf and k�max, k�cr.

8. Numerical example

Proposed calculation technique is illustrated by example
of minimization of three-storey frame (Fig. 5). The soft-
ware M0opt1, which is created by authors, is based on
Rosen project gradient method [24] and applied for solu-
tion of presented numerical example.

The three-storey frame shown in Fig. 5 is discretized by
using equilibrium finite elements. Finite elements with six
degrees of freedom are used for columns under bending
and axial loading and finite elements with seven degrees
of freedom are used for beam elements subjected to a dis-
tributed load with linear displacements of the central node
(see Fig. 8). The later elements [36] exactly model the stress
and strain field of the beams and allow the middle section
displacements ur10, ur11,ur12,ur22,ur23 of the beams to be
computed directly. This creates the possibility of decreasing
the number of unknowns in the optimization problem (33)–
(37) and of obtaining information that is necessary for later
analysis.

The frame is subjected to three independent load sets:
horizontal concentrated forces F1 ¼ fF 1

1; F
2
1; F

3
1; F

4
1; F

5
1;

F 6
1; F

7
1g acting on the nodes of the frame and vertical uni-

formly distributed forces F2 ¼ fF 1
2; F

2
2g acting on the roof

beams and F3 = {F3} acting on the floor beams, respec-
tively. Limits for the variations of the load are defined by
the inequalities F1,inf 6 F1 6 F1,sup, F2,inf 6 F2 6 F2,sup and
F3,inf 6 F3 6 F3,sup, where F1, inf = { � 5.16,�6.06, �3.6,
�7.8,�6.6,�6,�10.2} kN, F1,sup = {10.2, 12.6,7.8, 3.6,
3.36,2.7,5.16} kN, F2,inf = {0,0}, F2,sup = {2.52,5.22} kN/
m, F3,inf = {0} and F3,sup = {30} kN/m.

The frame is made of steel with a modulus of elasticity
E = 21,000 kN/cm2 and a yield limit ry = 23.5 kN/cm2.
The cross-sections of the frame column, roof and floor

beams are shown in Fig. 6. The parameters b and h0 remain
the same throughout the optimization process, only the
thickness of the flanges varying. The initial flange thickness
is taken as t0

f ;col ¼ 12 mm for the frame columns,
t0
f;roof beam ¼ 8 mm for the roof beams and t0

f;floor beam ¼
8mm for the floor beams. Thus, the initial cross-sectional
areas of the columns, roof and floor beams are
A0

col ¼ A0
1 ¼ A0

2 ¼ A0
3 ¼ A0

4 ¼ A0
5 ¼ A0

6 ¼ A0
7 ¼ A0

8 ¼ 57:6 cm2,
A0

roof beam ¼ A0
9 ¼ A0

10 ¼ 14:4 cm2 and A0
floor beam ¼ A0

11 ¼
A0

12 ¼ A0
13 ¼ 57 cm2, respectively. The initial volume of

structure is V0 = 279,540 cm3. The limit forces of the
cross-sections are calculated according to

M0 ¼ ry � b � t � h0 ¼ ry � A �
h0

2
; N 0 ¼ ry � 2b � t ¼ ry � A:

The initial limit forces of the columns are M0
0;col ¼

155:66 kN m and N 0
0;col ¼ 1353:6 kN, the limit forces of

the roof and floor beams are M0
0;roof beam ¼ 30:456 kN m,

N 0
0;roof beam ¼ 338:4 kN and M0

0;floor beam ¼ 301:388 kN m,
N 0

0;floor beam ¼ 1339:5 kN; also ccol = 0.115, cfloor beam = 0.09,
c

roof beam
= 0.225.
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The main task is to determine the minimum volume of
the adapted frame (Fig. 5) in the case when the vector of
inner forces of the discretized frame is S =
(M, N)T = (M1, M2, M3, . . . , M31, N1, N2, . . . , N13)T = (Si)

T,
i = 1,2, . . . ,n = 44, i.e. both bending moments M and axial
forces N are taken into account. In this case the frame
volume minimization is performed according to the math-
ematical model (33)–(37). The unknowns are the cross-sec-
tional areas of the frame columns and beams Ak, k 2 K and
the vectors of plasticity multipliers kj, j = 1,2, . . . , 8. Prob-
lem (33)–(37) was solved according to the sequence of oper-
ations shown in Fig. 4.

When the residual displacement constraints (37) are
neglected, the following results were obtained for the
frame: minimum volume Vmin = 156,724 cm3; residual dis-
placements of beams ur10 = 0.088 mm, ur11 = 0.36 mm,
ur12 = 0.77 mm, ur22 = 51.46 mm, ur23 = 12.62 mm; plastic
strains appears in sections 7, 8, 14, 15, 20, 22, and 29
(Fig. 5).

The following residual displacement constraints were
imposed for vertical displacements of beams ur22, ur23

(Fig. 5), in four cases:

C1 �6 6 ur22 6 6, �6 6 ur23 6 6;
C2 �12 6 ur22 6 12, �12 6 ur23 6 12;
C3 �18 6 ur22 6 18, �18 6 ur23 6 18;
C4 � 24 6 ur22 6 24, �24 6 ur23 6 24.

Units of displacement constraints are millimetres. The
calculation results depending on prescribed limits is shown
in Fig. 7 and Table 1.

9. Conclusions

The formulation and solution of mathematical models
for optimization problems in structural mechanics is just
a first step in practical structural design, and also for struc-
tures at shakedown. An adapted structure is safe with
respect to cyclic–plastic collapse but does not satisfy its ser-
viceability requirements. Strength, stiffness and stability
constraints should be included in the mathematical models
of structure optimization. The determination of displace-
ments is especially complicated if a variable repeated load
is defined by the variational bounds. During the shake-
down process the residual displacements vary non-mono-
tonically as a result of the phenomenon of unloading
cross-sections. The complementary slackness conditions
of mathematical programming do not allow this physical
phenomenon to be evaluated. Thus, the non-linear prob-
lems of volume minimization and shakedown load optimi-
zation are not traditional mathematical programming
problems: while solving them, it is necessary to check the
stiffness conditions, i.e. to determine the lower and upper
bounds of the residual and elastic displacements.
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[23] Merkeviči�utė D, Atkoči�unas J. Incremental method for unloading
phenomenon fixation at shakedown. Journal of Civil Engineering and
Management 2003;IX(3): 178–91.

[24] Bazaraa MS, Shetty CM. Nonlinear programming theory and
algorithms. New York, Chichester, Brisbane, Toronto: John Wiley;
1979.
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a b s t r a c t

A shakedown-frame plastic moments minimization and load-optimization nonlinear mathematical
model with strength, stiffness, and stability constraints is investigated. A methodology and algorithms
for stability evaluation have been developed according to various standards (Eurocode 3 (EC3) and the
Dutch NEN 6771) by integrating the MatrixFrame commercial software for the building industry and
the nonlinear mathematical programming software developed by the authors. For other investigators,
this work makes it possible to integrate the solutions of nonlinear programming problems (plastic state
variables – residual forces and displacements) into their structural design software. Numerical examples
of optimization of frame structures are presented.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The paper considers elastic–plastic frames affected by a variable
repeated load which is a system of forces that may vary indepen-
dently within prescribed bounds. Usually variable repeated forces
are not characterized by a loading history F(t), but only by time-
independent lower and upper bounds on the forces Fsup; F inf ,
(F inf 6 FðtÞ 6 Fsup).

Today the evaluation of stability conditions for optimization
problems involving elastic–plastic frames remains a topical scien-
tific problem [1]. For example, it is permitted to design elastic–
plastic frames using the EC3 or NEN 6771 standards, but in these
standards, the methodology and algorithms for stability evaluation
of shakedown structures are not fully described. This situation
influenced the choice of topic for this paper: the optimal shake-
down design of frames subjected to variable repeated load under
strength, stiffness, and stability constraints. The aspects of the
optimal shakedown design of bar structures under strength and
stiffness conditions have been investigated in detail in [2–12]. In
this research, two types of problems are considered [13]. The first
problem is the plastic moments minimization of the shakedown
frame. The unknowns in this problem are the plastic moments
M0. The plastic moment, M0 = ryWpl, is the principal characteristic
of the bending element section (ry is the yield limit of the material
and Wpl the plastic section modulus).

The second problem is the load-optimization problem for a
frame subjected to variable repeated load. By solving the load-opti-
mization problem, the maximal load-variation bounds F inf and Fsup

which ensure frame integrity and which satisfy the stiffness and
stability requirements of the structure can be found.

The solution of frame-optimization problems at shakedown is
complicated because the stress–strain state of dissipative systems
depends on their loading history [14–18]. These difficult optimiza-
tion problems can be solved by using extremum energy principles
and the theory of mathematical programming [19]. This makes it
possible to create a new iterative algorithm based on the Rosen
project-gradient method [20,21]. Stability requirements for both
optimization problems can be evaluated by integrating the Matrix-
Frame commercial software for the building industry with the non-
linear mathematical programming software developed by the
authors. The part of the problem solution that is related to stability
is transferred to the design software which implements the EC3
and NEN 6771 standards. The solution procedure is therefore iter-
ative, in that the structural or load constraints of each ordinary
iteration of the main optimization problem are calculated using
the MatrixFrame design software. In the proposed methodology,
the initial data for the MatrixFrame design software are replaced
by the residual forces and residual displacements obtained from
the solution of the optimization problem, i.e., the evaluation of
the influence of plastic deformations. A criterion for an optimal
solution is the convergence within the desired tolerance of the
objective function of the main optimization problem. For other
investigators, the methodology developed here makes it possible
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to integrate the solutions of nonlinear programming problems
(plastic state variables: residual forces and displacements) into
their structural design software.

This paper is an updated and revised version of the conference
paper [1]. The paper was extended by detailed explanation of the
proposed nonlinear optimization mathematical models and by
the in-depth description of how the variable repeated load is ex-
pressed by the load combinations which occur in engineering
practice.

Numerical examples for frames are presented. The results are
valid if small displacements are assumed.

2. General mathematical models

The discrete model of the frame at shakedown consists of s
equilibrium finite elements. The limit force S0k (k = 1, 2, . . . , s) is as-
sumed constant in the whole finite element. The kth element has sk

nodal points. The approximated nodal forces of each element are
the bending moments M and axial forces N. Generalised nodal force
Sv = (Ml, Nl)T, l = 1, 2, . . . , sk, v = 1, 2, . . . , f, where f is the total num-
ber of discrete model design sections. The nodal internal forces of
each element are a combination of one vector of length n of dis-
crete model forces, S = (S1, S2, . . . , Sv, . . . , Sf)T = (Sz)T, and one vector
of length n, H = (H1, H2, . . . , Hv, . . . , Hf)T = (Hz)T, z = 1, 2, . . . , n.
The degrees of freedom are m, corresponding to m displacement
vectors ue = (ue,1, ue,2, . . . , ue,m)T.

The load F(t) is characterized by time t and the independent
variation bounds, Fsup ¼ ðF1;sup; F2;sup; . . . ; Fm;supÞT and F inf ¼ ðF1;inf ;

F2;inf ; . . . ; Fm;inf ÞT, (F inf 6 FðtÞ 6 Fsup). The elastic displacements ue(t)
and the forces Se (t) of the structure are determined using influence
matrices of displacements and forces, b = (AKAT)�1, a = KATb,
respectively, where ue(t) = bF(t), Se(t) = aF(t), K = D�1. Here A is a
coefficient matrix of equilibrium equations, AS = F, and D is a qua-
si-diagonal flexibility matrix. The residual displacements ur and
the forces Sr are related to the vector of plasticity multipliers k

by the influence matrices H and G, where ur ¼ HHTk ¼ Hk; Sr ¼
GUTk ¼ Gk;H ¼ aT , and G ¼ aAK � K . Here U is the matrix of
piecewise-linearized yield conditions, uj. The number of all possi-
ble combinations Fj of load bounds Fsup; F inf is p = 2m (F inf 6

F j 6 Fsup), where Sej = aFj, uej = bFj, j = 1, 2, . . . , p. It is possible to
evaluate directly, not only the variable repeated load Fj, but also
other loads Fc (for example a persistent load), additionally includ-
ing them in combination j. The elastic forces Sec and elastic
displacements uec resulting from the loads Fc are calculated as Sec =
aFc, uec = bFc.

The general mathematical models presented in Table 1 are
the basis for the development of the mathematical optimization
models of frames at shakedown which are considered in this
paper.

In both plastic moments minimization and load optimization,
the objective functions are described by Eqs. (1) and (6), respec-
tively, where the vectors L, Tsup, and Tinf contain weighting coeffi-
cients. The yield conditions uj(j = 1, 2, . . . , p) are given by Eqs. (2)
and (7), respectively, where j is the number of all possible combi-
nations F j of load bounds Fsup; F inf . The complementary slackness
conditions of mathematical programming are given by Eqs. (3)
and (8), respectively. Eqs. (4) and (9) are the respective constraints
for the problem unknowns. The vectors Mmax, Mmin, Fmax, and Fmin

play a major role in stability evaluation. For further details on this
topic, see Section 3. The stiffness constraints are given in Eqs. (5)
and (10), respectively.

The optimal parameters for frame design using mathematical
model (1)–(5) can be calculated when the yield limit ryk of the
frame material, the lengths Lk of all elements k (k = 1, 2, . . . , s),
and the load-variation bounds Fsup; F inf are known. Depending on
the cross-sectional shape, various yield conditions can be assumed.

This paper focuses on yield conditions for rolled I-beam steel sec-
tions (Fig. 1).

The relation ck ¼ M0k
N0k

; k 2 K should be determined in advance.
The limit moment, M0k = rykWpl,k = n(ryk, Ak), and the limit axial
force, N0k = rykAk, of the element are functions of the cross-sec-
tional area, Ak, and the yield limit of the material, ryk. It is usually
true that one or two specific dimensions of the cross-section (for
instance, the flange thickness tf and the web thickness tw of the I-
beam cross-section, while the width of the flange b and the
height h are fixed); see Examples 1 and 2 can participate in the
functional relation M0k = n(ryk, Ak). The limit moments M0k of
the frame elements and the vectors of plasticity multipliers
kj P 0, j = 1, 2, . . . , p are the unknowns of the nonlinear mathe-
matical programming problem (1)–(5). The structural require-
ments for the frames, Mmin and Mmax, are given by conditions
(4). The limit moments M0 and the influence matrices a, b, G, H
are related to the Ak, k = 1, 2, . . . , s; these matrices are recalcu-
lated during the solution of problem (1)–(5). If the stiffness and
stability constraints are neglected, the frame will approach, but
not reach, the point of cyclic-plastic collapse. Mathematical mod-
els of shakedown structures where cyclic-plastic collapse (incre-
mental or alternating plasticity) occurs are described in [11].
The optimal solution of problem (1)–(5) consists of the vectors
M�

0 and k�j ; j ¼ 1;2; . . . ; p.
In the case of variable repeated load, the problem of determin-

ing the load-variation bounds Fsup; F inf for problem (6)–(10) is also
important. This problem can be stated as follows: find the shake-
down load-variation bounds Fsup; F inf , which satisfy the prescribed
optimality criterion, maxðTT

supFsup � TT
inf F inf Þ, and also the strength,

stiffness, and stability requirements of the structure. The vector of
limit bending moments M0 and the limits umin, umax of the total
displacements u = ur + uej + uec are known from problem (6)–(10).
The optimal solution of this problem consists of the vectors
F�sup; F

�
inf , and k�j ; j ¼ 1;2; . . . ; p.

A rearrangement of mathematical models (1)–(5) and (6)–(10)
for purposes of computer implementation is presented in Table 2.

