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Santrauka. Prisitaikomumo teorija, nagrinéjanti tampriai plastiSkas konstrukcijas, veikiama kintamosios kartotinés
apkrovos, leidzia judamaja apkrova traktuoti kaip atskirg kartotinai kintanciy jégy atveji. Apkrovai leidziama ,judéti*
bet kuria konstrukcijos dalimi: nuo tilto vidurio, grizti atgal, vél i prieki — taip universaliai jvertinama apkrovimo
istorija, kuri yra lemiamas faktorius, nagrinéjant plastines deformacijas patiriancios konstrukcijos itempiy ir deformacijy
biivi. Straipsnyje atskleista galimybé taikyti prisitaikomumo teorijos metodus, sudarant teorinius santvary optimizavimo
uzdaviniy matematinius modelius ir juos sprendziant. Nagrinéjama idealiai tampriai plastiné Zinomos geometrijos santvara,
veikiama judamosios apkrovos. Sudaryti minimalaus tiirio santvaros ar ja veikiancios apkrovos maksimizavimo uzdaviniy
matematiniai modeliai. Modeliuose ivertinamos ne tik konstrukcijos stiprumo (prisitaikomumo) ir standumo salygos,
bet ir stabilumo netekimo galimybé esant plastinei santvaros darbo stadijai. Pasitlyti nauji sprendimo algoritmai, pateikti
skaitiniai strypy lankstinés santvaros, veikiamos judamosios apkrovos, optimizavimo uzdaviniy pavyzdziai. Tyrimai
atlikti, darant mazy poslinkiy prielaida.

Reik$miniai ZodZiai: prisitaikomumas, optimalus projektavimas, matematinis programavimas, idealiai tampriai plastiné
santvara, judamoji apkrova.
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Abstract. The shakedown theory, which analyses elastic-plastic constructions, subjected by variable repeated load,
enables treating moving load as a separate type of variable repeated load. The load is allowed to ,,move‘ at any part of
the construction: from the middle of the bridge, to turn back, again move ahead — in this manner loading history is
universally evaluated and it is a crucial factor, considering stress-deformation state of structures under plastic deforma-
tions. This paper reveals a possibility to apply methods of shakedown theory for creation and solution of theoretical
optimization mathematical models of trusses. The perfectly elastic-plastic loaded by moving load truss is considering.
The mathematical models of the minimal volume truss or it acting load maximization problems are created. There are
evaluating not only strength (shakedown) and rigidity restrictions, but also stability restriction in case of plastic state of
truss in models. There is proposed new solution algorithms and introduced numerical examples of truss optimization in
case of moving load. The results are valid for the small displacement assumptions.

Keywords: shakedown, optimal design, mathematical programming, perfectly elastic-plastic truss, moving load.
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1. Santvaros optimizavimo uZdaviniy matematiniai
modeliai

1.1. Problemos formulavimas

Pagrindinis statybiniy konstrukcijy skai¢iavimo tikslas —
apskaiciuoti dél iSorinio poveikio atsirandancias jraZas bei
poslinkius ir, juos Zinant, suprojektuoti pakankamai stip-
rius, standzius ir stabilius statinius. Konstrukcijy skaicia-
vimo uzdavinys gali biti sprendziamas, kai Zinomos stati-
ni veikiancios apkrovos, jy geometrija ir medziagos. Staty-
binés mechanikos uzdavinys, kuriame visi Sie trys para-
metrai zinomi, paprastai vadinamas analizés uzdaviniu [1].
Taip jis vadinamas todeél, kad sprendziant tokj uzdavini nu-
statomas vien konstrukcijos jtempiy ir deformacijy buvis,
t. y. konstrukcija analizuojama mechaniniu pozitriu: lygi-
nant su eksploataciniais reikalavimais, isitikinama, ar kon-
strukcija yra pakankamai stipri, standi ar stabili [2].

Jeigu kurie nors i§ iSvardyty parametry i$ anksto ne-
nustatyti, uzdavinys tampa neapibréztas, jam i§spresti rei-
kia papildomy salyguy. Tenka jau ne tik analizuoti konst-
rukcija, bet, nustacius vienokias ar kitokias konstrukcijos
parametry ribas (nelygybémis suformulavus stiprumo, stan-
dumo ar stabilumo salygas), siekti pasirinkto tikslo (iesko-
ti tinkamos apkrovos, tinkamos geometrijos ar tinkamos
medziagos). Taigi optimizavimo uzdavinio tikslas — nusta-
tyti optimalius tam tikro kriterijaus poziliriu nagrinéjamos
konstrukcijos parametrus ar statini veikiancios apkrovos pa-
siskirstymus [3-5].

Statybinés mechanikos optimizavimo uzdaviniai yra
izanginis konstrukciju optimalaus projektavimo etapas, pa-
gristas deformuojamo kiino mechanikos lygtimis ir mate-
matinio programavimo teorija, jos metodais bei ju mecha-
nine interpretacija. Norint skai¢iavima pagristi realioms
konstrukcijos darbo salygoms, biitina analizés ir optimiza-
vimo uzdaviniy matematiniuose modeliuose kuo tiksliau
ivertinti konstrukcijos medziagos savybes ir iSorinius po-
veikius. I§ dalies tai pasiekiama, apimant plastines medzia-
gos savybes, kuriomis pasizymi nemaza statybiniy konstruk-
cijy, ypa¢ metaliniy [6-8].

Konstrukeijy skai¢iavimas ir projektavimas, jvertinant
plastines deformacijas, leidzia efektyviau iSnaudoti jy lai-
komaja galia ir sudaryti ekonomiSkesnius projektus [9]. Kita
vertus, reallis konstrukcijos poveikiai dazniausiai yra cik-
liski. Kintamai kartotiné apkrova (KKA) — tai sistema jé-
gu, kuriy kiekviena ar jy grupés gali kisti nepriklausomai
viena nuo kitos. Tolesniuose svarstymuose KKA laikoma
kvazistatine. Labai daznai KKA nusakoma ne konkrecia
apkrovimo istorija (kitimo laike désniu F (t)), o tik virsuti-
némis Fgyp ir apatinémis Fj¢ savo kitimo ribomis [10]:
Fint SF(t) < Fgp-

Judamoji apkrova gali buti interpretuota kaip atskiras
KKA atvejis [11]. Todél santvaroms, veikiamoms judamo-
sios apkrovos, optimizuoti galima taikyti tampriai plasti-
niy prisitaikanciyjy konstrukeijy teorijos principus. Mini-

malaus santvaros tiirio projektas, gautas neatsizvelgus i stan-
dumo ir stabilumo apribojimus, dazniausiai neatitinka sta-
tybinéms konstrukcijoms keliamy eksploataciniy reikala-
vimy. Darbe santvaros strypy stabilumo apribojimai sieja-
mi su ,,Eurokodo 3 rekomendacijomis, kai leistinosios ri-
binés gniuzdomy strypy iraZos gaunamos sumazinus tokiy
strypy takumo itempius [6, 12, 13].

Straipsnyje sudaryty minimalaus tiirio santvary ar opti-
malios apkrovos radimo uzdavinio matematiniy modeliy
tiesioginei realizacijai sukurti nauji algoritmai [ 14], leidZian-
tys metaliniy santvary skerspjiiviams optimizuoti taikyti
Siuolaikines kompiuterines technologijas. Tai i§ dalies lei-
dzia sugretinti realaus santvary projektavimo ir gamybos
rezultatus su teoriniy paieSky bandomaisiais rezultatais [15].

1.2. Minimalaus tiirio santvaros uzZdavinys

Nagrinéjamas prisitaikiusios idealiai tampriai plastinés
santvaros biivis. Santvaros geometrija (strypy ilgiai L i
i=12, ..,n, jeJd), medziagos takumo riba Gyj, tam-
prumo modulis E i apkrova duoti. Kintamos kartotinés ap-
krovos vektoriaus F (t)= (F1 (t), F (t), Foo (t ))T kompo-
nentai yra laike ¢ kintancios jégos, kuriy pridéjimo vieta
Zinoma. Kiekviena jéga F charakterizuojama nepriklau-
sanc¢iomis nuo laiko ¢ vir§utinémis ir apatinémis kitimo ri-
bomis K gpp, Finf,1=22 .., m(iel).

Minimalaus svorio santvaros projektas randamas spren-
dziant uzdavini [16]:
rasti

mind, LA, (1a)
j

Jinax = NO_[G]G)p_
frmin=Noor +[Gl®,+ Ngpin 20, (l0)

NOZ(NOj)T’ NO,ch(NOj,cr)T’

kai
Ne,max >0, (1b)

No;=0yAj, Nojoa=0i0yA;, (1)
A2 A min, jed, (1e)
O 5= Amex— her (1)
T

;“-rrnax foax =05 her fmin =0, (1g)
Amax2 0, A 20, (1h)

Uy in S MiN[H]O
max [H ]G)p < U max - (11)

Apkrovos kitimo riby vektoriai F; ir Fgp Zinomos,
todél ekstreminiy jégy vektoriai Ne,max ir Ngmin > €san-
tys tiesinése takumo salygose f, (1b) ir f ;. (lc),
matematiniame modelyje (1a—11) yra Zinomi (ju skai¢iavi-
mas detaliau paaiSkintas antrame skyriuje). Tikslo funkcija
(1a) formuojama pasitelkus strypy ilgius L j ir skerspjiviy
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plotus A; (jeJ). I standumo salygas (1i) nesudétinga
itraukti ir tampraus santvaros skai¢iavimo poslinkius, nau-
dojant poslinkiy influenting matrica [B]:
-1 . . .
([A][D]‘l[A]T) , apkrovy riby vektorius Fijq ir
Fgup , Cia [A] yra statikos lyg¢iu koeficienty matrica, o
[D] — santvaros pasidavumo matrica.

Gniuzdomy santvaros strypy galimas stabilumo neteki-
mas jvertinamas takumo salygose (1¢) émus naudoti redu-
kuota ribiniy asiniy jégy vektoriy N ¢ . Vektoriaus Ng o
komponentai N j ¢ visiems j€ J skaitiuojami, vado-
vaujantis ,,Euronormy 3* (EN3) rekomendacijomis [12]:

B 1 .
Noyjych(ijO’j,Cla (pJ: P, O,S’kal

®, =05(1+aft; ~02)-72).

A
—105 \/E
T [E i /o Vi ] ’
tamprumo modulis; 7»1- = Lj /ij — strypo liaunis, ij -
santvaros j-0jo strypo inercijos spindulys. Vien tik gniuz-
domy strypy atveju koeficientas B, =1, koeficientas a,
vertinantis strypy netobuluma, priklauso nuo skerspjiivio
formos bei medziagos savybiy. Strypinés sistemos galimas

je J,¢ia Ej yraj-ojo strypo

stabilumo netekimas nejvertinamas, kai NQ o= Np.
Netiesinio matematinio programavimo uzdavinyje (1a)—
(11) nezinomaisiais yra santvaros elementy skerspjiiviy plo-
tai A}, jeJ irplastiniy daugikliy vektoriai Az, Ag s
kurie formuoja plastiniy deformaciju vektoriy
O, = Amax— ;g . Takumo salygose (1b) ir (1c) esanti

sandauga [G]G) D
lickamyju irazy influentiné matrica. Konstrukciniuose ap-

iSreiSkia liekamasias jrazas, ¢ia [G] -

ribojimuose (le) Aj 2 Aj i naudojamos minimaliosios

skerspjiiviy ploty reikSmés AJ min - Formulés (1g), (1h) is-
reiskia matematinio programavimo grieztumo salygas. Kon-
strukcijos standumo apribojimai (1i) realizuojami, ribojant
mazgy poslinkius (U, in, Ur max —duotieji liekamujy po-
slinkiy U, =[H ]@ P komponenty kitimo apatiniy ir vir-
Sutiniy riby vektoriai, kur [H ] — lickamujy poslinkiy in-
fluentiné matrica). Biitent standumo salygos (11), reikalau-
jancios papildomai spresti tiesini programavimo uzdavini
[17], rodo, kad pagrindinis netiesinis santvaros optimiza-
vimo uzdavinys néra klasikinis matematinio programavi-
mo uzdavinys. Todél jis turi biiti sprendziamas etapais, apie
sprendimo algoritma bus kalbama tre¢iame skyriuje.
Tikslo funkcijos (1a) minimali reik§mé randama, neat-
sizvelgiant { galima strypy stabilumo netekima, jeigu ma-
tematinio modelio (1a)—(1i) takumo salygose (1c) takumo

itempimy maZinimo koeficientas @ = 1 jed.

1.3. Santvaros apkrovos optimizavimo uZdavinys

Apkrovos kitimo ribu Fgyp, Finf nustatymo (patikri-
namasis) uzdavinys, formuluojamas taip: ieskomos prisi-
taikomumo biivio apkrovos kitimo ribos F sup s Fing. ati-
tinkancios nustatytq optimalumo kriterijy

max {T;p Fap— i-rl;f Finf} bei konstrukcijos stiprumo,
standumo ir stabilumo reikalavimus, ¢ia Tgy,, Tine — op-
timalumo kriterijaus svorio koeficienty vektoriai.

Santvaros apkrovos optimizavimo prisitaikomumo sa-
lygomis uzdavinys uzraSomas taip:

rasti
max {l_;p Faup— Tint Finfjla (2a)

kai
foex=No—[G]®, — Ngmex 20, (2b)
frmin=Nocr +[Gl®,+ Ngpin 20, (20)

N0=(N0j )T, Noc = (NOj,cr)T’

No,j=6yAj. Nojo=0j0yA,  (2d)
Fap20, —Fiy >0, (2¢)
®p: Amax— Mer s (2
Mo foax =05 Ay frio =0, (2g)
A 20, Ay 20, (2h)

Ur min < min[H](")ps max lHJ(")p < Up max - (21)

Ribiniy ainiy jégu vektoriai N, Ng o ir lickamuyjy
poslinkiy ribos Uy in , Ur max yra zinomi dydziai uzdavi-
nyje (2a)—(21). Uzdavinio (2a)—(2i) optimalus sprendinys
yra vektoriai F;p, Fizf ir )"?nax , kzr.

2. Ekstreminiy aSiniy jégy vektoriy N
sudarymas

e max r Ne,min

Vektoriams Ng max it Ng min skaiCiuoti reikalinga
aSiniy jégu influentiné matrica [Oc] Siy vektoriy sudary-
mas aptariamas 1 pav.

Dviejuy jégu sistema Vj ir V, juda apatine santvaros
juosta ir gali uzimti keturias padétis ties mazgais 1, 2, 3 ir
4. Bendruoju atveju padéciy gali bati § =12, ..., p
(&e P) ir kiekviena padétis charakterizuojama savo ap-
krovos vektoriumi Fg (Cia pravartu prisiminti formulg

Nee = [o] Fe ). Ateityje paprastumo délei naudojamas ne
pilnutinis apkrovos vektorius F (tiksliau kalbant, vektorius
Fg ), 0 jo pavektoris Fé , susietas tik su santvaros vaziuo-
jamaja dalimi. Pavyzdziui, nagrinéjamai santvarai sudaro-
mi penki apkrovos vektoriai (kiekvienai apatine santvaros

juosta jéguy sistemos V; ir V, padéciai):

=0, 0 0 07, F=W V 0 0,
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1 pav. Judamoji apkrova uZraSyta vektoriais Fg

Fig 1. Moving load realized by vectors Fg
Fa=0 VW, W 0. F=0 0 W W'.

lf5 =0 0 0 Vl)T . Dabar pagal formule

Nee =[aF; 3)

skaiciuojamos pseudotamprios irazos kiekvienai judamo-
sios jégy sistemos padéciai Ee P (matrica [ﬁc] yra influ-

entinés matricos [oc] pamatricé, abiejy matricy eiluciy skai-
¢ius vienodas). Kiekvienas vektoriy

T .
oy Nep max) ir

T
v Nep min) kompo-

Nemax = (Na max? Ne2, max:

Nemin = (NéLmim Ne2, min
nentas skai¢iuojamas pagal formules:

N

ej,max = MaX Ne],é Nej,min = m§|n Ne],g

g
visiems E€ P ir je J. 4)

Taigi, santvaros uzdaviniy (1a)—(11), (2a)—-(2i) takumo
salygose (1b)—(1c), (2b)—(2c) {rasytos visos tampraus skai-
¢iavimo irazos nuo visy judamosios apkrovos padéciy

€ e P . Esant nesimetrinei santvarai, ekstreminiy jégy vek-
toriams Ng gy it Ngmin rasti reikia papildomai sudaryti
dar penkis vektorius Fg ,kaijégos V, ir V, sukeistos vieto-

=0 0 0 0,

mis t.y.:

FE=W V 0 0", FR=0 W Vv 0.

=0 0 Vo, W', Fe=0 0 0 ).
Santvaros tiirio minimizavimo uzdavinio (la)—(1i) spren-
dimo metu Ng gy it Ng njp kinta, nes priklauso nuo san-
tvaros fizikiniy ir geometriniy parametry. Patikrinamaja-
me uzdavinyje (2a)—(21) Namax ir Ng min priklauso tik
nuo apkrovos kitimo riby (0t 3iuo atveju nesikeicia).

3. Naujas prisitaikanciyjy santvary optimizavimo
uZdaviniy sprendimo algoritmas

3.1. Moro integralo interpretacija plastiniy
konstrukeijy analizéje
Pagrindinio netiesinio santvaros minimalaus ttrio uz-
davinio (1a)—(1i) tiesioginis sprendimas yra gana sudétin-
gas, nes sprendimo metu keiciasi santvaros strypy standziai
EAJ- , J€J (visos santvaros tamprumo modulis laikomas
pastoviu). Tai reiSkia, kad keiciasi influentinés [a], [B],
[G] ir [H] matricos. Nemazus sprendimo sunkumus savo
ruoztu sukelia ir matematinio programavimo grieZtumo sa-
lygos (1g) ir standumo salygy (11) (arba (2g)—(21)) tikrini-
mas. Standumo salygos ivedamos dél to, kad KKA atveju
imanomas skerspjuviy, esanciy plastinés stadijos, nusikro-
vimas. Jeigu nenagriné¢jama apkrovimo istorija, tai uzdavi-
nio (la)—(1i) ,,viduje“ tenka spresti tiesinius uzdavinius,
nustatant: U, inf = mln[H ]@ P> ur,sup = MmaXx [H ]@ p-
Jeigu pradiniais sprendimo etapais nusikrovimas ignoruo-
jamas, salyga (11) (arba (21)) uzrasoma taip:

ur,min < [H ]Gp Sur,max- (5)

Salyga (2c¢) i$ esmés iSreiSkia Moro integrala tampriai
plastinei sistemai. Tegul ribojamas i-tasis lickamasis po-
slinkis Uy j :

*

N, Ng
iZZJ%ZN?T[D]Ner’iEI' ©

Uy

Cia N; — analizés uzdavinio, kuris figiruoja uzdaviniuo-
se (la)—(1i), (2a)—(2i) optimalus sprendinys, Ner — san-
tvaros strypy asinés jégos nuo vienetinés jégos IEI =10
( Ner skaiCiuojama santvaroje, atsizvelgus i jos statisko ne-

i§sprendziamumo laipsnio sumazéjima, vystantis plastinéms
deformacijoms).

3.2. Etapinis minimalaus tiirio santvaros

uZdavinio sprendimo algoritmas

Aptartos standumo salygos (5), (6) pagrindiniame opti-
mizavimo uzdavinyje (la)—(1i) pakeiCiamas trijy tarpiniy
uzdaviniy sprendimu.

Pirmasis tarpinis uzdavinys. Pasirinkus santvaros strypu
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skerspjuivius Aj , J€ J, formuojamos matricos [a], [B],

[G] ir [H] Kadangi Zinomas jégy sistemos dydis ir jos

pridéjimo padétys, pagal formules (4) apskaic¢iuojami
T .
oy Nen max) ir

v Ny min)T

Ne max — (Nél, max: Ne2, max?

Ne min = (Nel, min Ne2, min kom-

ponentai.

Antrasis tarpinis uzdavinys. Analizés uzdavinio spren-
dimas:
rasti

1
min > N7 [DIN; . (7a)
kai
fmaX:No—[G](Dp ~Nemax 20, (7b)

frin=Noo +[G]®,+ Ngpin 20, (70)

emi

Sprendziant $j uzdavinj naudojamasi pirmojo tarpinio
uzdavinio sprendimo rezultatais, bitent vektoriais N e,max
ir Ne,min- Antrojo tarpinio uzdavinio sprendimo rezulta-
taiyra Ny, U, @; .Gavus Uy, i§ dalies galima pasi-
tikrinti (5) salyga. Né viena i$ ty salygu neturéty biiti pa-
zeista. PrieSingu atveju didinami santvaros strypy skersp-
javio plotai Aj , J€J ir griztama prie pirmojo tarpinio
uzdavinio.

Turint antrojo tarpinio uzdavinio sprendinj N; ir Zi-
nant suminiai

Ng min  skai¢iuojami

N nax = N:‘ + Nemaw N in = N? + Nemin ir suda-

Ne max  ir

romas vektorius. Sie vektoriai— N, Ne max> Ne min»

Ner yra pradiniai duomenys trec¢iajam tarpiniam uzdavi-
niui spresti.

Treciasis tarpinis uzdavinys. Sio uzdavinio matemati-
nis modelis toks:

rasti
mlnzj: L; A ’ (8a)
kai
oy A = (N2 + Ny ).
(ijij > N;] + Nej,min)’ (8b)
N N .
Uri min SZ{%S Ui max (8c)
NN ;
Ui min S2‘4!%Suri,max. (8d)

Siame uzdavinyje neZzinomieji yra strypy skerspjivio

plotai Aj , j€J . Tai i8kilojo programavimo uzdavinys.

3.3. Liekamyjy poslinkiy analitinés iSraiSkos
Sis algoritmas panagus { aprasytaji 4.2 skyriuje. Skiria-
si tik standumo apribojimy (3) iSraiSka, kuri uzraSoma taip:

ur,min < [H]G)p Sur,max’ ©)

¢ia matricos [H ] komponentai yra analitinés iSraiSkos, gau-
tos panaudojus kompiuterinés algebros paketa MAPLE.
Analitinés iSraiSkos leidzia lengvai suskaiciuoti ir apriboji-
my (9) gradientus, kurie reikalingi sprendziant uzdavinj
(1a)—(1i) Rozeno projektuojamyjy gradienty metodu [18].
Sprendimo etapai analogiski 4.2 skyriaus optimizavimo uz-
daviniui. Ta¢iau tre¢iasis tarpinis uzdavinys uzrasomas taip:
rasti

minzj: L A ’ (109)
kai
oA > (N7 + N e ).
9o A 2 (N: + Ne,min)a (10b)
Uy min < [H]®p < U e (10¢)
A 2 A i (10d)

Reikéty pazymeéti, jog analitiniy matricos [H] bei ap-
ribojimy (10c¢) iSraisky formavimas yra imlus kompiuterio
Tesursy procesas.