Table 1
General mathematical models of optimization problems.

Plastic moments problem Load-optimization problem

Find Find

min LT M0 (1) maxðTT
supFsup � TT

inf F inf Þ (6)

Subject to Subject to

uj ¼M0 �UðGkþ Sej þ SecÞ � 0 (2) uj ¼M0 �UðGkþ Sej þ SecÞ � 0 (7)

kT
j uj ¼ 0; kj � 0; k ¼

P
j

kj ; j ¼ 1;2; . . . ; p (3) kT
j uj ¼ 0; kj � 0; k ¼

P
j

kj ; j ¼ 1;2; . . . ; p (8)

Mmin �M0 � Mmax (4) 0 � Fsup � Fmax; Fmin � F inf � 0 (9)

umin � ðHkþ uej þ uecÞ � umax (5) umin � ðHkþ uej þ uecÞ � umax (10)
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Fig. 1. Linear yield conditions.
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In mathematical models (11)–(15) and (16)–(20), the complemen-
tary slackness conditions given in Eqs. (3) and (8), kT

j uj ¼ 0, are
moved to the objective functions given in Eqs. (11) and (16). This
rearrangement is made because the optimal solution gives
kT

j uj ¼ 0 and because of the Lagrangian relaxation principle, which
allows placing constraints into an objective function. If the comple-
mentary slackness condition is part of the objective function, the
optimization process is considerably faster, because the condition
kT

j uj ¼ 0 is satisfied, not during ordinary iteration, but only when
the optimal solution is reached.

3. Stability evaluation

The stability of mathematical models (11)–(15) and (16)–(20)
is evaluated using the structural restrictions given by Eqs. (14)
and (19), respectively, which are calculated according to the
stability requirements of the EC3 or NEN 6771 standards (or even
another standard). Various standards have been implemented in
commercial software that is available to meet the needs of
designers. The authors of this paper have used the MatrixFrame
building-industry software, version 4.1, for stability evaluation.
Stability checks can be performed in MatrixFrame for both
standards mentioned. In the case of EC3, the buckling resistance
of members is calculated using equations given in Table 3. In
the case of NEN 6771, the stability check is performed using
equations given in Table 4. An element k meets the stability
requirements when the maximum stability unity check (UCk)
calculated using the equations in the standard is less than or
equal to unity. UC is the ratio of the design value to the design
resistance.

Frame plastic moments minimization is performed using math-
ematical model (11)–(15) in an iterative manner (Fig. 2).

Step 1. The influence matrices a0, b0, G0, H0, and the coefficients
c0

k ; k ¼ 1;2; . . . ; s of the yield conditions are determined for the
assumed initial cross-sectional areas A0

k ; k ¼ 1;2; . . . ; s. Con-
straints (14) for the problem variables M0k are M0,k,min = 0 6
M0,k 6M0,k,max =1 (the only constraint on variable M0,k sign
is applied).
Step 2. The problem described in Eqs. (11)–(15) is solved, and
the new distribution of limit moments M�

0k; k ¼ 1;2; . . . ; s, is
determined. The selection of new sections can be performed
in two ways: by changing the cross-sectional dimensions (con-
tinuous optimization) or by selecting a set of new sections from
an available assortment of manufactured cross-sections using
the criterion W�

pl P M�
0k=ryk (discrete optimization).

Step 3. Plastic state variables – residual forces Sr , and displace-
ments ur are introduced into the MatrixFrame stability calcula-
tion. If the maximal stability UCk > 1, k = 1, 2, . . . , s, then by

changing the cross-sectional dimensions or selecting a new
section from an available set, a new cross-section is found
which has the property UCk 6 1. In this case, M0k,min has been
determined. This means that, in the next iteration, the limit
moment M0k should be greater or equal to M0k,min.
Step 4. New influence matrices a, b, G, H, and new coefficients
ck, k = 1, 2, . . . , s, are determined for the cross-sections with
areas Ak obtained in Step 2.
Step 5. Problem (11)–(15) is solved again using the recalculated
matrices a, b, G, H, the recalculated coefficients ck, and the new
M0k,min obtained in Step 3.
Step 6. Steps 3–5 are repeated until the cross-sectional areas Ak

obtained in two consecutive steps do not differ by more than a
specified tolerance and the stability requirements are satisfied.

The stability requirements for all elements k = 1, 2, . . . , s, are
evaluated in Step 3 by finding cross-sections Ak(M0k,min) which sat-
isfy the requirement that UCk 6 1.

The frame load optimization is performed using mathematical
model (16)–(20), also in an iterative manner (Fig. 3).

Step 1. Problem (16)–(20) is solved, and the new vectors of
load-variation bounds Fsup; F inf are determined. Constraints
(19) on the problem variables Fsup; F inf are 0 6 Fsup 6 Fmax ¼
1, Fmin ¼ �1 6 F inf 6 0 (the only constraints on variables
Fsup and F inf sign are applied).
Step 2. Plastic state variables – residual forces Sr and displace-
ments ur are introduced into the MatrixFrame stability calcula-
tion. If the maximal stability UCk > 1, k = 1, 2, . . . , s, then by
changing the load domain Fj, a load domain is found that
ensures that UCk 6 1. In this case, Fmax and Fmin have been
found. This means that in the next iteration, the load-variation
bounds Fsup and F inf cannot exceed the load-variation bounds
Fmax and Fmin which satisfy the stability requirements.
Step 3. Problem (16)–(20) is solved again using the load-varia-
tion bounds Fmax and Fmin obtained in Step 2.
Step 4. Steps 2 and 3 are repeated until the load-variation
bounds Fsup and F inf obtained in two consecutive steps do not
differ by more than a specified tolerance and the stability
requirements are satisfied.

The stability requirements for all elements k = 1, 2, . . . , s, are
evaluated in Step 2 by finding load-variation bounds Fmax and
Fmin that satisfy the requirement that UCk 6 1.

4. Numerical examples

4.1. Introduction to examples

An Example 1 of the plastic moments minimization problem
(11)–(15) and Example 2 of the load-optimization problem (16)–
(20) illustrate the proposed calculation technique. The convex non-
linear optimization software modules M0opt1 and MaxFopt1 were
used for the first and second problems, respectively. They are
developed by the authors and are based on the Rosen project-gra-
dient method [21] and are used here to obtain a solution of the
numerical example under study. For stability evaluation, the
MatrixFrame software for the building industry is used. Both
examples are applied to a two-story frame (Fig. 4). The frame is
subjected to two sets of independent loads: the horizontal, concen-
trated forces F1 ¼ fF1

1; F
2
1; F

3
1; F

4
1; F

5
1g acting on the nodes of the

frame, and the vertical, uniformly distributed forces F2 ¼ fF1
2; F

2
2g

acting on the roof beams (6, 7, 8, 9). A permanent load
Fc = 117 kN/m acts on the floor beams (10, 11) The limits of
load variations are defined by the inequalities F1,inf 6 F1 6 F1,sup,

Table 2
Mathematical models used in the computer implementation.

Plastic moments problem Load-optimization problem

Find Find

minðLT M0 þ kT
j ujÞ (11) maxðTT

supFsup � TT
inf F inf � kT

j ujÞ (16)

Subject to Subject to

uj ¼M0 �UðGkþ Sej þ SecÞ � 0 (12) uj ¼M0 �UðGkþ Sej þ SecÞ � 0 (17)

kj � 0; k ¼
P

j
kj; j ¼ 1;2; . . . ; p (13) kj � 0; k ¼

P
j

kj ; j ¼ 1;2; . . . ;p (18)

Mmin �M0 �Mmax (14) 0 � Fsup � Fmax; Fmin � F inf � 0 (19)

umin � ðHkþ uej þ uecÞ � umax (15) umin � ðHkþ uej þ uecÞ � umax (20)
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F2,inf 6 F2 6 F2,sup. It is noteworthy that the load combinations
which occur in engineering practice can be modeled as separate cases
of variable repeated load. The number of all possible combinations
Fj of load bounds Fsup; F inf in the current example is p = 22 = 4 [20].
The load domain can be described using four load combinations:

(1) F1,sup + F2,sup + Fc;
(2) F1,sup + F2,inf + Fc;
(3) F1,inf + F2,sup + Fc;
(4) F1,inf + F2,inf + Fc.

The load combinations which occur in engineering practice can
be described by introducing additional multipliers:

(1) k11F1,sup + k12F2,sup + k13Fc;
(2) k21F1,sup + k22F2,inf + k23Fc;
(3) k31F1,inf + k32F2,sup + k33Fc;
(4) k41F1,inf + k42F2,inf + k43Fc,

where the values of the multipliers (the coefficients of each load
combination) k11, k12, . . . , k43 and the load-variation bounds can
be determined by the requirements of the various standards. For
example, if F1 represents wind load, F2 snow load, and Fc perma-
nent load, then the load bounds are: F1,inf = wind from right
(WFR), F1,sup = wind from left (WFL), F2,inf = snow from bottom
(SFB, included to complete the formal description, but cannot occur
in reality), and F2,sup = snow from top (SFT). In this paper, the

Table 3
Stability evaluation formulas according to EC3 standard.

NEd

Nb;Rd
6 1:0; (EC3#6.46)

MEd

Mb;Rd
6 1:0; (EC3#6.54)

NEd
vyNRk

cM1

þ kyy
My;Ed þ DMy;Ed

vLT
My;Rk

cM1

þ kyz
Mz;Ed þ DMz;Ed

Mz;Rk
cM1

6 1; (EC3#6.61)

NEd
vz NRk
cM1

þ kzy
My;Ed þ DMy;Ed

vLT
My;Rk

cM1

þ kzz
Mz;Ed þ DMz;Ed

Mz;Rk

cM1

6 1; (EC3#6.62)

NEd the design values of the compression force

Nb;Rd the design buckling resistance of the compression member

MEd the design value of the moment

Mb;Rd the design buckling resistance moment

My;Ed;Mz;Ed the maximum moments about the y � y and z � z axis along the member, respectively

DMy;Ed;DMz;Ed the moments due to the shift of the centroidal axis, according to EC3#6.2.9.3 for class 4 sections, see EC3# Tables 6
and 7

vy;vz the reduction factors due to flexural buckling from EC3#6.3.1

NRk the characteristic resistance to normal force of the critical cross section

My;Rk ;Mz;Rk the characteristic moments resistance of the critical cross section about the y � y and z � z axis, respectively

vLT the reduction factor due to lateral torsional buckling from EC3#6.3.2

kyy; kyz; kzy; kzz the interaction factors

cM1 partial factor for resistance of members to instability assessed by member checks
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distributed wind-load action is replaced by a set of concentrated
equivalent loads, F1 ¼ fF1

1; F
2
1; F

3
1; F

4
1; F

5
1g. The numerical values of

the load bounds are determined according to the Eurocode 1 stan-
dard. According to this standard, the load domain can be expressed
as follows:

(1) k11WFL + k12SFT + k13Fc;
(2) k21WFL + k22SFB + k23Fc;
(3) k31WFR + k32SFT + k33Fc;
(4) k41WFR + k42SFB + k43Fc.

If external influences are incompatible (for example, snow and
wind), then they can be easily excluded from the load combination

by setting the corresponding multipliers to zero. In the current
example, all multipliers k11, k12, . . . , k43 are equal to unity.

The vector of inner forces of the discretized frame is
S = (M, N)T = (M1, M2, M3, . . . , M28, N1, N2, . . . , N11)T = (Sz)T, z = 1,
2, . . . , n = 39, i.e., when both bending moments M and axial forces
N are taken into account. The frame is made of steel, with a mod-
ulus of elasticity E = 210 GPa and a yield limit ry = 235 MPa. The
material is elastic–perfectly plastic. The cross-sections of the frame
columns, roof, and floor beams are shown in Fig. 5. The upper
bound of total displacements constraints umax are chosen accord-
ing to ratio Lk/dmax where Lk is the length of the kth element
(beam), dmax is the value related to building type and is specified
in national standards; in the paper dmax = 200 is assumed. The

Table 4
Stability evaluation formulas according to NEN6771 standard.

Nc;s;d

xz;bucNc;u;d
6 1 (NEN6771#12.1-1a)

Nc;s;d

xy;bucNc;u;d
6 1; (NEN6771#12.1-1b)

My;max;s;d

xkipMy;u;d
6 1; (NEN6771#12.2-3)

Nc;s;d

Nc;u;d
þ ny

ny � 1
My;equ;s;d þ Fy;tot;s;de�y

xkipMy;u;d
þ nz

nz � 1
vyMz;equ;s;d

Mz;u;d
6 1

,

(NEN6771#12.3-1)

Nc;s;d

Nc;u;d
þ ny

ny � 1
vzMy;equ;s;d

xkipMy;u;d
þ nz

nz � 1
Mz;equ;s;d þ Fz;tot;s;de�z

Mz;u;d
6 1; (NEN6771#12.3-2)

Nc;s;d
the design values of the compression force

Nc;u;d
the reduction factors due to flexural buckling from

xz;buc ;xy;buc
NEN6771# 12.1.1.4

My;max;s;d the design value of the moment

My;u;d the design buckling resistance moment

xkip the reduction factor due to lateral torsional buckling

ny;nz the proportionality coefficients

My;equ;s;d;My;equ;s;d the equivalent moments about the y � y and z � z axis along the member, respectively

Fy;tot;s;d; Fz;tot;s;d the values of the compression load

e�y; e
�
z excentricities about the y � y and z � z, respectively

vy;vz the coefficients depending on the classification of the structure

J. Atkoči�unas, A. Venskus / Computers and Structures 89 (2011) 435–443 439



Author's personal copy

Fig. 2. Flowchart of the proposed solution algorithm for the volume-minimization problem.

Fig. 3. Flowchart of the proposed solution algorithm for the load-optimization problem.
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lower bound total displacements constraints umin = �1 (displace-
ments aren’t limited).

4.2. Example 1

The plastic moments minimization problem (11)–(15) with sta-
bility constraints calculated according to the EC3 standard is inves-
tigated in this example. The limits of load variations are
F1,inf = {�9.75, �4.9, �5, �6.75, �19.5} kN, F1,sup = {13, 6.5, 6.75, 5,
14.6} kN, F2,inf = {0, 0}, F2,sup = {48, 48} kN/m. The parameters b
and h remain the same throughout the optimization process, with
only the thickness t = tf = tw of the flanges and web varying. The
values b and h of the cross-sections are given in Table. 5. In the case
of discrete optimization, the cross-sections are selected from an
assortment of available manufactured cross-sections.

The limit forces for the cross-sections when t = tf = tw are calcu-

lated according to M0 ¼ ryWpl;y ¼ ry t3 � ðbþ hÞt2 þ h2

4 þ bh
� �

t
� �

;

N0 ¼ ryA ¼ ryð2bt þ tðh� 2tÞÞ.
The main task is to determine the minimal plastic moments of

the affected frame (Fig. 4). The frame plastic moments minimiza-
tion is performed using mathematical model (11)–(15). The un-

knowns are plastic moments M0, and the vector of plasticity
multipliers, kj, j = 1, 2, . . . , 4. Five calculation cases were
investigated:

Case C1. Only strength constraints (12) are taken into account.
Optimization is continuous.
Case C2. Only strength (12) and stiffness (15) constraints are
evaluated. The following total displacement constraints are
imposed: �1 6 u5 6 0.03 m, �1 6 u14 6 0.0225 m, �1 6
u23 6 0.0225 m (Fig. 4). Optimization is continuous.
Case C3. Only strength (12) and structural constraints (14) are
taken into account. Optimization is continuous.
Case C4. Only strength (12) and structural constraints (14) are
taken into account. Optimization is discrete.
Case C5. All constraints (strength (12), stiffness (15), and struc-
tural (stability) (14)) are evaluated. The following total dis-
placement constraints are imposed: �1 6 u5 6 0.03 m, �1 6
u14 6 0.0225 m, �1 6 u23 6 0.0225 m (Fig. 4). Optimization is
continuous.