4. Pavyzdziai

4.1 pavyzdys. Nagrinéjama tiltiné santvara (2 pav.) ap-
krauta  dvieju  judanéiyju  jéguy  sistemos:

Santvara sudaryta i§ 20 strypy, jos laisvés laipsnis 17.
Tamprumo modulis E =21000 kN/cm?, visy strypy ta-
kumo riba ¢y, =20 kN/cm?. Santvaros strypai grupuoja-

mi i keturias grupes (virSutinés juostos, apatinés juostos,
vertikals, istrizi), kur kiekvienos grupés strypy skerspjii-
vio plotai yra lygts. Parinkti minimaliis skerspjliviy plotai
yra:

Abot,min = Aop,min = Ajiag,min = A\/ert,min =10cm?.
Pagrindiné uzduotis — i$spresti tirio minimizacijos uz-

davinj (la)—(1i) t. y. rasti skerspjiivio plotus Ay,

k=12, ...,20 atitinkan¢ius kriteriju (1a) mi nz LJ-A ,
j

Siais atvejais:
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-
Q 7
-
F, kN 1,5 F, kN
L 5.0m L 50m L 5.0m L 5,0m L 5.0m L
a A A A A A

2 pav. Santvaros geometrija bei apkrova

Fig 2. Geometry and load of the truss

Al, kai jvertintos stiprumo (1b)—(1c¢) ir standumo (11)
salygos;

A2, kai jvertintos visos — stiprumo, standumo ir stabi-
lumo — salygos

Standumo apribojimai realizuojami naudojant vertika-
liyjy mazgy poslinkiy suvarzymus | U | <3 cm.

Tiirio minimizacijos uzdavinys (la—11) sprestas iterci-
jomis (sprendimo metu kinta Ng max it Ng mi » nes kinta
santvaros fizikiniai ir geometriniai parametrai). Al atveju
gautas minimalus santvaros tiris V;, = 471 710 cm’, o
A2 — Vyip = 569 100 cm?.

4.2 pavyzdys. Nagrinéjama dvideSimties strypu (ju
skerspjiivis ziedinés formos) santvara (2 pav.), veikiama ju-
damosios apkrovos (dvieju jégu sistemos, kuriy pirmoji —

15F;, antroji— F,) . Santvaros strypy medziagos tam-
prumo modulis E=21000 kN/cm? ir takumo riba
Gy =20 kN/em?’. Strypy skerspjiivio plotai A bei klu-

pumo koeficientai @, K=1,2, ...,20 yra tokie:

A=R=~R=A=A=Ar=A3=As=RAg=

Py =4684 cm’, A=Ay =A7 =Ry =4323 e,

0 =010=0821, ¢;,=04=0,860, @5=0,869,

P11 =02 =0,889, @1 =015=0,731, Py3=015=
(916 = (p19 = 01650 5 (P14 = (917 = 0,792 .

Pagrindiné uzduotis — rasti judamosios apkrovos mak-
simalig parametro F reik§me:

C1 — kai atsizvelgiama tik | stiprumo (2b)—(2c¢) ir stan-
dumo (2i) reikalavimus;

C2 — kai visos — tiek stiprumo, tiek standumo, tiek sta-
bilumo — salygos ivertinamos.

Standumo salygos realizuojamos ribojant santvaros apa-
tinés juostos mazgy vertikaliuosius poslinkius, jvedant skir-
tingas Uy max reik§mes (O<Ug <Up o, 1=1, 2, 3, 4).
Prisitaikomumo biivio apkrovos daugiklio Fj kitimas, esant
skirtingiems Uy mayx, parodytas 3 pav. Santvaros apatinés
juostos vertikaliyju mazginiy poslinkiy reik§més (C2 atve-
ju) parodytos 4 pav. (indeksas ties U, atitinka mazgo nu-
mert}).

Ag=4825cm?, Ag=Ap=7226cm’>, A, =~Ag=
400 - — — e
== atvejis C1 ’é‘*
= 380 4 B Millois i
& == atvejis C2 E
s =
Eas0 7 o __ 3
g £
£ Z
R R e R o & e e o
g 340 2
FINE YT R S 2
5
S S — e
0 2 4 6 8 10 12 14 16 18 - 0 2 4 6 8 10 12 14 16 18
Liekamojo poslinkio ribojimas U, max (Mm) Liekamojo poslinkio ribojimas u, s, (mm)

3 pav. Fy priklausomybé nuo Uy max

Fig 3. F, dependence on Uy max

4 pav. Ur priklausomybé nuo Ur max

Fig 4. Ur dependence on Uy max



J. Atkociiinas et al. / UKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS — 2007, Vol XIII, No 2, 93-99 99

5. ISvados 9. CHOI, S. H.; KIM, S. E. Optimal design of steel frame using
o o o o B practical nonlinear inelastic analysis. Engineering Structures,

Idealiai tampriai plastinei santvarai, veikiamai judamo- 2002, Vol 24 (9), p. 1189-1201.
sios apkrovos, optimizuoti jmanoma pasitelkti prisitaiko- 10. ATKOCIUNAS, I.; MERKEVICIUTE, D. Optimal Shake-
mumo teorijos metodus. Jungiamaja grandimi &ia yra tam- down Design of Bar Systems: Strength, Stiffness and Stabili-

ty Constraints. In Proceedings of the Seventh International

riy ekstreminiy aSiniy jégy skaic¢iavimas pagal visas ap-
prit N egt pag P Conference on Computational Structures Technology, Septem-

krom hod.ogr?lfo \.flrsﬁr.les. Ap k.rovos ga.ll biiti ch.aral?te.rl- ber 7-9, 2004, Lisbon, Portugal (Eds. B. H. V. Topping and
zuojamos ir virSutinémis nuo laiko nepriklausan¢iomis je- C. A. Mota Soares). Civil-Comp Press, Stirling, Scotland,
gu kitimo ribomis (apkrovy judéjimo tvarka tampa neaktu- 2004, p. 361-363. ISBN 0-948749-93-8.

ali). Sudarytieji nauji netiesiniai apkrovos optimizavimo ar 1. DAPSEVICIUTE, L; ATKOCIUNAS, J. Prisitaikan¢iy san-

minimalaus tiirio santvaros uzdaviniy matematiniai mode- tvary optimizacija: judamosios apkrovos atvejis. IS 7-osios
Lietuvos jaunyjy mokslininky konferencijos ,, Lietuva be moks-

1%31 tuomet ”dl'ljba l aj[sargos p u'SQ' (neg:a'hma p aS'lektl rea}- lo — Lietuva be ateities , jvykusios Vilniuje 2004 m. kovo 25—
lios konstrukcijos cikliSkai-plastinio suirimo biivio). Skai- 26 d., mediaga. Statyba. Vilnius: Technika, 2004, p. 277—
tiniai straipsnio eksperimentai parodé ne tik sitilomy naujy 282. ISBN 9986-05-893-7.

sprendimo algoritmy efektyvuma, bet ir padiy optimizavi-  12. CEN, EN 1993-1-1, Eurocode 3: Design of Steel Structures,

mo uzdaviniy matematiniy modeliy sudarymo pagristuma. g?nsslﬁ;;; gi?;iilr gg(l)els and Rules for Buildings, 4th Draft,
u ) .

13. FERRIS, M. C.; TIN-LOI, F. On the solution of a minimum
weight elastoplastic problem involving displacement and com-

Literatara plementarity constraints. Computer Methods in Applied Me-

1. CYRAS, A. Analysis and Optimization of Elastoplastic Sys- chanics and Engineering, 1999, 174, p. 107-120.
tems. John Wiley &Sons, New York, 1983. 112 p. 14. VENSKUS, A.; ATKOCIUNAS, J. Patobulintas prisitaikan-

2. BAZANT, Z. Inelastic Analysis of Structures in Civil Engi- ¢iy sistemy optimizacijos uzdaviniy sprendimo algoritmas. 1§
neering. John Wiley & Sons, New York, 1999. STATYBA. 9-osios Lietuvos jaunyjy mokslininky konferenci-

3. ROZVANY, G. L. N. Optimal design of flexural systems. Ox- jos ,,Mokslas — Lietuvos ateitis “, jvykusios Vilniuje 2006 m.
ford: Pergamon Press, 1976. kovo 29-31 d., praneSimy, rinkinys. Vilnius: Technika, 2006,

4. BORKOWSKI, A.; JENDO, S.; REITMAN. Mathematical p- 265-270. ISBN 9955-28-047-6.

Programming, Vol 2 of the series ,,Structural Optimization®. 15. Staat, M.; Heitzer, M. (eds.). Numerical methods for limit and
Ed. by Save, M. and Prager, W. Plenum Press, New York, shakedown analysis. Series of John von Neumann Institute
1990. for Computing, Vol 15, 2003.

5. GIAMBANCO, F.; PALIZZOLO, L.; POLIZZOTTO, C. Op- 16. MERKEVICIUTE, D.; ATKOCIUNAS, J. Minimum volume
timal shakedown design of beam structures. Structural Opti- of trusses at shakedown — mathematical models and new so-
mization, 1994, Vol 8, p. 156-167. lution algorithms. Mechanika, 2005, Nr. 2(52), p. 47-54.

6. KALISZKY, S.; LOGO, J. Plastic behaviour and stability ISSN 1392-1207.
constraints in shakedown analysis and optimal design. Struct. 17. ATKOCIONAS, J. Mathematical models of optimization pro-
Multidisc. Optim., 2002, 24, p. 118-124. blems at shakedown. Mech. Res. Commun., 1999, Vol 26,

7. CASCIARO, R.; GARCEA, G. An iterative method for sha- No 3, p. 319-326.
kedown analysis. Comput. Methods Appl. Mech. Engrg 191, 18. BAZARAA, M. S.; SHERALI H. D.; SHETTY, C. M. Non-
2002, p. 5761-5792. linear programming: theory and algorithms. New York: Brij-

8. SMITH, D. LLOYD. CISM, Mathematical programming met- basi Art Press Ltd., John Wiley & Sons, Inc., 2004. 638 p.
hods in structural plasticity. Wien-New York: Springer-Ver-
lag, 1990.

Juozas ATKOCIUNAS. Professor, Dr Habil (technical sciences, mechanical engineering). Department of Structural Mechanics, Vil-
nius Gediminas Technical University.

Author and coauthor of 2 manuals and monography, 6 textbooks, 94 scientific articles. Participant of intern conferences. Scientific
interests: structural and computational mechanics, applied mathematical programming, optimal shakedown design of elastic-plastic
structures. Lithuanian State Science Prize Laureate (1993).

Dovile MERKEVICIUTE. Doctor. Department of Structural Mechanics, Vilnius Gediminas Technical University.
Author and coauthor of 14 scientific articles. Participant of intern conferences. Scientific interests: Optimization of geometrically non-
linear elastic-plastic structures at shakedown.