The calculation cases C1 and C2 was solved using the software
M0opt1, whereas for the cases C3–C5 the software coupling
M0opt1 – MatrixFrame, using the sequence of operations de-
scribed in Section 2 and Fig. 2 was used.

The calculated results for all the cases described within the im-
posed constraints are shown in Table. 6. In cases C2 and C5, the to-
tal displacement u23 reaches the upper bound umax = 0.0225 m.
When discrete optimization is used in case C4, the limit moments
M01 = 174986 N m, M02 = 57610 N m, and M03 = 189018 N m corre-
spond to cross-sections HE240, HE160, and IPE330, respectively. It
is noteworthy, that the same discrete cross-sections were obtained
in 4th and 5th iterations, and therefore the optimization process
was stopped and assumed that optimal solution was reached.
The discrete optimization (case C4) is very important for civil engi-
neering, however the continuous optimization (cases C1–C3, C5)
could be an introductory step to discrete optimisation. For exam-
ple, using section properties, obtained from the continuous optimi-
zation, is possible to choose nearest fitting discrete cross-section
from assortment.

Convergence of the main optimization-problem objective
function within the desired accuracy is a criterion of the optimal
solution. In case C2, with a convergence tolerance d = 0.25%, the
iteration process is shown in Table 7. Convergence of the
optimization-problem objective function for all cases is illustrated
in Fig. 6.
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Table 5
Values of cross-sections.

Elements k = 1, 2, . . . , s b (m) h (m)

1, 2, 3 0.15 0.15
4, 5 0.1 0.12
6, 7, 8, 9, 10, 11 0.15 0.2
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4.3. Example 2

The load-optimization problem (16)–(20) with stability con-
straints calculated according to the NEN 6771 standard is analyzed
in this example.

The values of the cross-sections are shown in Table 8. The cross-
sections remain unchanged throughout the entire optimization pro-
cess. Limits for load variations F1,inf 6 F1 6 F1,sup, F2,inf 6 F2 6 F2,sup

are unknowns of the optimization problem. The loads F1 and F2 rep-
resents the wind and snow loads, respectively. The snow load can’t
act from bottom to top, so the constraint F2,min = �10 6 F2,inf 6 0
was applied for load F2 variation bound F2,inf. Predicted optimal value
is in range of ten to hundred thousands and it is possible to treat
F2,min = �10 ffi 0. The main task is to determine the load-variation
bounds of the affected frame (Fig. 4). The frame load optimization
is performed using mathematical model (16)–(20). The unknowns
are the load-variation bounds, F1,inf, F2,inf, F1,sup, and F2,sup, and the
vector of plasticity multipliers, kj, j = 1, 2, . . . , 4. Three calculation
cases were investigated:

Case C1. Only strength constraints (17) are taken into account.

Table 7
Convergence of the optimization-problem objective function for case C2.

Iteration M01 (N m) M02 (N m) M03 (N m) OF d OF%

1 96888 42400 240460 4733292
2 93807 37591 204883 4143051 12,47
3 95221 37257 236064 4621487 �11, 55
4 93755 35439 211158 4223807 8, 61
5 94299 35814 231966 4543060 �7, 56
6 93670 34931 215459 4284503 5, 69
7 94140 35320 228876 4492323 �4, 85
8 93767 34832 218090 4324254 3, 74
9 94083 35129 226802 4459547 �3, 13
10 93840 34837 219776 4350228 2, 45
11 94044 35043 225444 4438312 �2, 02
12 93885 34860 220870 4367176 1, 60
13 94016 34999 224559 4424527 �1, 31
14 93912 34882 221583 4378244 1, 05
15 93997 34973 223983 4415558 �0, 85
16 93929 34898 222047 4385447 0, 68
17 93984 34958 223609 4409735 �0, 55
18 93939 34909 222348 4390121 0, 44
19 93975 34948 223365 4405942 �0, 36
20 93946 34916 222545 4393195 0, 29
21 93970 34942 223206 4403462 �0, 23

Table 6
Calculated results for the volume-minimization problem.

Case M01 (N m) M02 (N m) M03 (N m) Objective function (OF) Volume (m3) Location of the plastic strains

C1 75441 41673 204168 3991522 0.26149777 6, 2, 23
C2 93970 34942 223206 4403462 0.292369813 23
C3 120537 48302 186579 4173339 0.283231289 23
C4 174986 57610 189018 4755802 0.350856685 23
C5 108090 44151 215258 4466587 0.300776204 23
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Fig. 6. Convergence of the optimization-problem objective function.

Table 8
Values of cross-sections.

Elements k = 1, 2, . . . , s b (m) h (m) t (m) Ak (m2) M0k (N m) N0k (N)

1, 2, 3 0.15 0.15 0.016 0.006688 88665 1571680
4, 5 0.1 0.12 0.01 0.003000 31725 705000
6, 7, 8, 9, 10, 11 0.15 0.2 0.03 0.013200 21432 3102000

Table 9
Calculated results for the load-optimization problem.

Case F1,sup (N) F2,sup (N/m) F1,inf (N) F2,inf (N/m) OF Location of the plastic strains

C1 23679 44035 �29349 �10 97073 4, 6, 8, 23
C2 15777 26006 �23958 �10 65751 4, 6
C3 11839 19200 �14673 �10 45722 4
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Case C2. Strength (17) and stiffness (20) constraints are taken
into account. The following total displacement constraints are
imposed: �1 6 u5 6 0.03 m, �1 6 u14 6 0.0225 m, �1 6 u23

6 0.0225 m (Fig. 4).
Case C3. Strength (17) and structural constraints (19) are taken
into account.

The calculation cases C1 and C2 was solved using the software
MaxFopt1, whereas for the cases C3 the software coupling
M0opt1–MatrixFrame, using the sequence of operations described
in Section 2 and Fig. 3, was used.

The calculated results for all cases described within the im-
posed constraints are presented in Table 9. In case C2, the total
displacement u23 reaches the upper bound umax = 0.0225 m. In
presented example the stability evaluation plays important role.
In case C3 the value of objective function (OF) is the smallest.
The difference of OF value between C3 and C2 is 44% and be-
tween C3 and C1 is 112%. The iterative solution procedure
was performed only for case C3, while the optimal solutions
for cases C1 and C2 were obtained in the first iteration. Only
one iteration was needed because no software coupling was
used and the stiffness matrix K is constant in the whole optimi-
zation process.

5. Conclusion

Practical implementation of a shakedown structural-design
methodology should be based, not only on theoretical improve-
ments and new mathematical models, but also on a close relation
with existing building design practices. In this way, it is possible to
avoid a gap between the theoretical methods of structural optimiza-
tion and real design practices based on standards. For this purpose,
this paper presents main optimization problems with strength, stiff-
ness, and stability constraints, in which the part of the solution
related to stability is transferred to a design software package which
conforms to implemented standards. The solution procedure there-
fore becomes iterative: the structural or load constraints for an
ordinary iteration of the main optimization problem are calculated
using the design software. On the other hand, the initial data for
the design software become residual forces and residual displace-
ments obtained from the solution of the optimization problem, i.e.,
the influence of plastic deformations is evaluated. Convergence of
the main optimization-problem objective function to the desired de-
gree of accuracy is a criterion of the optimal solution. The proposed
ways of solving optimization problems include the implementation
of discrete-optimization principles. For future investigators, the
methodology developed here offers the possibility of integrating
the solution of nonlinear programming problems (plastic state vari-
ables – residual forces and displacements) into their structural de-

sign software. In this way, shakedown theory can become a
generalized tool for calculation and optimization of elastic–plastic
structures under different loading conditions.
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a b s t r a c t

In this paper there are considered the optimal design problems of the elastic and elastic–plastic bar
structures. These problems are formulated as nonlinear discrete optimization problems. The cross-
sections of the bars are designed from steel rolled profiles. The mathematical models of the problems,
including the structural requirements of strength, stiffness and stability, are formulated in terms of the
finite element method. The stated nonlinear optimization problems are solved by the iterative method,
where each iteration comprises of the selection of the cross-sections of the bars from the assortment and
solution of the linear problems of discrete programming. The requirement of discrete cross-sections is
ensured by the branch and bound method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For the purpose of saving material, structures are designed by
applying the methods of optimization [1–7]. The various specific
algorithms for nonlinear optimization problems of structures are
recently created: incremental [8], genetic [9–11], discrete opti-
mization [5], evolutionary [12], homogenization [13] and other
optimization algorithms [14–16]. The solution algorithms for non-
linear optimization problems are not as universal as the latter
for the linear problems. They are mostly dedicated to solving
a particular type of problem. Furthermore, the problem of con-
vergence of finding an optimal solution occurs frequently, while
they are applying. Therefore, nonlinear optimization problems fre-
quently are solved by using the approximation technique when
the linear programming problem is solved in each iteration. This
method is applied in the paper [17], which is dedicated to the op-
timization of elastic structures. While designing the structures, an
additional economy of the structural material is obtained for the
structures with plastic deformations with respect to optimal ones
with elastic deformations. However, the optimization problems of
elastic–plastic structures [6–9,15] are evaluated where not only
the strength, but also stiffness and stability requirements, are com-
plex nonlinear programming problems and the realization of them
is complicated. In this paper design problems of the elastic and
elastic–plastic steel structures are investigated. Their mathemat-
ical models are formulated as nonlinear mathematical program-
ming problems by taking into account requirements of design
codes. Mathematical models are created by using the finite ele-
ment method. In these models there are evaluated the conditions

∗ Corresponding author. Tel.: +370 68447077.
E-mail addresses: kal@st.vgtu.lt (S. Kalanta), juozas.atkociunas@st.vgtu.lt

(J. Atkočiūnas), arturas.venskus@st.vgtu.lt (A. Venskus).

of strength, stiffness and stability [18]. The cross-sections are de-
signed from standard steel rolled profiles. The formulated non-
linear optimization problems are solved by the iterative method
where each iteration comprises the selection of the cross-sections
of the bars from the assortment and solution of the linear prob-
lems of discrete programming. The requirement of discrete cross-
sections is ensured by the branch and bound method.

2. The volume minimization problem for elastic structures

2.1. Mathematical models

There is considered the bar structure loaded by load combina-
tions v = 1, 2, . . . , p, which bars are designed from steel rolled
profiles set Π . Let the vector A0 denote the structural bars’ cross-
sectional areas and Fv , Sv , uv define the load, internal forces and
displacements of v-th load combination, respectively. Then the
volume (mass) minimization problem for the elastic structure is
expressed by the following mathematical model:

find min f = LTA0
subject to [A] Sv = Fv,

[
D̄
]
Sv − [A]T uv = 0,

[G]A0 −
[
Φ
]
Sv ≥ 0, [E]uv ≤ u+,

v = 1, 2, . . . , p; A0 ≥ A−0 , A0 ∈ Π .

(1)

In this model: equalities—equilibrium and geometrical equa-
tions, describing the structural forces and displacements; first
inequality— strength and stability conditions; other inequalities—
displacements (stiffness) and constructive constraints. L is the
vector of the structural elements’ lengths. The unknowns of this
problem are the vectors A0, Sv and uv . Thus, the objective func-
tion of the problemexpresses volume and themass of the structure
at the same time. Flexibility matrix

[
D̄
]
of the structural elements

0141-0296/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2009.01.004
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together with the strength and stability matrix
[
Φ̄
]
depend on the

unknown A0. Therefore the model (1) is the nonlinear program-
ming problem: the cross-sections of the structural bars, satisfying
the requirements of the minimum volume (mass) of the structure,
strength, stiffness and stability, are searched for.
By eliminating the internal forces Sv =

[
D̄
]−1 [A]T uv

and geometrical equations, this model can be rewritten as the
following optimization problem:

find min f = LTA0
subject to [K̄ ]uv = Fv, [G]A0 − [Φ̄u]uv ≥ 0,

[E]uv ≤ u+, v = 1, 2, . . . , p; A0 ≥ A−0 ,
A0 ∈ Π .

(2)

where
[
Φ̄u
]
=
[
Φ̄
]
[D]−1 [A]T ;

[
K̄
]
= [A]

[
D̄
]−1 [A]T is the global

stiffness matrix of the structure.

2.2. Formulation of the main dependencies

Themain dependencies composing the problems (1) and (3) are
formulated in terms of the finite element method. For this purpose
the structure is divided into the elements (bars) k = 1, 2, . . . , r
joined in the nodes. The dependencies of the model (1) can be
composed by using the equilibrium finite element method [19],
and themodel (3) can be createdwith the help of the equilibriumor
geometrically compatible finite element method [20], because the
stiffness matrix

[
K̄
]
can be formulated not only from the indicated

formula, but also from the stiffness matrices of elements too.
Two equation groups compose the equilibrium equations

[A] Sv = Fv:

(1) the equilibrium equations for nodes describing the relation
between the nodal forces of connected into nodes elements
and the external forces acting on the nodes;

(2) the equilibrium equations for elements describing the relation
between the nodal forces and acting on the element external
load, and are formulated only for elements affected by a
distributed load. Expressions of these equations are presented
in the papers [17,19].

The equilibrium equation matrix [A] could be formulated from
the coefficients of the equilibriumequations of nodes and elements
or from the formula [A] = [C]T

[
Ā
]
[19]; here the compatibility

matrix [C] describing the relation between global displacements
of the structural nodes and nodal displacements of elements;[
Ā
]
= diag [Ak] is the quasi-diagonal matrix, whose diagonal sub-

matrices are composed from the coefficients of the static equations
Pk = [Ak] Sk of the elements.
Flexibility matrix

[
D̄
]
= diag [Dk] of geometrical equations[

D̄
]
Sv − [A]T uv = 0 contains in the principal diagonal the

flexibility matrices of the finite elements [Dk]. Its coefficients are
calculated by formula dij = dk

∫
lk
Hki (x)Hkj (x) dx , where Hki (x)

is the shape function of the internal forces; flexibility of the
element under tension or compression is dk = 1/EAk, flexibility
of an element under bending is dk = 1/EIk; E is the elasticity
modulus, Ak, Ik are the cross-sectional area andmoment of inertia,
respectively.
First-order and second-order approximation functions of forces

(bendingmoments and axial forces) for equilibrium finite elements
and expressions of flexibility matrix [Dk] and equilibrium equa-
tions are presented below.
(a) Expressions of first-order element (Fig. 1):

Mk (x) =
2∑
j=1

Hkj (x)Mkj =
(
1−

x
lk

)
Mk1 +

x
lk
Mk2,

Nk (x) = Nk;

Fig. 1. First-order element.

Fig. 2. Second-order element.

Pk =


Pk1
Pk2
Pk3
Pk4
Pk5
Pk6

 =

0 0 −1
1/lk −1/lk 0
1 0 0
0 0 −1
−1/lk 1/lk 0
0 −1 0

 ·
[Mk1
Mk2
Nk

]
= [Ak] Sk,

[Dk] =
lk
6EIk

[2 1 0
1 2 0
0 0 6Ik/Ak

]
;

(b) Expressions of second-order element (Fig. 2) subjected to
distributed load:

Mk (x) =
3∑
j=1

Hkj (x)Mkj =
(
1−

3x
lk
+
2x2

l2k

)
Mk1

+

(
4x
lk
−
4x2

l2k

)
Mk2 +

(
−
x
lk
+
2x2

l2k

)
Mk3,

Nk (x) =
(
1−

x
lk

)
Nk1 +

x
lk
Nk3;

Pk =



0 0 0 −1 0
3/lk −4/lk 1/lk 0 0
1 0 0 0 0
0 0 0 0 1
1/lk −4/lk 3/lk 0 0
0 0 −1 0 0
−4 /l2k 8/l2k −4/l2k 0 0
0 0 0 1 /lk −1/lk


·


Mk1
Mk2
Mk3
Nk1
Nk3

 ,

[Dk] =
lk
15EIk


2 1 −0, 5 0 0
1 8 1 0 0
−0, 5 1 2 0 0
0 0 0 5ik 2, 5ik
0 0 0 2, 5ik 5ik

 ,
where ik = Ik/Ak.
The matrices [Ak] and [Dk] for elements under tension or under

bending can be obtained by removing corresponding columns and
rows.
Strength and stability condition. Strength condition of the

element under bending and tension or compression of the j-th
section is described via inequalities:

Nj + cjMj − RAj ≤ 0, −Nj + cjMj − RAj ≤ 0,
Nj − cjMj − RAj ≤ 0, −Nj − cjMj − RAj ≤ 0.

(3)

Here R = fy,dγc; fy,d is the yield strength; γc is the partial factor
of the exploitation conditions; cj = Aj/Wej; Aj, Wej are the cross-
sectional area and section modulus, respectively.
Furthermore, the bars under compression must satisfy the

stability condition

−Nj/ϕj ≤ RAj or −Nj/ϕj − RAj ≤ 0. (4)

Strength (3) and stability (4) conditions of elements meet the
Lithuanian national standards of civil engineering [18]. However,
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in the general case the conditions of strength and stability of
elements can be formulated according to other design codes, for
example Eurocode 3 [21]. Strength conditions (3) are created
for all nodes of elements and stability conditions (4) only for
the elements under compression. All of them are described via
inequality [G] A0 −

[
Φ
]
Sv ≥ 0.

2.3. Solution algorithms

The direct solution of the nonlinear discrete programming
problems (1) and (3) is fairly complicated. However, their solutions
can be found in the iterative process, where in each iteration
the cross-sectional profile is selected from the assortment and
the linear programming problem solutions, which are obtained
when matrices

[
D̄
]
,
[
Φ
]
and

[
K̄
]
,
[
Φu
]
of models (1) and (3)

are replaced by matrices [D] , [Φ] and [K ] , [Φu] , in which all
coefficients are known, because the cross-sections of bars are set.
The iterative process is finished, when it is found cross-sectional
areas coincide with the previously set ones. For the purpose of
minimizing problem volume it is possible to consider each load
case separately and for every one solve such a problem:

find min f = LTA0v
subject to [A] Sv = Fv, [D] Sv − [A]T uv = 0;

[G]A0v − [Φ] Sv ≥ 0, [E]uv ≤ u+;
A0v ≥ A0,v−1, A0v ∈ Π

(5)

or

find min f = LTA0v
subject to [K ] uv = Fv;

[G]A0v − [Φu] uv ≥ 0, [E]uv ≤ u+;
A0v ≥ A0,v−1, A0v ∈ Π .

(6)

Inequality A0v ≥ A−0 for the load cases v > 1 is replaced by the
condition A0v ≥ A0,v−1. The vector A0p corresponding to the last
load case is the solution of the problems (1) and (3).
Furthermore, the optimization problems (5) and (6) can be

solved in two stages:
(1) classic problem of structural mechanics is solved i.e. the

displacements uv = [K ]−1 Fv and internal forces Sv =

[D]−1 [A]T uv are calculated; for this can be applied the equilibrium
or geometrically compatible finite element method and various
state-of-the-art computer technologies dedicated for this kind of
problems;
(2) it is determining the vector of strength and stability

conditions S0ν = [Φ] Sv and solving the minimization problem:

find min f = LTA0
subject to [G] A0 ≥ S0v, [G0] A0 ≥ [E] uν,

A0 ≥ A−0 , A0 ∈ Π, v = 1, 2, . . . , p.
(7)

Here the vector A0 is unknown, whereas S0ν = [Φ] Sv . Having
software for the internal forces calculations, the solution method
is easier, because the volume of this problem is smaller. It should
be noted that it is possible to search for the optimal solution when
stability requirements are neglected. But in this case it is necessary
to verify if received cross-sections of bars under compression
satisfy stability conditions. If they are violated, then cross-sections
should be augmented and additional calculation iterations should
be performed and included into the mathematical model stability
conditions.
In the following optimization problems, the value of reduction

factor ϕ for eccentrically compressed elements is determined
by national standards of civil engineering [18] by taking into
account the eccentricity of the compression force, the slenderness
of the element and form coefficient of cross-sectional shape. In
each iteration value of eccentricity is determined by internal

Fig. 3. Calculation schema of the framed truss.

Fig. 4. Framed truss with parabolic sketch bottom chord.

forces obtained in previous iteration and values cj of strength
conditions are determined by choosing characteristics of cross-
sectional shape Aj andWej(Wpj).

Example 1. Let the bar structure, shown in Fig. 3 be loaded by
three load cases: I — p1 = 16.4 kN/m, p2 = 16.4 kN/m; II — p1 =
16.4 kN/m, p2 = 4 kN/m; III — p1 = 4 kN/m, p2 = 16.4 kN/m.
Moreover, the vertical load F = 27.6 kN and indicated wind load
acts in each load case. The optimal cross-sections from steel rolled
profiles must be found. Columns and the upper chord are designed
from I profiles and other bars from hollow rectangle tubes. Yield
strength Ry = 275MPa, elasticity module E = 2.1 × 105MPa.
Stiffness requirements are described via constraints ux ≤ 5 cm and
uy ≤ 10 cm, where ux is the horizontal displacement of top node
of the column; uy is the vertical displacement in the middle of the
bottom chord of the truss.

The columns and the upper chord are calculated as the elements
under bending and compression and the other ones are calculated
as the elements under tension or compression. Cross-sections are
selected from the assortment. Initial height of the truss h = 3.3m.
After optimization the following cross-sections were obtained: 1
— HEA300; 2 — IPE330; 3—180 × 180 × 6; 4—150 × 150 × 5 ;
5—90× 90× 5; 6—90× 90× 4; 7—70× 70× 4; 8—80× 80× 4;
9—60× 60× 5. Total weight of the optimal structure is 5229 kg.
Optimization of the structure is influenced not only by the

height of the truss, but also by the web shape and the length of
the segments. For this purpose the problems of truss height and
web shape were created and considered.

3. Truss height and web shape optimization problems

In this section there are considered and formulated the optimal
height and the rational shape of bottom chord of the framed
truss, shown in Fig. 3, search problems. Two designed versions
are considering: (1) truss with horizontal bottom chord (Fig. 3);
(2) truss with parabolic bottom chord (Fig. 4). Height optimization
problems of these trusses are described by such mathematical
models of Box I: Here s1 is number of bottom chord bars; st—
number of web bars; f—camber of the truss; lj—length of j-th bar,
aji = 4xi (l− xi) /l2, l—length of the span; y0j—the sketch of the
truss upper node jwith respect to the support nodes. The vectors of
internal forces, displacements Sv, uv and design parameters of the
structure – cross sectional areas Aj and sketch of the truss f are the
unknowns of these problems. There are nonlinear programming
problems, which can be solved iteratively.
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(a) truss with parabolic bottom chord (b) truss with horizontal bottom chord
find min LTA0 find min LTA0
subject to subject to
[A (l)] Sv = Fv, [D (l,A0)] Sv − [A (l)]T uv = 0, [A (l)] Sv = Fv,
[G]A0 − [Φ(A0)]Sv ≥ 0, [E]uν ≤ u+, [D(I,A0)]Sν − [A(I)]Tuv = 0,
v = 1, 2, . . . , p; [G] A0 − [Φ (A0)] Sv ≥ 0,

[E]uv ≤ u+, A0 ≥ A−0 , A0 ∈ Π,

lj =
[
l2jx +

(
yj2 + y0j

)2]1/2
, j = 1, 2, . . . , s1;

lj =
[
l2jx + (f + y0j)

2]1/2 ,
lj = [l2jx + (yj2 + y0j)

2
]
1
2 , j = 1, 2, . . . , st;

j = 1, 2, . . . , st; v = 1, 2, . . . , p.
yji − ajif = 0, i = 1, 2; A0 ≥ A−0 , A0 ∈ Π;

Box I.

Fig. 5. Mass of trusses with parabolic bottom chord dependence on height.

Fig. 6. Mass of N-shaped trusses with horizontal bottom chord dependence on height.

Example 2. For the analyses of the framed structure in the first
example, which is loaded by three prescribed load cases, must be
determined: (1) truss rational bottom chord sketch; (2) rational
length of the web segment and bar placing; (3) optimal height
of the truss. The investigations were performed for three types of
trusses:
(1) N-shaped truss with parabolic bottom chord (Fig. 4):
(2) N-shaped truss with horizontal bottom chord (Fig. 3);
(3) M-shaped truss with horizontal bottom chord (Fig. 9).

The purpose of the investigation is the determination of the
optimal height and the optimal segment count by comparing steel
input and determination of minimal mass – economic truss. We
investigated trusses of height h = 3.3 ÷ 4.5 m composed of 6, 8
and10 segments. The results of frameoptimal design are presented
in Figs. 5–10. They show various truss mass dependencies on their
count of segments and height. The results of the optimal design
of N-shaped trusses with parabolic and horizontal bottom chord
are presented in Figs. 5 and 6. They show that for any number of
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Fig. 7. Mass of M-shaped trusses with horizontal bottom chord dependence on height.

Fig. 8. Analysis results of various web and chord shapes.

Table 1
Mass of the truss.

Type of the truss Number of the segments Mass of the truss (kg)
h = 3.3m h = 3.6m h = 4m h = 4.5m

1 (Fig. 4) 6 3519 3239 3123 2858
8 3219 3106 2956 2668
10 3330 2972 2800 2718

2 (Fig. 3) 6 3121 3027 2761 2801
8 2957 2679 2600 2657
10 2792 2721 2591 2606

3 (Fig. 9) 8 2960 2714 2672 2639
10 2726 2729 2471 2491

segments the optimal height of the truss with parabolic bottom
chord is h = 4.5m, and latter of the truss with horizontal bottom
chord — h = 4m. The minimal mass of the first truss is G =
2668 kg (count of segments is s = 8), and latter of the second
— G = 2591 kg. (s = 10) is less by 77 kg. In that case when
count of segments and height are the same, the mass of truss with
horizontal bottom chord in all cases is less. Therefore the trusswith
horizontal bottom chord is optimal (see Table 1).
Fig. 7 shows investigation results of an M-shaped truss with

horizontal bottom chord and in Fig. 8 optimal design results of all
three trusses are presented. By comparing the presented results
we state that an M-shaped truss with horizontal bottom chord is Fig. 9. Framed truss with the optimal shape web.
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Fig. 10. Investigations results of the optimal web truss height.

optimal (Fig. 9)with count of segments s = 10, andheight h = 4m.
Their mass is G = 2471 kg. Their graphical dependencies of the
bottom chord, count of segments and total mass on height are
shown in Fig. 10. The onlymass of the trusses is shown in all figures
(the mass of columns, 1982 kg, isn’t evaluated).
In Fig. 8. the four top graphs are distinguished unfavorably

by steel input with three of them correspond to the truss
with parabolic bottom chord (Fig. 4). That obviously shows the
advantage of trusses with parallel chords.

4. The problem of elastic–plastic structure volume optimiza-
tion

In the case of the monotonically increasing load the mathemat-
ical model of the problem of the minimal volume (mass) elastic–
plastic structure can be formulated according to the corresponding
optimization model of elastic structure, when the plastic strains
εp = [8]T λ and additional complementary slackness condition
are evaluated

λT
{
[G]A0 −

[
Φ̄
]T S} = 0 (8)

that must correspond to plastic multipliers λ ≥ 0. So, referring
to the model (1), it is found such a monotonically increasing
load acting on elastic–plastic structure, which corresponds to the
requirements of the strength, stiffness and stability, mathematical
model of the optimization problem:

find min LTA0
subject to [A] S = F,

[
D̄
]
S+

[
Φ̄
]T

λ− [A]T u = 0,
λT
{
[G]A0 −

[
8̄
]
S
}
= 0, λ ≥ 0, [E] u ≤ u+,

[G]A0 −
[
Φ
]
S ≥ 0, A0 ≥ A−0 , A0 ∈ Π .

(9)

The search of this nonlinear programming problem solution
S, u, λ, A0 is very difficult. It is especially hardened by the non-
linear conditions (8). Therefore the problem is solved iteratively, in
each iteration selecting cross-sections of bars and solving a simpler
problem of nonlinear programming where only additional com-
plementary slackness conditions are nonlinear. For the purpose of
admissible (design) set simplification of the problem and its nu-
merical realization, it is needed to eliminate these conditions from
the constraints of the problem. This can be done in two ways — by
moving them to the objective function (such a possibility is proved
in the paper [22] and used in the paper [23]) or eliminating and

solving a reduced optimization problem. So in each iteration it is
possible to solve such a problem:

find min f = LTA0 + λT {[G]A0 − [Φ] S}
subject to [A] S = F, [D] S+ [Φ]T λ− [A]T u = 0,

[G]A0 − [Φ] S ≥ 0, λ ≥ 0, [E] u ≤ u+,
A0 ≥ A−0 , A0 ∈ Π

(10)

or

find min f = LTA0
subject to [A] S = F, [G]A0 − [Φ] S ≥ 0,

[D] S+ [Φ]T λ− [A]T u = 0, λ ≥ 0,
[E]u ≤ u+, A0 ≥ A−0 , A0 ∈ Π .

(11)

In the first case is the problemwith nonlinear objective function
and linear constrains, and in the second case the reduced linear
programming problem (RLPP). It’s understandable that while
solving RLPP, the condition λj

{ [
Gj
]
A0 −

[
Φj
]
S
}
= 0 of some

calculated section won’t be satisfied. Therefore in this case for
defining the optimal solution it is needed to apply the method of
branch and bound, setting additional constraints λj ≤ 0 for the
recent sections.

Example 3. It is needed to set the cross-sections of the bars of
the steel rolled profiles of the optimal framed structure, which
calculation scheme is shown in Fig. 3. The height of the truss is h =
3.3m. The columns and the upper chord of the truss are designed
from I profiles, and other bars from a rectangular profile tube.
The yield strength of the metal Ry = 275MPa, elasticity module
E = 2.1× 105MPa. The requirements of the strength is described
via constraints ux ≤ 5 cm and uy ≤ 10 cm; here ux—horizontal
displacement of column top node, uy—vertical displacement of
truss bottom chord middle node.

Frame bars’ optimal cross-sections were determined with the
help of the branch and boundmethod by solving reduced nonlinear
programming problems. Such cross-sections of the bars were
found: 1 –HEA300; 2 – IPE330; 3—180×180×6; 4—140×140×5;
5—90× 90× 5; 6—90× 90× 4; 7—70× 70× 4; 8—80× 80× 4;
9—60×60×5. This solution shows thatwhile designing a structure,
in which plastic deformations are allowed, it is possible to reduce
only tension 4-th bar cross-section. Minimal mass of the optimal
elastic–plastic structure f = 5178 kg is only 51 kg smaller than
the mass of the optimal elastic structure.
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5. Conclusions

1. The problems of steel structure designing are formulated as
nonlinear optimizationproblems. It is demonstrated that elastic
and elastic–plastic structures designed from rolled profiles
problems are nonlinear discrete optimization problems, whose
solutions can be found in an iterative way applying branch and
bound method and linear programming.