Artiaras VENSKUS. PhD Student. Department of Structural Mechanics, Vilnius Gediminas Technical University.
Coauthor of 2 scientific articles. Participant of conferences. Research interests: optimal shakedown design of elastic-plastic structures.

Juozas NAGEVICIUS. Associate Professor, PhD. Department of Structural Mechanics, Vilnius Gediminas Technical University.
Author and coauthor of 2 manuals and over 40 scientific articles. Participant of intern conferences. Research interests: elastic-plastic
analysis and optimization of structures, numerical methods in structural mechanics. Lithuanian State Science Prize Laureate (1993).



ISSN 1392 - 1207. MECHANIKA. 2007. Nr.2(64)

Nonlinear programming and optimal shakedown design of frames

J. Atkociuinas*, D. Merkevic¢iuté**, A. Venskus***, V. SkarZauskas****

*Vilnius Gediminas Technical University, Saulétekio av. 11, 10223 Vilnius, Lithuania, E-mail: juozas.atkociunas@st.vtu.lt
**Vilnius Gediminas Technical University, Saulétekio av. 11, 10223 Vilnius, Lithuania, E-mail: dovile.merk@centras.lt
***Vilnius Gediminas Technical University, Saulétekio av. 11, 10223 Vilnius, Lithuania, E-mail: venartas@yahoo.fr
****Vilnius Gediminas Technical University, Saulétekio av. 11, 10223 Vilnius, Lithuania,

E-mail: valentinas.skarzauskas@adm.vtu.lt
1. Introduction

Steel frames, which undergo plastic strains and
are subjected to variable repeated load, are considered in
the paper. Under repeated loading a structure can lose its
serviceability because of its progressive plastic failure or
because of alternating strain (usually both cases are called
cyclic-plastic collapse). The third case when the structure
adapts to the existing load and further behaves only elasti-
cally is also possible. For civil engineering, the calculation
of any complexity elastic—plastic frames subjected to vari-
able repeated load is relevant. Growing number of scien-
tific works dedicated to adapted structure calculation
shows importance of these researches [1 - 8]. But there is
especially small number of works concerning the optimiza-
tion of adapted structures under stiffness constraints. This
had an influence on the topic of this paper: optimal shake-
down design of frames, subjected to variable repeated load,
under stiffness constraints. Herein two types of problems
can be considered [9]. The first problem is optimal shake-
down design of cross-sectional parameters (design prob-
lem) and the second one - load optimization problem for a
frame subjected to variable repeated load (checking prob-
lem). By solving checking problem maximal load variation
bounds, ensuring adapted state of the frame and satisfying
stiffness requirements of the structure, are to be found.

Solution of frame optimization problems at
shakedown is complicated as stress—strain state of dissipa-
tive systems depends on loading history [10 - 14]. These
difficult optimization problems are implemented applying
extremum energy principles and the theory of mathemati-
cal programming [15]. That enables to create new iterative
algorithm based on Rosen project gradient method [16-

19]. Numerical examples of the frames are presented. The
results are valid for small displacement assumptions.

2. General mathematical models of optimization
problems at shakedown

General mathematical models presented in Table
are the basis for the development of optimization mathe-
matical models of frames at shakedown considered in this
paper. In both design and checking problems objective
functions are described by formulas (1) and (6), where the

vectors L , T,

and T, contain coefficients of weight.
Yield conditions @, ( jeJ ) are shown in formulas (2) and
(7) , where j is the number of all possible combinations

F, of'load bounds F F, . Formulas (3) and (8) repre-

sup >
sent complementary slackness conditions of mathematical
programming, (4) and (9) are constraints for the problem
unknowns. Stiffness constraints are shown in (5) and (10).
Discrete model of the frame at shakedown con-
sists of s (k=L12,...,5s, keK) finite elements. Limit
force Sy, (keK) is assumed as constant in the whole

finite element. The degree of freedom is m , corresponding
. T
m - vector of displacements - u, :( Uy Uy s s ”e,m) .

Nodal internal forces of the element compound one n —
vector of discrete model forces

S=( S,.8,,....8,,..., Sg)T =(S.)" and strains — n —vector

0=(0,0,...06,, ..0,) =(0.)",

z

Table
General mathematical models of optimization problems
Design problem Checking problem
find find
min y(8,) =min L'S, (1 max ( T, F.,+T, E‘nf) (6)
subject to subject to
0,=8,-2(Gi+s,)20 ( 0,=8,-®(Gi+5,)20 (7
4@, =0,220 o g =0,4,20
= g — : 8
2 glj,jeJ 1_;lj,]eJ ®)
$,20 4) F,>0, F,>0 9)
ur.min < ur,inf ’ ur’sup < ur,mwc (5) ur,min < ur,iﬂf ’ ur,sup = ur,max (10)




v=L2,.,0 (veZ), z=12,...,n. The total number of
design sections is & .

Load F (t) is characterized by time ¢, independ-

ent variation bounds FW :(F F

Lsup* = 2,sup?
Fop=(Fy Fonyo

0T mL,sup

<F

sup

T
) and
T .
inf = \ing ’Fm.mf) (Finf SF(t) ). Elastic
displacements u,(¢) and forces S, (¢) of the structure are
determined using influence matrixes of displacements and

p=(AKA")", a=KA"p,

u,(t)=pF(t), Se(t) =aF(t), K=D"' Hered is a
coefficient matrix of equilibrium equations 4S8=F and

forces, respectively:

D is a quasi-diagonal flexibility matrix. Residual dis-
placements u, and forces §, are related to the vector of
plasticity multipliers 4 by influence matrixes H and G :
u =H® )=HJ, S=Gd' i=Gi,
H=(AKA")" AK and G=KA'H ~ K . Here & — the
matrix of peace-wise linearized yield conditions @, (2)
and (7). The number of all possible combinations F; of
load bounds F,,, F, is p=2" (F,<F,<F,):
S,=aF,, j=12,...,p,(j€J). In the case of two loads

F,, F,, a domain of elastic force variation (locus) is
shown in Fig. 1.

ol Fring

Se
Fig. 1 Locus of elastic forces

of the structure at

Residual displacements u,
shakedown can be nonunique: they depend on particular

loading history F(¢). If load is defined only by variation
bounds F F

inf > sup >
sidual displacements becomes problematical because of
unloading phenomenon appearing at cross-sections: then
displacements u, are varying nonmonotonically, it is pos-

the calculation of exact values of re-

sible to determine only their lower u,,,. and upper u

r,sup
). Stiffness condi-

tions (5) and (10) are realized by the restriction of the
structure nodal displacement lower and upper variation
bounds u,,,, <u u, . <u

r.sup

variation bounds (u,,, <u,.(f) <u

r,sup

r,min rinf

Mathematical programming theory, the widely
used method of the solution of extremum problems, helps
not only for the formulation of shakedown problems the-
ory, but also for its solution. Problems (1)-(5) and (6)-(10)
can be solved by various computer programs but in this

case mechanical interpretation possibilities of optimality

r,max *

28

criterion of applied algorithms are not revealed. In our
works mechanical interpretation of optimality conditions
for Rozen algorithm is revealed — it is strain compatibility
equations [20].

3. Rozen project gradient method

Rosen project gradient algorithm is universal
enough, that it can be applied when objective function and
constraints are linear (1) - (5), (6) - (10), or nonlinear [20].
For the optimization problems of volume minimization and
determination of maximal load variation bounds containing
linear objective function and constraints, application of the
Rosen algorithm will be shown. Generally the convex
problem of linear programming reads

find

max 7 (x) (11)
subject to

(p,.(x)zairxSO,izl,Z, L, iel (12)

As function go,.(x) is linear, its gradient is Ve, (x)zal.;
here a, is n-vector of multipliers near unknown quantities.

In the case of linear constraints (12) gradient matrix of
active constraints is noted A, i.e.

l7¢(x) =4, = [a1 a, ..a; .. aK] (13)

K

here A, is (nxzc) — order unit matrix, where n is the

measure of Euclidian space E" and x is the number of
active constraints. Constraints, which are satisfied as

equalities, (¢, (xk): 0, iel) are called active ones. Vec-

tors from n-dimensional space, satisfying conditions (12)
as equalities, compound (1 x xc)-order formation noted as

G*. In Euclidian space E" movement from x* is per-
formed in the direction of vector P.V.7 (xk) (Fig. 2),

which is calculated according to the formula
PV (x*)=(1-velx* v, (x o’ (x* 77 (x*) (14)

I is (nxn)-order unit matrix, V.7 (xk) is the gradient of
objective function and (i x x)-matrix ¥, (x") is expressed

as follows: V, (xk ): (Vdir(xk)vtb(xk))fl. P_ is a projec-
tive matrix.

Admissible field ;f

Fig. 2 Rosen algorithm for linear constraints



Kuhn-Tucker conditions

—Vﬁ(x)

29

Optimality criterion

Theory of elasticity

Saint-Venant equations

Theory of plasticity

Strain compatibility equations

(associative flow rule)

Fig. 3 Kuhn-Tucker optimality conditions are strain compatibility equations of the deformable body mechanic

x = xt +r’PKl27(xk),
o'=min {¢'l7'>0, i=x+1,k+2,.,1} is the step of the

Vector where

move. Only so vector x**' “does not leave” admissible
field .f={x|go,(x)£0, i=12,..1 } If the vector does

not exist in the admissible range 0 <7 < 7', for which the

magnitude of objective function would be greater than at

point x**' then it is assumed that X¥**' = x**'and the cal-

culation process is continued. If
V7' (x" )PKV&'Z (x"*1 )< 0, then the objective function
reaches its maximum in the radius between points x* and

x"*' . The new size of the step is calculated as follows

v (x )Py (x")
(x* )PV (x*)-v7(x" ) P77 (")

r

T

e (15)

1

In this case x**' is determined according to the formula:

x = x4 T”PKV](xk). Vector x is the solution if the
following conditions are satisfied
PV7(x)=0,
V. (x)Ve' (x)V.7(x)<0

(16)
(17)

For correct mechanical interpretation of the con-
ditions (16), it falls to use Kuhn-Tucker conditions [17]. So
it is done in the research [20], where it is shown that equa-
tion (16) is strain compatibility equation (Fig. 3) and the
left side of inequality (17) in absolute value is a vector of
plastic multipliers A

i=lp (e’ (x)v7 (x)| (18)

4. Design of minimal volume frame at shakedown

Design of the frame for optimal parameters is per-
formed when yield limit o, of the frame material and

lengths L, of its all elements k (k€K ) and load varia-
F F,, are known. Depending on the

tion bounds F,, F,
cross-sectional shape various yield conditions can be con-
sidered. In this paper, the focus is placed on yield condi-

tions for rolled I steel sections (Fig. 4). Relation

—% " keK should be prescribed in advance. Limit
0k

moment M, =6, W, = (f((syk,Ak) and limit axial force

Cp =

Ny, =0, A, of the element are functions of cross-
sectional area 4, and yield limit of material o, . True,
usually one or the other specific dimension of the cross-
section (for instance, flange thickness 7, of I-section while
the width of flange b is fixed; see Example 1) participate
in functional relation M, =¢& (cyk,Ak instead of cross-

sectional area A, . The problem of frame optimal parame-

ters distribution design reads: minimize szM or » Sub-
k

ject to the structure strength and stiffness constraints
find

min Y LM, (19)
k
subject to
9,=M,-®(Gi+S,) >0 (20)
D Ap, =0,2,20,i=1, @21
Aj40k,max 2 My 2 My s ./kEK , J€J (22)
Wi S U s U S U, (23)

Limit moments M, of the frame elements and vectors of
plasticity multipliers 4,>0, jeJ are unknowns of

nonlinear mathematical programming problem (19)-(23).
Formulas (21) represent complementary slackness condi-
tions of mathematical programming [21]. Constructive
requirements of frames M and M, ,,;, are shown in

0k, max

conditions (22). Problem (19)-(23) is not exactly the vol-
ume minimization problem, because limit moments M,

are used in objective function. When volume of the frame
is directly included into objective function mathematical
model of the frame volume minimization is as follows

find

min Y L, A, (24)
&



subject to

9, =M,-®(G2i+S,) >0 (25)
T .