2. There are proposed three algorithms of optimal bars’ structures
design, whose relations can be formulated applying the
methods of equilibrium and geometrically compatible finite
elements.

3. While performed analysis of the bottom chord sketch, as it were
various height of the truss, it was determined that the truss
with parallel bottom chord (Fig. 3) is more rational, compared
with the truss whose bottom chord was formed of quadratic
parabolas (Fig. 4).

4. The problem of optimal height determination for truss is
formulated and the accomplished calculations determine that
height of optimal truss with horizontal bottom chord is hopt =
4m (hopt = 1/9l, l—span length) and latter of optimal truss
with parabolic bottom chord is 4.5 m (hopt = 1/8l.)

5. While fulfilling the analysis of the truss web form and density
it was determined the most rational is the triangle web with
vertical bars (Fig. 5), while the length of segment is 3.6 m or
1/10 · l.

6. Elastic-plastic framed structure analysis confirmed the state-
ment that often an optimal structure project is determined not
by the strength, but the stiffness, stability and structural re-
quirements.

7. Created mathematical models and solution algorithms for 2D
optimization problems can be adopted for solution of 3D
optimization problems.
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Abstract. An elastic-plastic axisymmetric steel bending plate subjected to a repeated variable load (RVL) is considered. 
The solution to the load optimization problem at shakedown is complicated because the stress-strain state of the dissipa-
tive systems (e.g. the plate plastic deforming) depends on their loading history. A new algorithm for the load optimization 
problem combining von Mises and Tresca yield criterion based on the Rosen project gradient method is proposed. The op-
timization results are obtained by integrating the existing software and that created by the authors. 

Keywords: elastic-plastic plates, shakedown, energy principle, Mises and Tresca yield criterion, mathematical program-
ming. 

 
1. Introduction 

An elastic – plastic axisymmetric steel bending plate 
subjected to a repeated variable load (RVL) ( )tF  is con-

sidered in this paper. The RVL is the system of loads 
where each of which can independently vary within the 
time t  independent lower and upper bounds of the forces 

infF , supF  ( ( ) supinf t FFF ≤≤ ). An ideal elastic – plastic 

structure subjected by RVL can exceed its constructive 
requirements due to a failure caused by its incremental 
collapse and/or its alternating plasticity. Both cases are 
usually referred to as cyclic plastic collapse. The shake-
down plates are investigated in this paper. The plastic 
strains pΘ  developed in the initial loading cycle produce 

the residual moments rM  which ensure the purely elastic 

response of the plates during the following loading cy-
cles. Load shakedown analysis via numerical and mathe-
matical programming methods is relevant for civil 
engineering. This has been confirmed by the growing 
number of investigations in this field (Mróz et al. 1995; 
Weichert et al. 2002; Kaliszky and Lógó 2002; Pham 
2003; Atkočiūnas et al. 2004; Merkevičiūtė and Atkoči-
ūnas 2006; Stonkus et al. 2009; Žilinskaitė and Žiliukas 
2008). 

The solution of load optimization at shakedown is 
complicated because the stress – strain state of dissipative 
systems (e. g. the plate deforming) depends on their load-
ing history (Lange-Hansen 1998). The load optimization 
problem is formulated by integrating extreme energy 
principles and methods of mathematical programming 
theory. A new algorithm for the problem combining 
Mises and Tresca yield criterion for adapted flexural 

plates optimization based on the Rosen project gradient 
method is proposed in this paper (Čyras and Atkočiūnas 
1984; Atkočiūnas et al. 2007a; Atkočiūnas et al. 2007b; 
Atkočiūnas et al. 2008). The algorithm is based on the 
linear Tresca yield criterion. When the optimal solution is 
obtained, the von Mises yield criterion is applied in the 
latest step. The proposed algorithm simplifies the nu-
merical solution of the complicated optimization problem 
when the Mises yield criterion is applied.  

 
2. The main dependencies of a discrete plate 

The discrete model of a symmetric round plate in the 

polar coordinate system ( )Tθρ,=x  is obtained by divid-

ing the plate into sk ...,,2,1=  ( Kk ∈ ) circular finite 

elements with ks  nodes 3,2,1 == ksl  )( Ll ∈ , where the 

master nodes are numbered 1 and 3, respectively (see 
Fig. 1). The polar coordinate system is located in the 
center of the plate. It is enough to investigate only one 
radius of the plate because of the internal forces and the 
displacements do not depend on the coordinate Θ . Con-
sequently, the second order circular element (the internal 
forces approximated by a second order polynomial) with 
three nodes, distributed along the radius ρ , is used. The 

finite elements are numbered along the radius in a con-
secutive order, starting from the center of the plate. 

The circular plate can be subjected by a uniformly 
distributed load and linearly distributed load located on 
the plate’s boundaries. The properties of the material 
(modulus of elasticity E  and Poisson coefficient ν ), 
thickness t  and intensity of the distributed load q  re-

main constant in the whole finite element. The functions 
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Fig. 1. a) The finite element of a round plate;  
b) the positive directions of internal forces 

 
of the internal forces distribution can have discontinuities 
(in the place of master nodes) when the equilibrium of 
finite elements are applied (Belytschko 1972; Belytschko 
et al. 2000; Gallager 1975; Faccioli and Vitiello 1973; 
Kalanta 1995) for elastic-plastic plates. Therefore, the 
finite elements have their own master nodes and sections 
under investigation and are indexed by the double index 
kl  ( Kk ∈ , Ll ∈ ) or by common section index 

kssi ×== ζ...,,2,1  ( Ii ∈ ) for the discrete plate model. 

The vectors of internal forces of the finite element k  are: 

 ( ,, 1,1, kθkρk MM=M )Tkθkρkθkρ MMMM 3,3,2,2, ,,,  

 ( ) ( )T
kl

T
kkk MMMM == 321 ,, .  (1) 

Here, T
klklk MM ),( ,,1 Θρ=M , and the indexes ρ  and Θ  

denote the radial and angular internal moments, respec-
tively; the positive directions are shown in Fig. 1b. 

The bending moments’ interpolation function, in 
applying the finite element k  shape function )(ρkN  is:  

 kkk MNM )()( ρρ = . (2) 

The functions (2) do not satisfy the plate element equa-
tions: 

 qM
d

d
M

d

d

d

d =+












−− Θρ ρρρρρ

12
2

2

   or 

 ( ) q=ρMA  (3) 

Therefore, equilibrium for the plate elements is assured 
for the elements and master nodes (Karkauskas 1994). 

The algebraic equilibrium equation for the finite element 
is obtained after differentiating the expression (3) which 
was applied (2): 

 ( ) kkk qρ =MΑ , (4) 

where 

 ( ) ( )ρρ kk NΑ A= . (5) 

The separate elements are joined to a system by 
writing the equilibrium equations for the master nodes of 
the adjacent elements. Thus, the continuity of the radial 
moments 

ρ
M  and the shear forces ρQ  are ensured. The 

set of plate equilibrium equations while the boundary 
conditions are applied are: 

 [ ] FM =A  or [ ]∑ =
k

k FMkA . (6) 

The dimension of the matrix [ ]A  is( )nm× , where 

2×= ζn . The geometrical equations for the discrete 

plate model are obtained by applying the virtual stress 
principle: 

 ( ) ( )∑ ∫=
k A

k
T
k

T

k

dAρρδδ MMuF D . (7) 

and by using equations (2) and (6): 

 [ ] [ ]∑∑ =
k

k
T
k

k

T
k

T
k δδ MMuM kDA . (8) 

Here, the symmetric flexibility matrix [ ]kD  of the ele-

ment k  is calculated by the formula:  

 [ ] ( ) ( )∫=
kA

k
T
k dAρρ NN DkD . (9) 

The geometrical equations for the finite element are: 

 [ ] [ ] 0Mu =− kk
T DA k  (10) 

and for whole discrete plate model: 

 [ ] [ ] 0Mu =− DA T . (11) 

Here, [ ]D  is the quasidiagonal flexibility matrix of the 
elements. The sequence of the equilibrium equations 
[ ] FM =A  determine the physical meaning of the compo-

nents of the displacements vector u .  
If the transition to the plastic state is described via 

the nonlinear Mises-Huber yield condition:  

 2
0

22 )(MMMMM ≤+− ΘΘρρ . (12) 

The plasticity condition is verified in all the nodes of the 
finite element: 

 [ ] ( )2
0Π kklkl

T
kl M≤MM , Kk ∈ , Ll ∈ . (13) 

Here, [ ]klΠ  is the matrix of the Mises-Huber plasticity 

condition for the bending circular plate 
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 [ ] 








−
−

=
15,0

5,01
Πkl . (14) 

The plasticity condition is often expressed in the follow-
ing form: 

 ( ) [ ] 0≥−= klkl
T
klkkl M MM Π

2
0ϕ . (15) 

The bending moment limit is constant in the entire finite 
element: constM k =0 . If the linear Tresca plasticity 

condition is applied, the equation (15) is described as:  

 0MΦC ≥−= klklklklϕϕϕϕ . (16) 

The Tresca plasticity condition matrix klΦ is: 

 

























=

−
−
−

−

10

01

11

11

10

01

klΦ   (17) 

The vector of the limit moments klC  match the matrix 

klΦ . For the sake of simplicity, the calculation sections 

will be indexed as ζ...,,2,1=i , Ii ∈ . 

 
3. The main dependencies in the case of cyclic loading  

In the practice of engineering, it is necessary to know the 
deformed state of the plate under plastic deformation just 
before its cyclic plastic failure (plate geometry, limit 
moments 0M  and load F  are known) (Kalanta et al. 

2009; Jankovski and Atkočiūnas 2008). Such a type of 
structural mechanics problem is referred to as an analysis 
problem (Cyras 1983). In such a case, it is useful to sepa-
rate the elastic moments eM  and residual moments rM : 

rieii MMM += ,  Ii ∈ . The elastic moments can be 

calculated by the formula [ ]FM α=e , where the mo-

ments influence matrix [ ]α  have the following dimensions 
( )mn× . When the load ( )tF  is a function of time t : 

 ( ) ( ) rieii tt MMM += , Ii ∈   (18) 

If RVL is described by their variation boundaries as 

infF , supF , it is possible to determine the possible load 

combination count p  ( pj ...,,2,1= ; Jj ∈ ) and the 

equation (18) is rewritten as:  

 rijeiij MMM += , , Ii ∈   (19) 

The determination of jei,M  is described in the work 

(Pham 2003). Then, the Mises-Huber plasticity condition 
(15) is rewritten as follows: 

 ( ) [ ] 0≥−= iji
T
ijkij M MΜ Π

2
0ϕϕϕϕ , Ii ∈ , Jj ∈ . (20) 

Thus, in the analysis of shakedown structures, it is the 
convenient separate residual moments rM , residual dis-

placements ru  and deformations [ ] prr θMθ += D . Then, 

the equilibrium equations (6) and geometrical equations 
(11) are described by mentioned terms:  

 [ ] 0M =rA  or [ ]∑ =
k

rkk 0MA  (21) 

and 

 [ ] [ ] prr
T

θMu += DA . (22) 

The components of the plastic deformation’s vector 
( )ipp ,θθ =  are calculated by formula:  

 ( )[ ] ij
T

j
rijeiijip λ∑ +∇= MMθ ,, ϕϕϕϕ , 

 0≥ijλ , Ii ∈ , Jj ∈ . (23) 

Here, ijλ  is the plastic multiplier vector; [ ]ijϕ∇  – a ma-

trix composed from the gradients of the plasticity condi-
tions (20). 

 
4. The mathematical models of the analysis problem 

The static formulation of the analysis problem is based on 
the additional energy minimum principle and in the case 
of Mises plasticity conditions:  

 

find 

 min [ ]∑
k

rkk
T
rk MM D

2

1
, (24) 

when 
 [ ] 0M =∑

k
rkkA , Kk ∈ , (25) 

 ( ) ( ) [ ]( ) 0≥++−= rij,eii
T

rij,eiiij M MMMM Π
2

0ϕ , 

 Ki ∈ , Jj ∈ . (26) 

The optimal solution of the problem (24)–(26) is *rM .  

The kinematic formulation of the problem under 
analysis is created in accordance with the mathematical 
programming duality theory: 

 

find 

 max 

[ ] [ ]

( ) [ ][ ]






−−







∇−−

∑∑

∑∑

i j
iji

T
ijiij

i j
riijijrkk

T
rk

M MM

MMM

Π

D
2

1

2
0λ

ϕλ

,  (27) 

when 

 [ ] [ ] [ ] 0uM =−∇+∑ r
T

kj
T

j
kjrk kk AD λλλλϕϕϕϕ , (28) 

 0λ ≥kj , Kk ∈ , Ii ∈ , Jj ∈ .  (29) 
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The optimal solution of the kinematic formulation (27)–

(29) is ∗
rM , *

kjλ , ∗
ru . 

In the case of the Tresca plasticity condition, only 
equation (26) should be changed: 

 [ ]( ) 0MMC ≥+−= rij,eiiiij Φϕϕϕϕ . (30) 

The vector iC  contains the limit moments of the corre-

sponding finite element. 
 

5. The influence matrixes of the residual  
displacements and residual moments 

If the solution of the static (24)–(26) and kinematic (27)–
(29) analysis problem is unknown, then it can be obtained 
from the nonlinear set of equations: 

 [ ] 0M =rA , (31) 

 ( ) [ ] iji
T
ijkij M MM Π2

0 −=ϕϕϕϕ ,  (32) 

 ( ) [ ][ ] 0Π
2

0 =− iji
T
ijkij M MMλ , 0≥ijλ , (33) 

 [ ] [ ] [ ] 0uλM =−∇+∑ r
T

j
j

T
jr AD ϕϕϕϕ , (34) 

 ( )ijj λ≥λ , Ii ∈ , Jj ∈ . (35) 

The equation set is composed of the constraints of the 
static formulation problem (24)–(26) and the Kuhn–Tucker 
conditions (Bazaraa et al. 2004). When the plastic defor-

mations *
pθ  are known, then from the set of equations 

 0=*
rAM , 

 * * *T
r p r+ − =DM θ A u 0  

it is possible to find the right values of ∗rM  and ∗
ru : 

 [ ][ ] [ ]( ) [ ][ ] [ ] ∗∗−−−∗ == pp
T

r θHθu 111 DAADA , (36) 

 [ ] [ ] [ ][ ] [ ]( ) [ ][ ] ∗−−−−∗





= p
TT

r θM 1111 DAADAAD ; 

 [ ] ∗∗ = pr θGM . (37) 

The vectors ∗
ru  and ∗

rM , calculated by formulas (36) and 

(37), respectively, coincide with the optimal ones calcu-
lated by the mathematical models (24)–(26) and (27)–(29). 

The residual displacement and residual moments in-

fluence matrixes [ ]H  and [ ]G , and in the case of Tresca 
plasticity conditions, do not depend on internal forces 

jM : 

[ ][ ] [ ] ∗∗∗ == λλu HΦH T
r , [ ][ ] [ ] ∗∗∗ == λλM GΦG T

r . (38) 

This feature has an important significance for the creation 
of the mathematical models for the load optimization 
problem: initially, the Tresca yield condition is applied 

and only in the latest step is the Mises plasticity criterion 
applied. 

 
6. The algorithm of RVL optimization  

The shakedown plate is safe in respect to plastic collapse, 
but it can exceed the requirements of serviceability (i.e. 
stiffness constraints). Therefore, in the mathematical model 
of the plate load, optimization should not only be included 
in the requirements of the strength (plasticity), but the con-
straints for displacements, too. The mathematical model in 
the case of Tresca plasticity conditions is: 

 

find 

 max ( )inf
T
infsup

T
sup FTFT +  (39) 

when 

 [ ] [ ]( ) 0λMC ≥+−= GΦ j,eiiiijϕϕϕϕ , (40) 

 [ ] [ ]( )[ ] 0GΦ =+− λMCλ j,eiiiij , (41) 

 ( )ijλλ= ,  Ii ∈ ,  Jj ∈  (42) 

 [ ] inf,emin uλu +≤ H , (43) 

 [ ] maxsup,e uuλ ≤+H . (44) 

Here, sup,eu  and inf,eu  are the maximal and minimal elas-

tic displacements, respectively. They, summarized together 

with the residual displacements ru , should not exceed the 
prescribed maximal and minimal displacements bounda-
ries, maxu  and minu . The solution of the optimization 

problem is *
supF , *

infF , *
λ . The algorithm of the load op-

timization problem illustrating the switch from Tresca to 
the Mises plasticity condition is shown in Fig. 2. 
 
 

 

Fig. 2. The algorithm of load optimization with Tresca and 
Mises plasticity conditions 

 
The mathematical model of the load optimization 

problem in the case of Mises plasticity conditions is com-
posed using the influence matrixes [ ]G  and [ ]H : 

1. Solving the load optimization problem (39)–(44) 
with Tresca plasticity conditions. 

2. Optimal solution of (39)–(44) *supF , *
infF , *
λ . 

3. The optimal solution of (39)–(44) becomes the 
initial point for the Mises plasticity conditions. 

4. Solving the optimization problem (45)–(50) with 
Mises plasticity conditions. 
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find 

 max ( )inf
T
infsup

T
sup FTFT +   (45) 

when 

( ) [ ]( ) [ ] [ ]( ) 0GΠG2
0 ≥++−= λMλM j,eii

T
j,eiiij Mϕ , (46) 

( ) [ ]( ) [ ] [ ]( )[ ] 0GΠG2
0 =++− λMλMλ j,eii

T
j,eiiij M , (47) 

 0λ >ij , ( )ijλλ = ,  Ii ∈ ,  Jj ∈  (48) 

 [ ] inf,emin uλu +≤ H , (49) 

 [ ] maxsup,e uuλ ≤+H . (50) 

The graphical illustration of the switch from Tresca to 
Mises plasticity conditions is shown in Fig. 3.  
 

 

Fig. 3. The fragment of the switch from Tresca plasticity condi-
tions to Mises plasticity conditions 

 
7. Numerical example 

The proposed calculation technique is illustrated by the 
example of a circular plate with a hole in the middle 
(Fig. 4). The supports are applied in the outside boundary 
of plate.  

Radius of plate 01.R =  m, height 0250.h = m, di-
ameter of hole 300.d = m. The material – steel,  
 

 

 
Fig. 4. The geometry of the round plate and boundary 
conditions 

 
210=E  GPa, v = 0.3, 235=yσ  MPa. The limit mo-

ment of the plate 719.36
4

1 2
0 == tM yσ  kNm. 

The outside boundary of the plate is loaded by the 
uniformly distributed linear moment 05.M =  kNm/m, 
and the surface of the plate is subjected to a uniformly 
distributed load q, which is an unknown of the optimiza-
tion problem. The displacement variations have bounda-
ries which are 0.=minu m, 0.037=maxu  m in the place 

of the hole. When the problem (39)–(44) was solved, the 
optimal load of 246.131* =q kPa was obtained. In the 

case of the Mises plasticity condition, the following more 
optimal solution was obtained: 747.140* =q  kPa. 

 
8. Conclusions 

1. The influence matrixes of residual moments and 
displacements do not depend on the residual moments of 

rM .  

2. In the case of Mises plasticity conditions, the in-
fluence matrixes should be formulated using the gradients 
of plasticity conditions, which themselves depend on 

rM . The main load optimization problem, in the case of 

Mises, becomes practically not realizable, even with ap-
plied computer algebra methods. 

3. One of the possible resolutions of the load opti-
mization problem with a Mises plasticity condition is the 
application of an analogous problem solution obtained 
with Tresca plasticity conditions. 
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Abstract 
 
A shakedown frames volume minimization and load optimization nonlinear 
mathematical models with strength, stiffness and stability constraints are 
investigated.  There were developed methodology and algorithms for stability 
evaluation according to various design codes (Eurocode 3 (EC3) and Dutch NEN 
6771) by integrating commercial software for the building industry MatrixFrame 
and the authors created nonlinear mathematical programming software. For the other 
investigators it provides the possibility to integrate the solutions of nonlinear 
programming problems (variables of plastic state: residual forces and displacements) 
into their structural design software. It is noteworthy, that proposed methodology 
allows the load combinations, occurring in the engineering practise realise as 
separate cases of variable repeated load. Numerical examples concerning 
optimization of frame structures are presented.  
 
Keywords: optimal shakedown design, frames, stability, energy principles, 
mathematical programming. 
 
1  Introduction 
 
There are investigated the aspects of optimal shakedown design of bar structures 
under strength and stiffness conditions in details [1] - [8], although today the 
evaluation of stability conditions for the optimization problems of elastic-plastic 
frames remains topical scientific problem. For example, it is allowed to design 
elastic-plastic frames by EC3 or NEN 6771, but therein the methodology and 
algorithms for stability evaluation of shakedown structures are not fully elaborated. 
This had an influence on the topic of this paper: optimal shakedown design of 
frames, subjected to variable repeated load, under strength, stiffness and stability 
constraints. Herein two types of problems can be considered [9]. The first problem is 
optimal shakedown design of cross-sectional parameters (design problem) and the 
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second one - load optimization problem for a frame subjected to variable repeated 
load. By solving load optimization  problem maximal load variation bounds, 
ensuring adapted state of the frame and satisfying stiffness and stability 
requirements of the structure, are to be found. 
Solution of frame optimization problems at shakedown is complicated as stress–
strain state of dissipative systems depends on loading history [10]-[14]. These 
difficult optimization problems are implemented applying extremum energy 
principles and the theory of mathematical programming [15]. That enables to create 
new iterative algorithm based on Rosen project gradient method [16] - [17]. 
Evaluation of stability requirements for both optimization problems is implemented 
by integrating commercial software for the building industry MatrixFrame and the 
authors created nonlinear mathematical programming software. Numerical examples 
of the frames are presented. The results are valid for small displacement assumptions 

 
2  General mathematical models  
 
General mathematical models presented in Table 1 are the basis for the development 
of optimization mathematical models of frames at shakedown considered in this 
paper.  
 
Volume minimization problem Load optimization problem 
find 

( )j
T
j

Tmin ϕ λSL −0  (1)
subject to 

( ) 0≥++−= ecejj SSGλΦS0ϕ  (2)
0≥ jλ , ∑

j
jλλ = , Jj ∈  (3)

maxmin SSS ≤≤ 0  (4)

maxecejrmin )( uuuuu ≤++≤  (5) 

find 
( )j

T
jinf

T
infsup

T
supmax ϕ λFTFT −− (6)

subject to 
( ) 0≥++−= ecejj SSGλΦS0ϕ  (7)

0≥ jλ , ∑
j

jλλ = , Jj ∈  (8)

maxsup FF ≤≤0 , 0≤≤ infmin FF  (9)

maxecejrmin )( uuuuu ≤++≤  (10) 
 

Table 1: General mathematical models of optimization problems 
 

In both volume minimization  and load optimization  problems objective 
functions are described by formulas (1) and (6), where the vectors L , supT  and infT  

contain coefficients of weight, j
T
j ϕ λ  is the complementary slackness conditions of 

mathematical programming. Yield conditions jϕ ( Jj∈ ) are shown in formulas (2) 
and (7) , where j  is the number of all possible combinations jF  of load bounds 

supF , infF . Formulas (4) and (9) are constraints for the problem unknowns. Vectors 

maxS  , minS , maxF  and minF   play major role for stability evaluation. About this role 
see in Section 3. Stiffness constraints  are shown in (5) and (10). Discrete model of 
the frame at shakedown consists of s  ( s,...,,k 21= , Kk∈ ) finite elements. Limit 
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force kS0  ( Kk ∈ ) is assumed as constant in the whole finite element. The degree of 
freedom is m , corresponding m  - vector of displacements - 

( ) T
m,e,e,ee u,...,u,u 21=u . Nodal internal forces of the element compound one n  – 

vector of discrete model forces ( ) ( ) T
z

T
v S...,,,...,, == ζSSSSS 21  and strains – 

n –vector ( ) ( )T
z

T
v ...,,,...,, ΘΘΘΘΘΘ == ζ21 , ζ...,,,v 21=  ( Zv∈ ), n,...,,z 21= . 

The total number of design sections is ζ . 
Load ( )tF  is characterized by time t , independent variation bounds 

( )T
sup,msup,sup,sup F,...,F,F 21=F  and ( )T

inf,minf,inf,inf F,...,F,F 21=F  
( ( ) sup  inf     t FFF ≤≤ ). Elastic displacements ( )teu  and forces ( )teS  of the structure 
are determined using influence matrixes of displacements and forces, 

( ) 1−
= TAAKβ , βKAα T= , respectively: ( ) ( )tte Fβu = , ( ) ( )tte FαS = ,  

1−= DK . Here A  is a coefficient matrix of equilibrium equations FSA =  and D  is 
a quasi-diagonal flexibility matrix. Residual displacements ru  and forces rS  are 
related to the vector of plasticity multipliers λ  by influence matrixes H  and G : 

λHλΦHu =T
r = , λGλΦGS == T

r , ( ) AKAKAH 1−
= T  and KHKAG −= T . 

Here Φ  – the matrix of peace–wise linearized yield conditions jϕ  (2) and (7). The 

number of all possible combinations jF  of load bounds supF , infF  is mp 2=  
( supj    inf    FFF ≤≤ ): jej FαS = , jej Fβu = , p,...,,j 21= , ( Jj∈ ). It is possible 
directly evaluate not only variable repeated load jF  but also other loads cF  (for 
example persistent load) additionally including them into set J . Elastic forces ecS , 
and elastic displacements ecu  resulted by loads cF  are calculated by formulas  

cec FαS = , cec Fβu = . 
Design of the frame for optimal parameters by mathematical model (1)–(5) is 
performed when yield limit ykσ  of the frame material and lengths kL  of its all 

elements k  ( Kk ∈ ) and load variation bounds supF , infF  are known. Depending on 
the cross-sectional shape various yield conditions can be considered. In this paper, 
the focus is placed on yield conditions for rolled I steel sections (Fig. 1).  
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Figure 1: Linear yield conditions 
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Relation 
k

k
k N

M
c

0

0= , Kk ∈  should be prescribed in advance. Limit moment 

( )kykk,plykk A,σWσM ξ==0  and limit axial force kykk AσN =0  of the element are 
functions of cross-sectional area kA  and yield limit of material ykσ . True, usually 
one or the other specific dimension of the cross-section (for instance, flange 
thickness ft  and web thickness wt  of I-section while the width of flange b  and 
height h  are fixed; see Examples 1 and 2) participate in functional relation 

( )kykk A,σM ξ=0  instead of cross-sectional area kA . Limit moments kM 0  of the 
frame elements and vectors of plasticity multipliers 0≥jλ , Jj∈  are unknowns of 
nonlinear mathematical programming problem (1)-(5). Constructive requirements of 
frames minS   and maxS  are shown in conditions (4). Problem (1)–(5) is not exactly 
the volume minimization problem, because limit moments kM 0  are used in 
objective function.  Limit moments 0M  and influence matrixes α , β , G , H  are 
related with unknowns kA , Kk ∈ ; the listed matrixes are recalculated during 
solution of the problem (1)–(5). If stiffness and stability constrains are neglected, 
cyclic-plastic collapse of the frame is reached. Optimal solution of the problem (1)–
(5) is vectors ∗

0S  and ∗
jλ , Jj∈ . 

In the case of variable repeated load, the problem of load variation bound (6)–(10) 
supF , infF  determination is important also. It stated as follows: find shakedown load 

variation bounds supF , infF , satisfying the prescribed optimality criterion 

( )j
T
jinf

T
infsup

T
supmax ϕ λFTFT −− , also strength, stiffness and stability requirements 

of the structure. Here supT , infT  are the optimality criterion weight coefficient 
vectors. The vector of limit bending moments 0M  and the limits minu , maxu  of total 
displacements ecejr uuuu ++=  are known in the problem (6)–(10). Optimal 

solution of the problem (6)–(10) is vectors ∗
supF , ∗

infF  and ∗
jλ , Jj∈ . 

 
2  Stability evaluation 
 
Stability in the mathematical models (1)–(5) and (6)–(10) are evaluated through the 
constructive restrictions (4) and (9) respectively, which are calculated by stability 
requirements of design codes EC3 or NEN 6771 (or even other code). Various 
design codes are implemented in commercial software that is available for needs of 
designers. Authors of the paper for stability evaluation use software for building 
industry MatrixFrame, version 4.1. Stability check in MatrixFrame is performed for 
both mentioned design codes. In case of EC3 there are calculated buckling resistance 
of members according to formulas of design code: 6.46, 6.54, 6.62. In case of NEN 
6771 stability check is performed by formulas: 12.2-3 and 12.3-2. Element  k meet 
the requirements of stability when maximal stability unity check ( kUC ) calculated 



5 

by formulas of design code is less or equal to unity. UC  is the ratio of design value 
and design resistance.  
The frame volume minimization is performed according to the mathematical models 
(1)–(5) by iterations: 
 
Step 1.  Influence matrixes 0α , 0β , 0G , 0H , coefficients 0

kc , Kk∈  of yield 
conditions are determined for the assumed initial cross-sectional areas 0

kA , 
Kk∈ . Constraints (4) for problem variables kM 0  are neglected. 

Step 2.  Problem (1)–(5) is solved and the new distribution of limit moments *
kM 0 , 

Kk∈ , is found. Selection of new sections can be performed by two ways: 
by changing cross-sectional dimension (continuous optimization) or by 
selecting them from available assortment of manufactured cross-sections by 
applying the formula yk

*
k

*
pl /MW σ0≥  (discrete optimization). 

Step 3.  Variables of plastic state, residual forces rS  and displacements ru , are 
introduced into MatrixFrame stability calculation. If the maximal stability 

1>kUC , Kk∈ , then by changing cross-sectional dimension or selecting 
from  assortment is found cross-section heaving the  property 1≤kUC . In 
this case min,kM 0  is found. This means so in next iteration limit moment 

kM 0  should be greater or equal to min,kM 0 .  
Step 4.  New influence matrixes α , β , G , H , coefficients kc , Kk∈  are 

determined for cross-sections with areas kA obtained in Step 2. 
Step 5.  Problem (1)–(5) is solved again using recalculated matrixes α , β , G , H , 

coefficients kc  and min,kM 0  obtained in Step 3. 

Step 6.  Steps 3-5 are repeated until the cross-sectional areas kA  obtained in two 
consecutive steps do not differ. 

 
Stability requirements for all elements k ,  Kk∈  is evaluated in Step 3 by founding 
such cross-sections kA  ( min,kM 0 )  that satisfies requirements 1≤kUC . 
The frame load optimization is performed according to the mathematical models 
(6)–(10) by iterations too: 
 
Step 1.  Problem (6)–(10) is solved and the new distribution of load variation bound 

supF , infF  is found. Constraints (9) for problem variables supF , infF  are 
neglected. 

Step 2.  Variables of plastic state, residual forces rS  and displacements ru , are 
introduced into MatrixFrame stability calculation. If the maximal stability 

1>kUC , Kk∈ , then by changing load domain jF  is found such load 
domain that ensure 1≤kUC . In this case maxF  and minF  are found. This 
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means so in next iteration load variation bounds supF and infF  can’t exceed 
load variation bounds maxF  and minF   satisfying   requirements of stability. 