2 Ao =0,2,20,2=31,, jeJ (26)

J J

Ak 2 Ak,min H k ek (27)

ur, min < ur,irg/' > ur’.vup < ur’max (28)

Cross-sectional areas A4, , k €K (or other specific dimen-

sion of the cross-section) of the frame elements and vectors
of plasticity multipliers 4,>0, jeJ are unknowns of

nonlinear mathematical programming problem (24)-(28).

N
No

1 ¢

) @ -1 ¢

@ =
M, 0 M, M 1 —c
-1 -
©) (©)] veZ

Ny

Fig. 4 Linear yield conditions

are included
It is not dif-

ficult to introduce elastic displacements into stiffness con-
straints (28). Limit moments M, and influence matrixes

a, f, G, H are related with unknowns 4, , k €K ; the

listed matrixes are recalculated during solution of the prob-
lem (24)-(28). If stiffness constrains are neglected, cyclic-
plastic collapse of the frame is reached.

When only bending moments M are taken in to
account in the frame calculation, the following mathemati-
cal model of the frame volume minimization is obtained
find

Lower bounds of cross-sectional areas A4

k,min

into constructive constraints (27) 4, > 4

k,min *

min ) L, A, (29)
k
subject to

¢max:MO_Gl_M 20

e,max

Q=M +GL+ M, >0 30)
Ao Prae = 0+ Din @i = 0 J 20, 2,2 0 (31)
2= (s 2y)" (32)
A >4, ., kekK 33)
Upig S Upigs Uy SU g (34)
Extreme elastic bending moments
M, =2,F, -2,F, M, =a,F, +a,F,

are known in the problem (29)-(34). Matrix a, is for-

sup
mated in the following way: only positives values are re-
trieved from the influence matrix « , the rest components

are set to zero and respectively matrix a,, - only nega-

tives values are retrieved from «a , the rest components are

set to zero. Unknowns are cross-sectional areas 4, , k K

of the elements and vectors of plasticity multipliers 4

In case of monotonically increasing load j=1 and
conditions (25), (26) of all discretized frame obtain the
following form: @=M,-®(Gi+S,)> 0, 2@=0,
4 2 0. Stiffness constrains (28) of the frame become

more simplified: u,,. < HJ <u,,, . Scope of the prob-

lem (25)-(28) becomes reduced and computer realization
of the problem is simpler.

It should be noted that numerical solution of the
problems (24)-(28), (29)-(34) is easier when complemen-
tary slackness conditions are moved to objective function.
Then the problem (29)-(34) obtains the following form
[16]
find

r,min

min (Z Lk Ak + }‘rz;ax¢max + l;in ¢min J (35)
k

subject to

Pp=M,~Gi-M,, >0

e,max

¢min:M0 +G1+M6,min 20 (36)
e 20, 2,20 37)
)" = ( )“max ’ ;“min )T (3 8)
Ak = Ak,min b kekK (39)
ur,min < ur,inf ’ ur,sup Sur,max (40)

5. Shakedown load optimization of frames

In the case of variable repeated load, the problem
of load variation bound F, , F, determination is impor-

sup >
tant also. It stated as follows: find shakedown load varia-
tion bounds F, , F, ., satisfying the prescribed optimal-

sup inf >

ity criterion max {T VZP F,, + TmT/ F,, }, also strength and

stiffness requirements of the structure. Here T,,,, T, are

sup >
the optimality criterion weight coefficient vectors.
Then mathematical model of shakedown load op-
timization problem for the frames reads

find

max {Tv:p Fmp +I:nT/ Ely‘ - Z)“_/Tw_/} (41)
J

subject to
0,=M,~®(G 2+S,)> 0 (42)
2,20,2=Y4,, jeJ 43)

J

F,=20,F, >0 (44)
unmin < ur,inf ’ ur'sup < ur,max (45)



The vector of limit bending moments M, and the

limits of residual displacements u u are known in

r,min > r,max

the problem (41)-(45). Optimal solution of the problem
(41)~(45) is vectors F,,,, F, and 4}, jeJ.
When only bending moments M are taken in to

account, the following mathematical model of frame
shakedown load optimization is obtained

find
max{ Tllz;) P‘sup + 1:)1; Enf - }'/Zax ¢max - iri‘in ¢min } (46)
subject to
¢’max = MO _Gl_ Me,max 2 0
wmin = MO +Gl + Me,min 2 0 (47)
Me,max = asustup _airq/'Erq/'
Me’min == asupEﬂ/' +ai4/'Fsup (48)
F,, >0, F, >0 (49)
j’ = ( j'mwc ’ j’min ) ! (50)
}‘max 2 0 s }'min > 0 (51)
ur,min < ur,inf H ur,sup < ur,max (52)

Load variation bound F F inf and vectors of

sup > i
plasticity multipliers 4,2 0, jeJ are unknowns of

nonlinear mathematical programming problem (46)-(52).
6. Numerical examples
6.1. Example 1

The two-storey frame shown in Fig. 5 is subjected
by two independent loads: vertical forces of the magnitude
2V, 3V acting in the middle of each beam and horizontal
forces 2H, H. Variation limits of the load are defined by
inequalities 0<H <H  =40kN, 0<V'<V, =65kN . The
main task is to determine minimal volume of adapted
frame (Fig. 5) according to the mathematical models (24)-
(28) and (29)-(34), when the frame is made from steel,
which elasticity modulus £ =210 GPa and the yield limit
o, =200 MPa. Cross-sections of the frame columns and

beams are shown in Fig. 6. Parameters » and 4’ remain
the same during all optimization process, only thickness of
the flanges is varying. Initial thickness of the flanges is
assumed t(?-'w, =14mm for the frame columns and
0

f .beam

t =20mm for the beams. Thus, initial cross-sectional

areas of the columns and beams are 4, = 4’ =A4; =56cm’

and A’

0 = AY=A4)=80cm’, respectively. Initial volume
of the structure is ¥° =259200 cm”’ . Limit forces of cross-
sections are calculated according to the following formu-
las:

’

M, :O'ybth':ayAh? ,Ny=0,2bt=0 4
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Initial limit forces of the columns are M, =160 kNm

and N, =1120 kN, limit forces of the beams are

Mgy =320kNm  and Ny, =1600 kN ; relations
;=02 and ¢,,=0.125. Yeld conditions are

aproximated by four lines (coefficients of lines described
in matrix @, are shown in Fig. 4).

E=2V
u, B=H |5 6, 7
—_— T T T ]
aq A5, 15 J s|
u
Ay, 1, 3 Ay, 1, 3.0m
E=3V
F=2H 3] o1
o 12 Aol 13 EX g
A, 1 J U, 4.1, 30m
3 5 1l
7777 7777 T

{ 6.0 m 6.0 m 1

Fig. 5 Discretized frame

Minimal volume searching is performed in the two follow-
ing cases:

Al — when the vector of inner forces of discre-
is S=(M,N) =(M, M, M,

tized frame

N, NyoNg) =(8.)", z=12,..,n=20, ie. both

bending moments M and axial forces N are taken into
account.
A2 — when the vector of inner forces of discre-

M=(MZ)T=(M1,M2,M3 )Ts
z=1,2,...,n=14, i.e. only bending moments M are evalu-
ated.

tized frame is

In the case Al frame volume minimization is per-
formed according to the mathematical model (24)-(28).
Unknowns are cross-sectional areas of the frame columns
and beams 4, , k€K and vectors of plasticity multipliers

ij , 7=1,2,3. Inthe case A2 the frame volume minimiza-

tion problem is solved using the mathematical model (29)-
(34). Unknowns are cross-sectional areas A4,, k€K and

vectors of plasticity multipliers 4 P -

‘max

Columns: b =200 mm Beams: b =200 mm

h'=250 mm h'=400 mm
tr/2 h' tr/2 tr/2
~ S wr— T
b I h'
— —+— T b Tyn

Fig. 6 Geometry of cross-sections

Without any residual displacement constraints
(28) or (34), the following minimum volumes of the frame

=265288cm’

=246812cm’ in the case A2 (in both cases elastic-
plastic state is just before cyclic plastic failure).

were obtained: V in the case Al and

min
v

min



Later, the following residual displacement con-
straints were imposed for displacement u,, (Fig. 5):

0<u,,<u (here =5,10, 15, 20, 23

Variation of the frame volume depending on prescribed
limit on residual displacement u is shown in Fig. 7 for

both cases Al and A2.

u

r,max

mm).

r,max

r,max

Case Al
Case A2

Volume V,,;, (cm3 )

1.0 15

2.0

2.3

Residual displacement u,, (cm)

14

Fig. 7 Variation of minimal volume V,,, in terms of u, ,

6.2 Example 2

The frame is subjected by repeated variable load
0<F,<F, O0<FK<F, ir 0<F,<F, . Dis-
cretized frame, direction of forces F,, F;, F, and its ap-

LSup 2

plication place is shown in Fig. 5. The frame columns HE
300A and beams IPE 450 are made from steel, which elas-

ticity modulus E=210GPa and yield limit
0'},:235 MPa . The main task is to determine maximal
load variation bounds F,, ., F,, and F, . 1 e. find
max (Fyo + Fop + Fin)-

Vector of the inner forces of discretized frame
(Fig. 5), when bending moments M and axial forces N

are taken into account is: S=(M,N )T

T T
=(M, M, ,M;,...M,, N,,N,,..Ny) =(8.)
z=1,2,..,n=20. Limit bending moment M, and limit

axial force N, of the columns and beams are calculated

according to the following formulas: M,=oc W,
Ny=0,4.

Load optimization problem max
(Fm‘p + Fig, + F4’Sup) is solved according to the mathe-

matical model (41)—(45), when matrix @,, shown in Fig.
4, is taken into account.
Without residual displacement constraints (45) -
i.e. in the state near cyclic plastic failure - the following
load variation bounds were obtained: F,,,, = 257.47kN,
Fy,, =151.56kN F, =164.65kN
+F,, +F

and 4, sup
( F 3,sup 4,sup

(max
o )=573.68).