Step 3.  Problem (6)–(10) is solved again using load variation bounds maxF  and 

minF    obtained in Step 2. 
Step 4.  Steps 2 and 3 are repeated until the load variations bounds supF and infF   

obtained in two consecutive steps do not differ. 
 
Stability requirements for all elements k ,  Kk∈  is evaluated in Step 2 by founding 
load variations bounds maxF and minF   that satisfies requirements 1≤kUC . 
 
3  Numerical examples 
 
3.1 Example 1 
 
Proposed calculation technique is illustrated by example of volume minimization 
problem (1)-(5) of two-storey frame (Fig. 2) The software M0opt1, which is created 
by authors, is based on Rosen project gradient method [17] and applied for solution 
of presented numerical example. For stability evaluation is used MatrixFrame. 
Stability constraints are calculated according to design code EC3. 
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Figure 2: Discretized frame 
 

The frame is subjected to two independent load sets: horizontal concentrated 
forces { }5

1
4

1
3

1
2

1
1

11 F,F,F,F,F=F  acting on the nodes of the frame and vertical 
uniformly distributed forces { }2

2
1
22 F,F=F  acting on the roof beams (6, 7, 8, 9), 

respectively. Permanent load  cF  act on the floor beams (10, 11). Limits for the 
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variations of the load are defined by the inequalities sup,inf, 111 FFF ≤≤ , 

,supinf, 222 FFF ≤≤ , where { } kN5197565947591 ⋅−−−−−= .,.,,.,.inf,F , 
{ } kN614575656131 ⋅= .,,.,.,sup,F , { }002 ,inf, =F , { }⋅= 48482 ,sup,F kN/m and 

⋅= 117cF  kN/m. 
The frame is made of steel with a modulus of elasticity 210=E GPa and a yield 
limit 235=yσ  MPa. The cross-sections of the frame columns, roof and floor beams 
are shown in Fig. 3.  
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Figure 3: Cross-sectional shapes for frame columns and beams 
 

The parameters b  and h  remain the same throughout the continues optimization 
process, only the thickness wf ttt == of the flanges and web varying. The values b  
and h  of cross-sections are shown in Table 2. In case of discrete optimization cross-
sections are selected from available assortment of manufactured cross-sections. 
 

Elements 
k ,  Kk∈  

b  
[m] 

h  
[m] 

1, 2, 3 0.15 0.15 
4, 5 0.1 0.12 

6, 7, 8, 9, 10, 
11 0.15 0.2 

 
Table 2: Values of cross-sections 

 
The limit forces of the cross-sections when wf ttt ==  are calculated according to 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−== tbhhthbtWM yy,ply 4

2
23

0 σσ , ( )( )thtbtAN yy 220 −+== σσ . 

The main task is to determine the minimum volume of the adapted frame (Fig. 2) in 
the case when the vector of inner forces of the discretized frame is ( )T,NMS =  

( ) ( )T
i

T SN...,,N,N,M,...,M,M,M == 112127321 , 3821 == n,...,,i , i.e. both bending 
moments M  and axial forces N  are taken into account. In this case the frame 
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volume minimization is performed according to the mathematical model (1)–(5). 
The unknowns are the cross-sectional areas of the frame columns and beams kA , 

Kk∈  and the vectors of plasticity multipliers jλ , 421 ...,,,j = . Problem (1)–(5) was 
solved according to the sequence of operations shown in Section 2 and five 
calculation cases were investigated: 
 
Case C1. When only strength constraints (2) are taken into account. Optimization 
continuous; 
Case C2. When only strength (2) and stiffness (5) constraints are evaluated. The 
following total displacement constraints were imposed: m0305 .u ≤≤∞− , 

m0225014 .u ≤≤∞− , m0225023 .u ≤≤∞−  (Fig. 2). Optimization continuous; 
Case C3. When only strength (2) and constructive constraints (4) are taken into 
account. Optimization continuous; 
Case C4. When only strength (2) and constructive constraints (4) are taken into 
account. Optimization discrete; 
Case C5. When all (strength (2), stiffness (5) and constructive (stability) (4)) 
constraints are evaluated. The following total displacement constraints were 
imposed: m0305 .u ≤≤∞− , m0225014 .u ≤≤∞− , m0225023 .u ≤≤∞−  (Fig. 2). 
Optimization continuous. 
 
The calculation results for all described cases, depending on applied constraints, is 
shown in Table 3. 
 

 Case 01M  
[Nm] 

02M  
[Nm] 

03M  
[Nm] 

Objective  
function (OF)  

Volume 
[m3] 

 Location 
of the 
plastic 
strains 

C1 75441 41673 204168 3991522 0.26149777 6, 2, 23 
C2 93970 34942 223206 4403462 0.292369813 23 
C3 120537 48302 186579 4173339 0.283231289 23 
C4 174986 57610 189018 4755802 0.350856685 23 
C5 108090 44151 215258 4466587 0.300776204 23 

 
Table 3: Calculation results of volume minimization problem 

 
In case of C2 and C5 total displacement 23u  reach upper bound m02250.umax = . 

When discrete optimization is applied for the case C4, limit moments  
Nm17498601 =M , Nm5761002 =M and Nm18901803 =M  correspond to the 

cross-sections HE240, HE160 and IPE330, respectively.  
Convergence with desirable precision of the main optimization problem objective 
function is a criterion of the optimal solution. In the case C2 value of convergence 

%.250=δ , iteration process is shown in Table 4. Convergence of optimization 
problem objective function for all cases is shown in Figure 4.  
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Figure 4: Convergence of optimization problem objective function 
 
 

Iteration 01M  [Nm] 02M  [Nm] 03M  [Nm] OF δ  OF 
% 

1 96888 42400 240460 4733292  
2 93807 37591 204883 4143051 12,47 
3 95221 37257 236064 4621487 -11,55 
4 93755 35439 211158 4223807 8,61 
5 94299 35814 231966 4543060 -7,56 
6 93670 34931 215459 4284503 5,69 
7 94140 35320 228876 4492323 -4,85 
8 93767 34832 218090 4324254 3,74 
9 94083 35129 226802 4459547 -3,13 
10 93840 34837 219776 4350228 2,45 
11 94044 35043 225444 4438312 -2,02 
12 93885 34860 220870 4367176 1,60 
13 94016 34999 224559 4424527 -1,31 
14 93912 34882 221583 4378244 1,05 
15 93997 34973 223983 4415558 -0,85 
16 93929 34898 222047 4385447 0,68 
17 93984 34958 223609 4409735 -0,55 
18 93939 34909 222348 4390121 0,44 
19 93975 34948 223365 4405942 -0,36 
20 93946 34916 222545 4393195 0,29 
21 93970 34942 223206 4403462 -0,23 

 
Table 4: Convergence of optimization problem  

objective function for case C2 
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3.2 Example 2 
 

Proposed calculation technique is illustrated by example of load optimization 
problem (6)–(10) of two-storey frame (Fig. 2) The software MaxFopt1, which is 
created by authors, is based on Rosen project gradient method [17] and applied for 
solution of presented numerical example. For stability evaluation is used 
MatrixFrame. Stability constraints are calculated according to design code NEN 
6771. 
The frame is made of steel with a modulus of elasticity 210=E GPa and a yield 
limit 235=yσ  MPa. The cross-sections of the frame columns, roof and floor beams 
are shown in Fig. 3. Values of cross-section are shown in Table 4. Cross-sections 
remains not changed through entire optimization process.  
 

Elements 
k ,  Kk∈  

b  
[m] 

h  
[m] 

t  [m] kA  
[m2] 

kM 0  
[Nm] 

kN0  
[N] 

1, 2, 3 0.15 0.15 0.016 0.006688 88665 1571680 

4, 5 0.1 0.12 0.01 0.003000 31725 705000 
6, 7, 8, 9, 

10, 11 0.15 0.2 0.03 0.013200 21432 3102000 

 
Table 4. Values of cross-sections 

 
The frame is subjected to two independent load sets: horizontal concentrated forces 

{ }5
1

4
1

3
1

2
1

1
11 F,F,F,F,F=F  acting on the nodes of the frame and vertical uniformly 

distributed forces { }2
2

1
22 F,F=F  acting on the roof beams (6, 7, 8, 9), respectively. 

Permanent load  ⋅= 117cF  kN/m act on the floor beams (10, 11). Limits for the 
variations of the load defined by the inequalities sup,inf, 111 FFF ≤≤ , 

sup,inf, 222 FFF ≤≤ , they are unknowns of the optimization problem. The main task is 
to determine the load variation bounds of the adapted frame (Fig. 2) in the case 
when the vector of inner forces of the discretized frame is ( )T,NMS =  

( ) ( )T
i

T SN...,,N,N,M,...,M,M,M == 112127321 , 3821 == n,...,,i , i.e. both bending 
moments M  and axial forces N  are taken into account. In this case the frame load 
optimization is performed according to the mathematical model (6)–(10). The 
unknowns are the load variation bounds inf,1F , inf,2F , sup,1F  and sup,2F , and the 
vectors of plasticity multipliers jλ , 421 ...,,,j = . Problem (6)–(10) was solved 
according to the sequence of operations shown in Section 2 and three calculation 
cases were investigated: 
Case C1. When only strength constraints (7) are taken into account; 
Case C2. When strength (7) and stiffness (10) constraints are taken into account. 
The following total displacement constraints were imposed: m0305 .u ≤≤∞− , 

m0225014 .u ≤≤∞− , m0225023 .u ≤≤∞−  (Fig. 2).; 
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Case C3. When strength (7) and constructive constraints (9) are taken into account. 
The calculation results for all described cases, depending on applied constraints, is 
presented in Table 5. 
 

Case sup,1F  sup,2F  inf,1F  inf,2F  OF  Location of the 
plastic strains 

C1 23679 44035 -29349 -10 97073 4, 6, 8, 23 
C2 15777 26006 -23958 -10 65751 4, 6 
C3 11839 19200 -14673 -10 45722 4 

 
Table 5: Calculation results of load optimization problem 

 
In case of C2 total displacement 23u  reach upper bound m02250.umax = . Iterative 
solution process was performed only for case C3, while optimal solution for cases 
C1 and C2 were obtained in first iteration.  
 
4  Conclusions 
 
Practical implementation of the shakedown structures design methodology should be 
based not only on the theoretical improvements and created new mathematical 
models but also on close relation with existing building design.  In this way it is 
possible to avoid the gap between the theoretical methods of structures optimization 
and real design that is based on design codes. For this purpose in this paper there are 
created main optimization problems with strength, stiffness and stability constraints 
where solution part that is related to stability is transferred to the design software 
with implemented design codes. Solution procedures become iterative: structural or 
load constraints of ordinary iteration of the main optimization problem are 
calculated with design software. On the other hand, initial data for design software 
become residual forces and residual displacements obtained from the solution of 
optimization problem i.e. influence of plastic deformations is evaluated. 
Convergence with desirable precision of the main optimization problem objective 
function is a criterion of the optimal solution. Proposed ways of optimization 
problems solution allow to realize discrete optimization principles. In such way 
shakedown theory become generalization tool for implementation of calculation and 
optimization for elastic-plastic structures in case of different loading. 
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Abstract. In this paper there are considered the optimal design problems of the elastic and elastic-plastic bar 
structures. These problems are formulated as nonlinear discrete optimization problems. The cross-sections of the bars 
are designed from steel rolled profiles. The mathematical models of the problems, including the structural 
requirements of the strength, stiffness and stability, are formulated in the terms of finite element method. The stated 
nonlinear optimization problems are solved by the iterative method, where each iteration comprises of the selection 
of the cross-sections of the bars from the assortment and solution of linear problems of the discrete programming. 
The requirement of discrete cross-sections is ensured by the branch and bound method. 
 
Keywords: elastic and elastic-plastic steel bar structures, discrete optimization, finite element method, mathematical 
programming 

 
1. Introduction 
 

For the purpose of saving material, the structures are 
designed by applying the methods of optimization [1-13]. 
The various algorithms for nonlinear optimization 
problems of structures are recently created: specific 
genetic [3-5], discrete optimization [6] and others 
optimization algorithms [7-11]. The solution algorithms 
for nonlinear optimization problems are not as universal 
as the latter for the linear problems. They are mostly 
dedicated to solve particular type of the problems. 
Furthermore, the problem of convergence of finding 
optimal solution occurs frequently, while they are 
applying. Therefore, nonlinear optimization problems 
frequently are solved by using the approximation 
technique when the linear programming problem is 
solved in each iteration. This method is applied in the 
paper [12], which is dedicated for the optimization of 
elastic structures. While designing the structures, an 
additional economy of the structural material is received 
for the structures with the plastic deformations in respect 
to optimal ones with the elastic deformations. However, 
the optimization problems of elastic-plastic structures 
[3,8,13] where are evaluated not only the strength, but 
also stiffness and stability requirements, are complex 
nonlinear programming problems and realization of them 
is complicated. In this paper design problems of the 
elastic and elastic-plastic steel structures are formulated 
as nonlinear optimization problems. Their mathematical 
models are created by using finite element method. In 
these models there are evaluated the conditions of 
strength, stiffness and stability [14]. The cross-sections 

are designed from standard steel rolled profiles. The 
formulated nonlinear optimization problems are solved 
by the iterative method where each iteration comprises of 
selection of the cross-sections of the bars from the 
assortment and solution of linear problems of the discrete 
programming. The requirement of discrete cross-sections 
is ensured by the branch and bound method.  
 
2. The volume minimization problem for elastic 
structures  
 

Mathematical models. There is considered the bar 
structure loaded by load combinations ,,...,2,1 pv =  

which bars designed from steel rolled profiles set .Π  Let 
the vector 0A  denote the structural bars cross-sectional 

areas and vF , vS , vu  define the load, internal forces and 

displacements of v -th load combination, respectively. 
Then the volume (mass) minimization problem for the 
elastic structure is expressed by the following 
mathematical model: 
 
find  

 min 0ALTf =  
subject to  

 [ ] vvA FS = ,  [ ] [ ] ,0=− v
T

v AD uS  

 
[ ] [ ] ,][,0

+≤≥− uuSA vv EΦG 0  

;,...,21 p,v = ., 000 Π∈≥ − AAA  

(1) 

 



In this model: equalities – equilibrium and geometrical 
equations, describing the structural forces and 
displacements; first inequality – strength and stability 
conditions; other inequalities – displacements (stiffness) 
and constructive constraints. L  is the vector of the 
structural elements lengths. The unknowns of this 
problem are the vectors ,0A vS  and .vu  Thus, the objec-

tive function of the problem expresses volume and the 
mass of the structure in the same time. Flexibility matrix 

[ ]D  of the structural elements together with the strength 

and stability matrix [ ]Φ  depend on unknown 0A . 

Therefore the model (1) is the nonlinear programming 
problem: the cross-sections of the structural bars, 
satisfying the requirements of the minimum volume 
(mass) of the structure, strength, stiffness and stability, 
are searching. 