When residual displacement constraints (45)
0<u,,<u =10.0mm, O0<u.,<u =15.0mm

r2,max r3,max

and 0<u,, <u =15.0mm are evaluated, load varia-

F,,, = 131.55kN,

r4,max

tion bounds were  obtained:
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Fy = 189.81kN, F, ., =216.49kN (max
(F2.sup +F3’sup +F4'sup): 537.85 )

7. Conclusions

1. The main difficulty in solving the problem of
determinating the optimal parameter distribution of
adapted frame is the reasoning of more realistic relation
between the area and limit bending moment of different
shape cross-sections. For that purpose it is useful to obtain
a correlation between the mentioned quantities.

2. There are created mathematical models of the
optimization problem for shakedown frames, which evalu-
ate steel plastic deformations and serviceability require-
ments.

3. There is created a new algorithm that solves
problems, which considers for the displacements non-
monotonic variation of shakedown frames.

4. There is presented the possibility to use section
databases in the real minimal volume frame design prob-
lems.
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NETIESINIS PROGRAMAVIMAS IR REMU
OPTIMIZACIJA PRISITAIKOMUMO SALYGOMIS

Reziumé

Straipsnyje nagrinéjama matematinio programa-
vimo teorija, kuri yra placiai paplitusi kaip ekstreminiy
uzdaviniy sprendimo metodas. Ji talkina prisitaikomumo
teorijos optimizavimo uzdaviniy nagrin€jimui nuo jy ma-
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tematiniy modeliy sudarymo iki skaitinio sprendinio rezul-
taty. Bendrieji optimizavimo uzdaviniy matematiniai mo-
deliai pritaikyti optimaliy idealiai tampriai - plastiskai de-
formuoty rémy parametry arba apkrovos pasiskirstymams
prisitaikymo buvyje rasti. Uzdaviniai sprgsti taikant Roze-
no projektuojamyjy gradienty metoda. Pateikta Sio metodo
optimalumo kriterijaus mechaniné interpretacija. Skaitiniai
rémy optimizacijos rezultatai gauti prisilaikant mazy po-
slinkiy prielaidos.

J. Atkocitnas, D. Merkeviciuté, A. Venskus,
V. Skarzauskas

NONLINEAR PROGRAMMING AND OPTIMAL
SHAKEDOWN DESIGN OF FRAMES

Summary

This paper considers matematical programming
theory, which is widely used as a method of extremum
problems solution. It helps for the investigation of shake-
down problems from creating of it's mathematical models
till receiving numerical solution results. Common mathe-
matical models of optimization are adapted to find optimal
parameters or load distribution of elastic perfectly-plastic
shakedown frames. Rosen project gradient method is ap-
plied to solve the problems. Mechanical interpretation of
optimality criterion is presented for the mentioned method.
Numerical results of frame optimization problems are re-
ceived with small displacements assumption.

10. Atkouronac, [I. Mepxsasuatore, A. Berckyc,
B. Ckapxayckac

HEJIMHEMHOE ITPOTPAMMUWPOBAHUE U
OIITUMU3ALINA PAM B YCIIOBUAX
IMPUCJIOCOBIIAEMOCTHU

Pe3zmomMme

Teopust MaTeMaTHYECKOTO MHPOTPaMMHPOBAHUS,
IIAPOKO PACHPOCTPAHMBINASNCS KaK METOJ PELICHUs JKC-
TpEMalbHBIX 3aJad, COMyTCTBYET HCCIEIOBAHMIO 3aJadl
TEOPUH IJIACTUYHOCTU OT €€ IOCTAHOBKH 10 OKOHYATEJb-
HOTO penieHus. B craTbe o0nue MaTeMaTHYeCKUe MOJETH
ONTHUMU3AIMUA OTHECEHBI K OIPEAEICHHIO ONTHMAlIbHOTO
pacnpeieneHus mapamMeTpoB MM Harpyd3Kd HACAIBHO YII-
PYTO-IUTACTUYECKUX PaM B YCIOBHSIX MPHCIOCOOIIEMOCTH.
st penieHus NOMy4YeHbIX HEJIMHEHHBIX 3a1ad MpUMEHEH
METOJl MPOCKTHPYEMBIX TpanueHToB Poszena. [IpuBenena
MeXaHW9eCKasi WHTEPIpeTanusl KPUTEPEB ONTUMAaIbHOCTH
3TOro Meroja. UucieHsle pe3ysibTaThl ONTUMH3ALMUHE PaM
TIOJTyY€eHbI B PaMKaX TEOPHH MaJbIX IEPEMEICHUI.
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Abstract

Using the concept of a variable repeated load and shakedown theory, a unified technique is proposed for formulating mathematical
models for the optimization of frame- and truss-like structures under different loads. Strength, stiffness and stability (for trusses only)
constraints are included in non-linear mathematical models of structure volume minimization and load optimization problems. Even
though the load is prescribed within certain limits, the mathematical models allow the variational bounds of the displacement (the stiff-
ness of the structure depends on them) to be evaluated in the deformed state. Numerical example concerning calculation of frame struc-

ture is presented. The results are valid for small displacements.
© 2008 Elsevier Ltd. All rights reserved.

Keywords: Optimal shakedown design; Elastic—plastic bar systems; Energy principle; Mathematical programming

1. Introduction

This paper, which considers elastic—plastic bar systems
(frames, trusses) adapted to a variable repeated load, is
an updated and extended version of conference material
[1,2]. A variable repeated load is a system of forces that
may vary independently within prescribed bounds. Usually
variable repeated forces are not characterized by the load-
ing history F(¢), but only by time-independent lower and
upper bounds of the forces Fyyp, Fing, (Finr < F(7) < Fyyp).

A variable repeated load and the related concept of
shakedown theory not only enable mathematical models
for the optimization of elastic—plastic structures at shake-
down to be formulated using a unified technique, but also
allow these models to be extended to cases of load and
effect combinations, and a monotonically increasing or
moving load. This possibility of a variable repeated load
interpretation is a distinctive feature of this paper.

An adapted structure is safe with respect to cyclic—plas-
tic collapse, but does not satisfy its serviceability require-

" Corresponding author. Fax: +370 52700112.
E-mail address: Arturas.Venskus@st.vgtu.lt (A. Venskus).

0045-7949/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2008.01.008

ments, such as those related to stiffness [3—10]. Therefore,
not only strength, but also stiffness and even stability
requirements ensuring conditional constraints should be
included in the mathematical models of the optimal design
of structures at shakedown [10]. The stiffness conditions are
realized by the restriction of structural deflections or nodal
displacements u = u, + u, (here the subscripts e and r refer
to the elastic and residual parts of the displacement, respec-
tively). The stress—strain state of a dissipative system
depends on its loading history. The problem of determining
the displacement of an elastic—plastic structure becomes
particularly difficult when variable repeated forces F(7)
are prescribed only by their limits of variation Fgp, Fing
In this case, it is possible to find only variational bounds
U inf, Ursup Of the residual displacements u,(f) such that
U inr < U(7) <Upgp [11-20]. Knowing that during the
adaptation process the residual displacements u.(z) can
vary non-monotonically, the determination of the limits
of the residual displacement u, j,f, U, sup becomes an impor-
tant constituent of mathematical models of optimization
problems. Different references can be found proposing
many techniques for calculating the variational bounds of
the residual displacement u, inp, U gp [18]. In this paper,



1758 J. Atkociunas et al. | Computers and Structures 86 (2008) 1757-1768

the technique for determining these bounds is based on
compatibility equations of the residual strains and on the
solution of a linear programming problem.

Non-linear mathematical models of the volume minimi-
zation of an adapted structure and load optimization prob-
lems are considered. In the mathematical models of
optimization problems, the non-linearity results from the
yield conditions (for frames with more complicated cross-
sections they are non-linear) and the complementary slack-
ness condition of mathematical programming. The comple-
mentary slackness condition does not allow a possible
unloading phenomenon of the cross-sections of the struc-
ture to be directly fixed. This phenomenon means that after
the appearance of plastic strains ®,, the yield condition sat-
isfied as an equality can become an inequality during a
future deformation process but the plasticity multiplier
remains positive, A > 0[21-23]. The phenomenon of unload-
ing cross-sections leads to a non-monotonic variation of the
residual displacement u,(z). Only the process of holonomic
deformation can be related to the complementary slackness
condition of mathematical programming. Unfortunately,
the adaptation of a structure is not such a process (it is
important to notice that not all the research dealing with
shakedown problems pays attention to this). That is why
the stiffness conditions, related to the determination of the
limits of the residual displacement u, j,f, U, s,p Of an adapted
structure, should be checked during the solution of the
structure optimization problem. Thus, in this paper, the
problem of the optimal shakedown design is not a classical
one: during the volume minimization of a frame (or truss)
it is necessary to determine the variational bounds u, ,p
u, g Of the residual displacement because of the constant
checking of the stiffness conditions. Only in this way is it
possible to avoid the influence of the complementary slack-
ness condition of mathematical programming, which does
not simulate and in the general case distorts the physical
meaning of displacement variation at shakedown.

Using our long experience in the application of the
Rosen project gradient method [24-26] for the solution of
non-linear optimization problems of elastic—plastic struc-
tures, we have developed a new computational procedure
for the volume minimization of bar systems at shakedown.
This procedure enables structures to be optimized under
different load combinations; this is very relevant in civil
engineering.

The organization of this paper is as follows. In the next
section, the main dependencies of the discretized frame are
presented. Section 3 deals with the calculation of the resid-
ual forces and displacements of a structure at shakedown
(analysis problem). In Section 4, the determination of the
variational bounds of the residual displacement is pre-
sented in detail. The description of a moving load case is
presented in Section 5. Section 6 is devoted to the problem
of frame volume minimization at shakedown. Section 7
deals with the optimal shakedown design of trusses. Here
the mathematical models are constructed using the ones
stated for frames in the earlier sections. Numerical example

of minimum volume determination of three-stories frame is
presented in Section 8. It shows the peculiarities of the pro-
posed technique. The results were obtained based on the
assumption of small displacements.

2. The main dependencies of discretized frames

The geometry of the frame, the cross-sectional shape of
the elements and the yield limit of the material o, are
known (it is assumed that the joints of the frame can be
fully rigid or fully pinned). The numerical solution of opti-
mization problems is related to the construction of a dis-
crete model of the structure. The frame is discretized by
means of s equilibrium finite elements (k=1,2,...,s,
k € K, where K is the set of finite elements), which ensure
that the equilibrium equations are exactly satisfied [27-
29]. In this case, the approximated forces are the bending
moments M and axial forces N. The kth element has s;
nodal points (/=1,2,...,s;). The nodal bending moments
and axial forces of an element compound an n-vector of
generalized forces S = (S, S,, . . .,Sg)T =(S.)" and general-
ized strains compound an n-vector @ = (0{,0,,...,
0)" =(0.)", { <s x5, z=1,2,...,n Here { is the total
number of design sections; in the future, checking of the
yield conditions will be performed on these sections. If
the degree of freedom of the discretized frame is m,
i=1,2,...,m (mis the total number of equilibrium equa-
tions of the joints and elements) and the vector of forces
S has n components, the order of the coefficient matrix A
of the equilibrium equations AS = F is m x n. The number
of components of the load vector F = (Fl,Fz,...,Fm)T is
the same as the degree of freedom of the discretized frame
m. It is known from mathematical programming theory
that each extreme principle of structural mechanics formu-
lated in terms of forces corresponds to the dual principle
expressed in terms of the state of strain. Therefore, in the
case of small displacements, it is easy to get equilibrium
equations from geometrical equations; then the dual pairs
become the forces S and strains @, and the displacements
u and loads F. That is why the vector of all displacements
of the discretized frame u is variable dual to the load vector
F and is included in the linear geometrical equations
ATu = 0O (both F and u are m-vectors).