By eliminating the internal forces [ ] [ ] v
T

v AD uS
1−=  

and geometrical equations, this model can be rewrote to 
the following optimization problem: 
 
find  

 min 0ALTf =  
subject to  

 [ ] vvK Fu = ,  [ ] [ ] ,0 0≥− vuΦG uA  

 
,][ +≤ uuvE  ;,...,21 p,v =  

;, 000 Π∈≥ − AAA  

(2) 

 

here [ ] [ ][ ] [ ] ;1 T
u ADΦΦ

−=  [ ] [ ][ ] [ ]TADAK
1−

=  is the 

global stiffness matrix of the structure. 
Formulation of the main dependencies. The main 

dependencies composing the problems (1) and (2) are 
formulated in the terms of finite element method. For this 
purpose the structure is divided into the elements (bars) 

rk ,...,2,1=  joined in the nodes. The dependencies of the 

model (1) can be composed by using the equilibrium 
finite element method [15], and the model (2) can be 
created with the help of the equilibrium or geometrically 
compatible finite element method, because the stiffness 

matrix [ ]K  can be formulated not only of the indicated 
formula, but also of the stiffness matrices of elements 
too. 

Two equations groups compose the equilibrium 
equations [ ] vvA FS = : 

1) the equilibrium equations for nodes describing the 
relation between the nodal forces of connected into 
nodes elements and the external forces acting on the 
nodes; 

2) the equilibrium equations for elements describing the 
relation between the nodal forces and acting on the 
element external load, and are formulated only for 
elements affected by a distributed load. Expressions 
of these equations are presented in the papers [12, 
15]. 

The equilibrium equation matrix [ ]A  could be formulated 
from the coefficients of the equilibrium equations of 

nodes and elements or from the formula [ ] [ ] [ ]ACA T=  

[15]; here compatibility matrix [ ]C  describing relation 
between global displacements of the structural nodes and 

nodal displacements of elements; [ ] [ ]kAdiagA =  is the 

quasi-diagonal matrix, which diagonal sub-matrices are 
composed from the coefficients of the static equations 

[ ] kkk A SP =  of elements. 

Flexibility matrix [ ]=D [ ]kDdiag  of geometrical 

equations [ ] [ ] 0=− v
T

v AD uS  contains in principal 

diagonal the flexibility matrices of finite elements [ ].kD  

Its coefficients are calculated by formula 
( ) ( ) ,∫=

kl
kjkikij dxxHxHdd  here ( )xHki  is the form 

function of the internal forces; flexibility of the element 
under tension or compression is ,1 kk EAd = flexibility of 

an element under bending is ;1 kk EId =  E  is the 

elasticity modulus, kk IA ,  are the cross-sectional area and 

moment of inertia, respectively. Expressions of a matrix 
[ ]kD  are given in the paper [17]. 

Strength and stability condition. Strength condition 
of the element under bending and tension or compression 
of j -th section is described via inequalities: 

 
0≤−+ jjjj RAMcN , ,0≤−+− jjjj RAMcN  

0≤−− jjjj RAMcN , .0≤−−− jjjj RAMcN  
(3) 

 

Here ;γ, cdyfR =  d,yf  is the yield  strength; cγ  is the 

partial factor of the exploitation conditions; 

ejjj WAc /= ; ,jA  ejW  cross-sectional area and section 

modulus, respectively. 
Furthermore, the bars under compression must satisfy 

the stability condition 
 

jjj RAN ≤ϕ− /    or   .0/ ≤−ϕ− jjj RAN  (4) 

 
The reduction factor ϕ  for bars under centric or eccentric 

compression is defined in the national standard of civil 
engineering [14]. Strength conditions (3) create for all 
nodes of elements and stability conditions (4) only for the 
elements under compression. All of them are described 

via inequality [ ] [ ] 0≥− vΦG SA0 . 

Solution algorithms. The direct solution of the 
nonlinear discrete programming problems (1) and (2) is 
fairly complicated. However, their solutions can be found 
in the iterative process, where in each iteration the cross-
sectional profile is selected from the assortment and the 
linear programming problems solves, which obtain when 

matrices [ ],D [ ]Φ  and [ ],K [ ]uΦ  of models (1) and (2) 

are replaced by matrices [ ],D  [ ]Φ  and [ ],K  [ ],uΦ which 



all coefficients are known, because the cross-sections of 
bars are set. The iterative process is finished, when it is 
received cross-sectional areas coincide with the 
previously set ones. For the purpose of minimizing of 
problem volume it is possible to consider each load case 
separately and for every one solve such problem: 
 
find  

 min v
Tf 0AL=  

subject to  

 [ ] vvA FS = ,  [ ] [ ] ;0=− v
T

v AD uS  

 
[ ] [ ] ;][,0

+≤≥− uuSA vv EG 0Φ  

Π∈≥ − vvv 01,00 , AAA  

(5) 

 
or 
 
find  

 min v
Tf 0AL=  

subject to  
 [ ] ;vvK Fu =  

 
[ ] [ ] ;][,0

+≤≥− uuuA vvu EG 0Φ  

., 01,00 Π∈≥ − vvv AAA  

(6) 

 

Inequality −≥ 00 AA v  for the load cases 1>v  is 

replaced by the condition .1,00 −≥ vv AA  The vector p0A  

corresponding to the last load case is the solution of the 
problems (1) and (2). 

Furthermore, the optimization problems (5) and (6) 
can be solved in two stages: 

1) classic problem of structural mechanics is solved 

i.e. the displacements [ ] vv K Fu 1−=  and internal forces 

[ ] [ ] v
T

v AD uS 1−=  are calculated; for this can be applied 

the equilibrium or geometrically compatible finite 
element method and various state-of-the-art computer 
technology dedicated for this kind of problems; 

2) it is determining the vector of strength and stability 
conditions [ ] vΦ SS =ν0  and solving the minimization 

problem: 
 
find  

 min 0ALTf =  
subject to  
 [ ] [ ] [ ] ,, 0000 ν≥≥ uEGG v ASA  

 .,...,2,1,, 000 pv =∈≥ −
ΠAAA  

(7) 

 
Here unknown is the vector 0A , whereas [ ] vΦ SS =ν0 . 

Having software for the internal forces calculations, 
solution method is easier, because volume of this 
problem is smaller. It should be noted that it is possible to 
search for the optimal solution when stability 
requirements are neglected. But in this case it is 
necessary to verify if received cross-sections of bars 

under compression satisfy stability conditions. If they are 
violated, then cross-sections should be augmented and 
additional calculation iteration should be performed with 
including into the mathematical model stability 
conditions. 

Example 1. Let the bar structure, shown in Fig. 1, 
be loaded by three load cases: I – 4,161 =p kN/m, 

4,162 =p kN/m; II – 4,161 =p kN/m, 42 =p kN/m; III – 

41 =p kN/m, 4,162 =p kN/m. Moreover, the vertical 

load 6,27=F kN and indicated wind load acts in each 
load case. The optimal cross-sections from steel rolled 
profiles must be found. Columns and the upper chord are 
designed from I profiles and others bars from the hollow 
rectangle tubes. Yield strength 275=yR MPa, elasticity 

module 5101,2 ⋅=E MPa. Stiffness requirements are 

described via constraints 5≤xu cm and 10≤yu cm, here 

xu  is the horizontal displacement of top node of the 

column; yu  is the vertical displacement in the middle of 

the bottom chord of the truss. 
 

 
Fig 1. Calculations schema of the framed truss 

 
The columns and the upper chord are calculated as 

the elements under bending and compression and other 
ones are calculated as the elements under tension or 
compression. Cross-sections are selected from the 
assortment. Initial height of the truss 3,3=h m. After 
optimization it was obtained the following cross-sections: 
1 – HEA300; 2 – IPE330; 3 –  180x180x6; 4 –  
150x150x5; 5 –  90x90x5; 6 –  90x90x4; 7 –  
70x70x4; 8 -  80x80x4; 9 –  60x60x5. Total weight of 
the optimal structure is 5229 kg. 

Optimization of the structure is influenced not only 
by the height of the truss, but also by the web shape and 
the length of the segments. For this purpose the problems 
of truss height and web shape were created and 
considered. 
 
3. Truss height and web shape optimization problems  
 

In this section there are considering and formulating 
the optimal height and the rational shape of bottom chord 
of the framed truss, shown in Fig. 1, search problems. 
Two designed versions are considering: 1) truss with 
horizontal bottom chord (Fig. 1); 2) truss with parabolic 
bottom chord (Fig. 2). Height optimization problems of 



theses trusses are described by such mathematical 
models: 

a) truss with parabolic bottom chord 
 

find  

 min 0ALT  
subject to  
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T
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b) truss with horizontal bottom chord 
 
find  

 min 0ALT  
subject to  

 

( )[ ] ,vvA FSl =  

( )[ ] ( )[ ] ,, 0 0ulSAl =− v
T

v AD  

[ ] ( )[ ] ,00 0SAA ≥− νΦG  

,,,][ 000 Π∈≥≤ −+ AAAuuvE  
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2
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2
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Here 1s  is number of bottom chord bars; ts  – number of 

web bars; f  – height of the truss; jl  – length of j-th bar, 

( ) 2/4 lxlxa iiji −= , l  – length of the span. Main un-

knowns of these problems are cross-sectional areas jA  of 

bars and height of truss .f  There are nonlinear 

programming problems, which can be solved iteratively. 
 

 
Fig 2. Framed truss with parabolic sketch bottom chord 

 
Example 2. For the analyses of the framed structure 

in the first example, which is loaded by three prescribed 
load cases, must be determined: 1) truss rational bottom 
chord sketch; 2) rational length of the web segment and 
bars placing; 3) optimal height of the truss. The results of 
truss investigation are presented in the Fig. 3-5. While 
performing the analysis of truss bottom chord sketch and 

web structure it were comparing weight of optimal frame 
with horizontal and parabolic bottom of truss, while 
number of truss segments was equal to 6, 8, and 10, and 
its height 5,43,3 ÷=h m. In the Fig. 3 are shown the 

results of these investigations. The results of calculations 
showed, that more rational was the truss with horizontal 
bottom chord. 

 

 
Fig 3. Analysis results of various web and chords shapes 

 
It was investigated N-shaped truss (Fig. 1) and M-

shaped truss (Fig. 4). It was determined, that most 
rational was the structure of the web which was showed 
in the Fig. 4, and the optimal height of such truss was 

4=h m.  

 
Fig 4. Framed truss with the optimal shape web  

 
In the Fig. 5 are showed chords, web and total mass 

of truss with optimal shape web dependence on its height. 
In the Fig. 3 and Fig. 5 are showed only the mass of 
trusses (mass, equal to 1982 kg, of the columns are not 
evaluated ). 

 

 
Fig 5. Investigations results of the optimal web truss height 



4. The problem of elastic- plastic structure volume 
optimization 
 

Mathematical models. In the case of the 
monotonically increasing load the mathematical model of 
the problem of the minimal volume (mass) elastic-plastic 
structure can be formulated according to the 
corresponding optimization model of elastic structure, 

when the plastic strains [ ] λΘ
T

p Φ=  and additional 

complementary slackness condition are evaluated  
 

[ ] [ ]{ } 00 =− SA
TT G Φλ  (8) 

 
that must correspond plastic multipliers .0λ ≥  So, 
referring to the model (1), it is received such, monotoni-
cally increasing load acting on elastic-plastic structure, 
which corresponds to the requirements of the strength, 
stiffness and stability, mathematical model of optimiza-
tion problem: 
 
find  

 min 0ALT  
subject to  

 

[ ] [ ] [ ] [ ] ,, 0λ =−+= uSFS TT
ADA Φ  

[ ] [ ]{ } [ ] ,,,00
+≤≥=− uuSA EΦGT 0λλ  

[ ] [ ] .,, 0000 Π 0 ∈≥≥− − AAASA ΦG  

(9) 

 
The search of this nonlinear programming problem 

solution 0,,, AuS λ  is very difficult. It is especially 

hardened by the nonlinear conditions (8). That's why it is 
solved in iteration way, in each iteration selecting cross-
sections of bars and solving simpler problem of nonlinear 
programming, in which only additional complementary 
slackness conditions are nonlinear. For the purpose of 
admissible (design) set simplification of the problem and 
its numerical realization, it is needed to eliminate these 
conditions from the constraints of the problem. This can 
be done in two ways - by moving them to the objective 
function (such possibility is proved in the paper [18] and 
used in the paper [19]) or eliminating and solving 
reduced optimization problem. So in each iteration it is 
possible to solve such problem: 

 
find  

 min [ ] [ ]{ }SAAL Φ−+= 00 Gf TT
λ  

subject to  

 

[ ] [ ] [ ] [ ] ,, 0λ =−+= uSFS TT ADA Φ  
[ ] [ ] [ ] ,,,0 uuSA ≤≥≥− EG  0λ0Φ  

Π∈≥ −
000 , AAA  

(10) 

 
or 
 
 
 

 
find  

 min 0ALTf =  
subject to  

 

[ ] [ ] [ ] ,, 0 0≥−= SAFS ΦGA  

[ ] [ ] [ ] ,, 0λ0λ ≥=−+ uS TT AD Φ  

[ ] .,, 000 Π∈≥≤ −+ AAAuuE  

(11) 

 
In the first case it is received the problem with nonlinear 
objective function and liner constrains, and in the second 
case - the reduced linear programming problem (RLPP).  
It's understandable, that while solving RLPP, the 
condition [ ] [ ]{ } 00 =− SAG jjj Φλ  of some calculated 

section won't be satisfied. Therefore in this case for 
defining the optimal solution it is needed to apply the 
method of branch and bound, setting additional 
constraints .0≤λ j for the recent sections. 

Example 3. It is needed to set the cross-sections of 
the bars of the steel rolled profiles of the optimal framed 
structure, which calculations scheme is exampled in the 
Fig. 1. The height of the truss is 3,3=h m. 
The columns and the upper chord of the truss are 
designed from I profiles, and other bars - from rectangle 
profile tube. The yield strength of the metal 

275=yR MPa, elasticity module 5101,2 ⋅=E MPa. The 

requirements of the strength is described via constraints 
5≤xu cm and 10≤yu cm; here xu  – horizontal 

displacement of columns top node, yu  – vertical 

displacement of truss bottom chord middle node. 
Frame bars optimal cross-sections were determined 

with the help of the branch and bound method by solving 
reduced nonlinear programming problems. It were 
received such cross-sections of the bars: 1 – HEA300; 2 – 
IPE330; 3 –  180x180x6; 4 –  140x140x5; 5 –  
90x90x5; 6 –  90x90x4; 7 –  70x70x4; 8 –  80x80x4; 
9 –  60x60x5. This solution show, that while designing 
structure, in which it is allowed plastic deformations, it is 
possible to reduce only tension 4-th bar cross-section. 
Minimal mass of the optimal elastic-plastic structure 

5178=f kg is only 51 kg smaller than the mass of the 

optimal elastic structure. 
 
5. Conclusions 
 
1. The problems of the steel structures designing are 

formulated as nonlinear optimization problems. It is 
demonstrated, that elastic and elastic-plastic 
structures designing from rolled profiles problems 
are nonlinear discrete optimization problems, which 
solutions can be found in the iterative way applying 
branch and bound method and linear programming. 

2. It is proposed three algorithms of optimal bars 
structures designing, which relations can be 
formulated applying the methods of equilibrium and 
geometrically compatible finite elements.  



3. It was formulated the problem of truss optimal height 
determination and, performed calculations it was 
established, that most rational is 4 m height, i.e. 

l⋅9/1  truss ( l  - length of the span). 
4. While performed analysis of the bottom chord 

sketch, as it were various height of the truss, it was 
determined that more rational is the truss with 
parallel bottom chord (Fig. 1), comparing with the 
truss which bottom chord was form of quadratic 
parabola (Fig. 2). 

5. While fulfilling the analysis of the truss web form 
and density it was determined, that most rational is 
the triangle web with vertical bars (Fig. 3), while 
length of segment is 3,6 m or l/ ⋅101 . 

6. Elastic-plastic framed structure analysis confirmed 
statement, that often optimal structure project is 
determined not by the strength, but stiffness, stability 
and structural requirements. 
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