The characteristics of the frame’s cross-sectional resis-
tance are the limit bending moment M, = o,W,; and the
axial force Ny = oyA; here W}, is the plastic modulus of a
section and A4 is a cross-sectional area. Though the shapes
of cross-sections can be different, the problems in this
paper are more oriented towards an I shaped cross-section,
i.e. when the shape factor u=1,15,...,1,17 (for a rectan-
gular cross-section y = % =1, 5). This allows a more exact
approach to elastic perféctly plastic behaviour (Prandtl’s
diagram). Thus, the following linear yield condition will
be used in mathematical models of the problems (Fig. 1):

M| + c|N| < My, C—NO. (1)
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The forces satisfying the equilibrium equations AS = F and
the yield conditions (1) at each design sectionv =1, 2,...,{
(v € Z), are called the statically admissible ones.

For shakedown analysis, it is useful to introduce resid-
ual forces S,, displacements u, and strains @, besides the
elastic forces S., displacements u, and strains @,:

S = Se + Sr7

u=u+u, O=0.+0,. (2)

The structure adapts to a variable repeated load if statically
admissible time-independent residual forces S, resulting
from any loading history F(¢), exist [28,29].

Shakedown analysis is based on the assumptions of geo-
metrical linearity (small strains and displacements) and the
validity of an associated flow law.

A variable repeated load F(7) = (F\(1), Fx(?), ..., F(1))"
is characterized by its lower and upper limits Fy,r = (Fi inp
FZ,infn s aFm,inf)Ta Fsup = (Fl,supn FZ,supa s aFm,sup)Ta which
are not related to the time ¢. The loading history is
unknown, but it fits in the range Fi,r < F(¢) < Fyp,. The
elastic displacements u.(#) and forces Si(7) of the structure
are determined using the influence of the matrixes of dis-
placement and forces, § and a, respectively:

ue(t) = ﬁF(t)v Se(t) = “F(t)a (3)

p=(AKA")! a=K AT, K=D"', where D is a quasi-
diagonal flexibility matrix.

When the loading history is unknown, all possible com-
binations F; of the load bounds Fj,,, Fiyr should be taken
into account for calculating the elastic forces (number of
combinations p = 2"):

i=12,...

Sej = aFja Finf < Fj < Fsup7 7p(f S J) (4)

In the case of plastic collapse Eq. (4) allow to determine the
type of collapse (incremental or alternating plasticity). In
the case of two loads F;, F», the domain of the elastic force
variation (locus) is shown in Fig. 2. The number of locus
apexes is p = 4. For each apex j = 1, 2, 3, 4 of the locus four
inequalities of the yield condition (1) should be written:

N
No
@ @
—Mo 0 MM
@ ®
—No

Fig. 1. Linear yield condition.

02 F.inf

Se3

Fig. 2. Domain of elastic force variation.

ﬁc(llj) =My — Mk[,j — Cka[,j > 0,
fk(lz; = Mo +Mk17j - C'kal,j = 0,

f}ffj)- =My —My;+ciNuy; = 0,

f}c(143 =My +Mp;+ Ny, = 0,

Myj=Meuj+Mu, Npj=Nej+ N

j:1727""p' (5)

In the expressions (5), it is taken into account that the limit
bending moment of an element is My, = const, k € K; the
upper subscript of fis the index of the linear yield condition
edge (see Fig. 1). For each design section, the linear yield
conditions (5), using matrix ®,, are written as follows:

fv,j =My, — (I)vsv,_j = 07 Svt/ = (Mevj + Mrvaelr,j + er)Tv
v=1,2,...,(, j=12,...,p. (6)
Here the vector of limit moments My, = (M, Moy,
Mo, My,)" has the same four components for each section

v and the relation ¢; = %—3: is prescribed in advance in the
4 x 2 matrix

k=1,2,....s, 1=12,... 5,

1 Crk
-1 Cr
o, = , veV, kek
1 —Cy
—1 —Ck

The yield conditions for the whole structure read
fi=M,-®S; >0, S;=(M,+M,N,+N,)", jeJ.
(7)

Here f; = (f, ;,f5,. . .,ng)T, ® = diag®, is a matrix of the
linear yield conditions of the whole structure. The vector
of limit moment My = (Mo, Mo, ..,Mq;)" is compatible
with the yield conditions (6) in dependencies (7).

It is possible directly evaluate not only variable repeated
load F; but also other loads F, (for example self weight of
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the structure) additionally including them into set J. Elastic
forces S.., resulted by loads F,., can be included into yield
conditions (6) as follows:

fv,j = MOU - (Dv(svj +S(:c) = 0, U= 172,.. .,é’,
j=12...p (8)

In the case of Fj,r = Fg,, = F and j =1 it is possible evalu-
ate only monotonically increasing load.

When the loading history is unknown, vectors of the
maximum and minimum values W sup, Ueinr Of the elastic
displacements wu.(¢) = BF(¢#) are introduced such that
Ug inf < Ue(?) < Uequp. The relation between the displace-
ments Uegup, Ueint and load bounds Fyy,, Fiy¢ reads as
follows:

Ue suyp = I;sustup + ﬁjaninfa Ue inf = ﬂsupFinf + ﬁiansup~ (9)
Here B = Bsup 1 Pinr, and the components of matrix B,
are positive members of matrix p or equal to zero.

The residual forces ST = (M, N?)" and displacements u;
of the shakedown state are obtained via the solution of the
stress—strain analysis problem [6,14,22].

3. Analysis of the residual force and displacement at
shakedown

The residual force and displacement of an adapted
frame can be analysed when the load variation bounds
Fgup, Finr (i.e. elastic forces S, j € J), limit moments M
and the relation ¢; = x—(‘f’f (k € K) are given. The residual
forces S, = (M,, Nr)T and displacements u, of the adapted
frame are to be found when it adapts to a variable repeated
load Finr < F(?) < Fyyp. The mathematical model of the
analysis problem is formulated on the basis of the mini-

mum complementary deformation energy principle
[5,6,201:
find
min F'(S;) = min % S'DS, (10)
subject to AS; =0, (11)
fi=My—®S; >0, S;,=8;+5;
for all j € J. (12)

F’ is the objective function of the problem (10)-(12). As
mentioned above, the blocks of the quasi-diagonal matrix
® are matrixes of the section yield conditions ®,, v € Z.
The optimal solution S; of the quadratic programming
problem (10)—(12) is unique. Though a particular loading
history is not considered, an F(z) in the range
Fine < F(#) < Fyy,, exists that ensures the shakedown state
after the appearance of residual forces S’.

The dual problem to the initial one (10)—(12) is stated as
follows:

find
" 1 T ~ T
max F’(S:,u;, 4;) = max _ES" DS, — le oS,
j=1
V4
=3 A[(My - ®(S,; +S,))
Jj=1
1 T L T
= max  —>S/DS; — i (M, — ®S))
Jj=1
(13)
)2
subject to DS, +» @4 — ATu, =0, (14)
j=1
=0, jelJ. (15)

Here F” is the objective function of the problem (13)—(15),
the dependencies (14) are the geometrical equations @, —
Alu, =0, and @, = Y7 ®"; = ®"Y J; are the plastic
strains. The optimal solution of the kinematic analysis
problem formulation (13)~(15) is S/, w;, 4; and also
0, = (I)TZ?:]A;, j € J. The maximum value of the energy
dissipated during the shakedown process iS Dy =

A Mo, j € J.

However, the deformed state of the adapted structure
depends on its loading history, i.e. on time ¢. In other
words, the vector of plastic strains 6;; may be non-unique,
resulting in the same residual forces S; but different resid-
ual displacements @if. Reselecting the components of all the
obtained vectors u, the vectors of the minimum and max-
imum values uy; , u; - are constructed. Unfortunately, the
mathematical model (13)—(15) does not simulate the possi-
bility of finding all the vectors of plastic strains 6; here
with vectors uf. Thus, the main reason for solving the prob-
lem (13)—(15) is to determine the magnitude of the energy
dissipation Dy, (which is widely explained in Section 4).

An adapted frame is safe with respect to cyclic—plastic
collapse (alternating plasticity or incremental collapse). It
is important to mention that the shakedown of a structure
is not determined by the minimum (maximum) value
(min F'(S}) = max F’(S],u;, 4;)) of functions (10), (13)
but by the fact that any statically admissible forces S, (sat-
isfying relations (11) and (12)) of any kinematically admis-
sible displacements u, (satisfying relations (14) and (15))
exist [30]. In terms of mathematical programming, this
means that the structure will shakedown if the set of admis-
sible solutions of the problems (10)—(14) is not empty
[22,24].

In Section 2, it was shown that the pseudo-elastic state
of a structure is defined by the vectors Se;, Ueinf, Ue sup-
When the load bounds Fj,, Fy,, are given, these vectors
can be found in advance according to formulas (4), (9),
independently of the shakedown analysis. Meanwhile the
residual forces S,, strains @, and displacement u, satisfy
the equations

AS, =0, A'u,=0,, ©,=DS,+0,. (16)
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Having solved Eq. (16), the expressions of residual forces S,
and displacements u, are obtained in terms of the plastic

irains 0, S, = é(&)p, u, = H®,,. The influence matrixes G,
H of the residual forces S, and residual displacements u, read

G=aAK-K, H=a". (17)

O, are plastic strains in the formulas for calculating the
force S, and displacement u,. If the plastic strains
0,= (I)TZlel;f that appeared during the deformation
process are known, then the residual forces S; and dis-
placements u; can be calculated according to the following
formulas:  S; = GO; = G®'> ! A =GY! i =G,
u, =HO, =Hi", 4=} A, j€J [31] It remains to
mention that the influence matrixes G and H depend not
only on the geometry and physical parameters of the struc-
ture but also on the approximation matrix of the yield sur-
face ®@.

The main difference between elastic—plastic structures
subjected to a monotonically increasing loading F and a
variable repeated one F(#) (Finr < F(#) < Fgyp) is the possi-
ble appearance of the unloading phenomenon in the sec-
tions of the adapting structure. More details about the
unloading phenomenon will follow. Plastic strains @,
occur in section v when the complementary slackness con-
ditions of mathematical programming are satisfied:

Iy (Mo, = ®,S;,) =0 (or A ,f,;=0), Ay >0,
veZ jeJ. (18)

The yield condition satisfied as an equality f=0 can be-
come an inequality < 0 during a future deformation pro-
cess, but the plasticity multiplier remains positive, 4> 0.
Such behaviour of the structure cannot be evaluated
because of the complementary slackness conditions
/lzjfv,j =0, ve Z, je€ J (these conditions are included in
the objective function (13) of the problem’s kinematic for-
mulation (13)—(15)). This is important, because during the
adaptation process the residual displacements u.(z) can
vary non-monotonically — they may increase then later de-
crease etc. To evaluate the non-monotonic variation of the
residual displacements, vectors of the minimum and maxi-
mum values U, jnf, Uy sy are introduced; they are not related
to the time 7. Vectors of the displacement bounds u?

r,inf >
u; ., are obtained analysing all possible loading histories
F(7). Meanwhile vectors u, i, U qup are approximate, safe
bounds of the residual displacement such that

< ur‘sup- (19)

ur‘inf < u u

* *
r,inf? r,sup

The stiffness conditions (restriction of displacements of
deflections) read:

Unmin g u g Umax - (20)
The vectors Ui, Unay, used in formula (20), are admissible
bounds of the displacement variation defined by construc-

tion regulations; they are always known in advance. The
stiffness conditions (20) can obtained in the following form:

Upmin < ue(t)+ur(t) < Upmax -

If a particular loading history is not considered, for in-
stance, by incremental methods [21,23], these constraints
due to expressions (9) can be rewritten as follows:

Umin g uc,inf + ur,inf, l-lc,sup + llr,sup < Uppax - (21)

Often only the residual displacements are restricted in vol-
ume minimization problems, as the elastic components
Ug inf, Ue sup €an be easily calculated according the formulas
(9). Then the stiffness conditions (21) read:

Up min < Upinf, U sup < Upmax- (22)

The optimal solution S;, Dy, of the analysis problem
(13)(15) helps to formulate a mathematical model for
determining the bounds w s, U, sp and to obtain the
numerical values of these bounds.

4. Problems of determining the variational bounds of the
residual displacement

4.1. The first problem

The components iy inf, #risup, i = 1,2,...,m of the vari-
ational bound vectors U s, Ursyp Of the residual displace-
ment are obtained by solving the following linear
programming problem:

find
max it ~ri Su;
‘ Hjl_[lf’ "], i=1,2,....m, (23)
min Uy inf
subject to B;A=B,S!, >0, (24)
7™ < D (25)

This mathematical model represents a fictitious structure,
i.e. a system having displacements Wy, Uy sup, Which “enve-
lope” the displacements u, of the given structure at shake-
down [22,32] and conjoin main dependencies of the static
(10)~(12) and the kinematic (13)—(15) formulations of anal-
ysis problem. The unknown of the problem (23)—(25) is
{-vector A = 0, while the vectors S;, M, and Dy, are
known. Vector S” and the magnitude of Dy, are obtained
according to the optimal solutions of the problem (13)-
(15). My is a vector of the limit moments of the fictitious
structure. The components of vector M, are such that at
least one yield condition would be satisfied as a strict equal-
ity in each section v € Z of the frame. Thus, the limit mo-
ment of the structure section My, is calculated according to

Mo, = max®,(S; +S.,) =0, veZz jeJ. (26)

The elastic forces S] and matrix @ of such linear yield con-
ditions f; =M, — ®S; > 0, which satisfy condition (26),
are determined together with the vector M. Then the fol-
lowing equality is valid:

M, = ®* (S’ +S)). (27)

Thus, in formula (27), the number of vector Mo = (A~/I ol
Mp,....Moy,,.... M og)T components and rows of matrix
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®" is equal to the number of design sections { ({ < s X sp).
The main purpose of applying formula (26) is to construct
a new matrix of the yield conditions ®*, which has (rows
and n columns. The matrix ®* is used for formulating
the objective function (23) and condition (24) of the prob-
lem (23)—(25). The matrix H* used in the objective function
is calculated according to the formula H* = H®*". Equal-
ities (24), Bj;l = B,S;, are compatibility equations of the
structure’s residual strains. The number of equations is
equal to the degree of static indeterminacy of the system
ko =n — m. The compatibility equations of the strains B
®¥:BrSr are obtained from the geometrical equations
A'u, = DS, + O, after the elimination of displacements
u,. Here matrixes B and B, are B=[AT(AT)"!, — 1],
B.= — AT(AT)"!'D' + D”. Matrixes AT, AT and D/, D’
are sub-matrixes of AT and D, respectively; I is the identity
matrix. Using matrix ®", the equalities B;A = B, S’ are ob-
tained, where B; = B®™".

The vector components of problem (23)—(25) with the
optimal solution 4* > 0 are not related to the fulfilment
of the complimentary slackness conditions (18) and they
may not have the physical meaning of plasticity multipliers
(in contrast to the solution 4" > 0 of the problem (13)-
(15)). The upper bound of the dissipated energy Dy, can
also be calculated by Koiter’s suggested formula [33]. The
fictitious structure method allows a more exact determina-
tion of the residual displacement variational bounds u ¢,
U, compared with Koiter’s global conditions.

4.2. The second problem

The values uy;jnr, Urisup 1= 1,2,...,m of the displace-
ment limits u, j, Uy sup can be obtained from the basic solu-
tion vectors of 4g = 0 of the strain compatibility equations
By = B.S;. The basic variables 4, > 0 compounding the
vector Ay >0 can be determined according to
4, = (B}) 'BS:. Here the quadratic ko x ko matrix B} is
a sub-matrix of Bj. If the determinant of matrix B’ is equal
to zero, the statically determinate system corresponding to
B is geometrically unstable. In the general case, the num-
ber 5 of combinations constructing the sub-matrixes B
can be smaller or equal to {!/[kol({ — ko)!]. After all 1 vec-
tors Ag = 0 (here subscript # is omitted) are found, only
those vectors satisfying energy condition (25) are selected.
If 4o, > 0 satisfies conditions (25), the set of subscripts z
is 5. The vectors of residual displacements u,, . are calcu-
lated according to

Uy, = H*loz, ze k& (28)

The vectors U, jnf, Uy sup are constructed by picking the com-
ponents of all vectors uy . (z € Z) with maximal and mini-
mal values. It is easy to see that one of the vectors 4. > 0
will coincide with the optimal solution 4* > 0 of the prob-
lem (13)—~(15), i.e. 4g, = 4". Thus it is possible to write a
group of inequalities:

lir.inf < ur,inf < ur(t) < ur,sup < lTlr,sup~ (29)

Taking into account inequalities (19), the following
sequence of inequalities is obtained:
l’ir,inf < Uy inf < ﬁ;inf < ur(t> < ﬁ;inf < U sup < l~lr,sup- (30)
The compatibility equations of residual strains (24) in-
cluded in the problem (23)—(25) as constraints can be de-
rived using the formulas GO, =S,, ©,=®"l and

matrix B, as follows:
GoTi=8, (31)
B,G® "/ =B.S’, (32)

and the compatibility equations of the residual strains
B;A = B,S! are obtained, where matrix B} = B,G®"".

It is possible to change the constraints (24) of the problem
of optimizing the variational bounds of the residual displace-
ment (23)~(25) into condition (31) G®*TA =S}, 2 > 0, hav-
ing eliminated the linearly dependant equations in advance.
However, it is more practical to use the compatibility equa-
tions of residual strains (24): the physical meaning of the sec-
ond problem of determining the residual displacement
variational bounds u, j,f, U sup becomes evident.

Both vectors Uy jnf, Upsup and Urjnr, Urgyp can be used in
the stiffness constraints (30) of mathematical models of
optimization problems.

5. Case of a moving load

A monotonically increasing load is described in this way:
F = Fiys = Fy,, i.e. the lower and upper bounds coincide. In
this instance, the number of elastic force locus apexes is
equal to one and the elastic forces are S, (j = 1, this index
is omitted). If, for example, F;,s = 0, and the components
of vector Fg,, take in series the same values, then we get vec-
tors F: that correspond to each position ¢ of the moving
force system. In Fig. 3 a system of two forces (F; and F,)
moving on the bottom bars of a truss and a load vector
F: corresponding to each position ¢ (E=1,2,...,p) is
shown. For the sake of simplicity the components of
F:=(Fiz Fa,. .., F4)" are related not to the degree of free-
dom m of the discretized truss model, but only to the verti-
cal forces of the bottom bars of the truss. The elastic forces
of locus apexes S of the construction in the case of a mov-
ing load are calculated by formula (4), replacing the index ¢&
by j and thus considering p = p [34].

6. Mathematical models of adapted frame optimization
6.1. Design of minimum-volume frame at shakedown

A minimum-volume frame is designed when the yield
limit oy of the frame material and the lengths L, of all
its elements k (k € K) and load variation bounds F;,, Finr
are known. The problem of frame volume minimization
reads: minimize ), L4, subject to structure strength and
stiffness constraints. As stated above, the relation
= %—;’:, k € K should be prescribed in advance. The limit
moment of element Moy = oy Wi = E(oyr, A) 1s a func-
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Fig. 3. Moving load realized by vectors F: (£ =1, 2,...,5).

tion of the cross-sectional area A4; and the yield limit of the
material oy It is true that usually one or other specific
dimension of the cross-section (for instance, the flange
thickness #; of the I-section while the width of flange b is
fixed; see Section 8) participates in the functional relation
Mo, = &(oyr, Ax) instead of the cross-sectional area Ay.
Then the mathematical model of minimizing the frame vol-
ume is as follows:

find
min > LAy, (33)
k
subject to  f; =M, — ®(GA+S,;) > 0, (34)
P
> A My — ®(GA+S)] =0, 4 >0,
j=1
p
A=k, jEJ, (35)
j=1
Ak = Ak,min; k S K7 (36)
Ur min < Uy infs ur,sup g ur,max (37)

The cross-sectional areas Ay, k € K (or another specific
dimension of the cross-section) of the frame elements and
vectors of plasticity multipliers 4; > 0, j € J are the un-
knowns of the non-lincar mathematical programming
problem (33)—(37). Formulas (35) represent the comple-

mentary slackness conditions of mathematical program-
ming [35]. The lower bound of the cross-sectional areas
Ajmin 15 included in the construction constraints (36)
Ay = Ajmin- It 18 not difficult to introduce elastic displace-
ments into the stiffness constraints (37) (see inequalities
(21)). The limit moments My and influence matrixes «, f,
G, H are related to the unknowns A4, k € K; the listed ma-
trixes are recalculated during the solution of the problem
(33)—(37). If the stiffness constraints are neglected, cyclic—
plastic collapse of the frame occurs.

When only the bending moments M are taken into
account in the frame calculation, the following mathemat-
ical model of frame volume minimization is obtained:

find
min ZLkAk, (38)
k

subject t0 [ = Mo — GA — Me oy = 0,
Smin = Mo + GA+ M in = 0, (39)
JmaSmax = 0, AL frnin = 0,
dmax =0, Amin = 0, (40)
A= (Aamaxs Aamin) (41)
Ay = Agmin, k€K, (42)
U min < Urinf, Urgup < Upmax (43)
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Extreme elastic bending moments M max = %supFsup T @ing
Fint, Me min = %supFinr T @intFsup are known in the problem
(38)—(43). The unknowns are the cross-sectional areas Ay,
k € K of the elements and the vectors of plasticity multipli-
ers lmaxa Amin~

In the case of a monotonically increasing load, j = 1 and
conditions (34), (35) of all the discretized frame have the
following form: f=M, — ®(Gi+S.) = 0, A'[M, — ®(G
A+ 8S.)]=0, 4> 0. The stiffness constraints (37) of the
frame are simplified: w, in < HA < u, .. The scope of
problem (33)—(37) is reduced and computer realization of
the problem is simpler.

A brief description of the solution peculiarities of the
volume minimization problem will follow. From the solu-
tion algorithm scheme (Fig. 4), it is possible to see that in
the beginning both problems (33)—(43) are solved when
the stiffness conditions (37) or (43) are changed into the
constraints U, min < HA < 0, max of the corresponding holo-
nomic process. For instance, first the following simplified
variant of the problem (38)—(43):

find

min Z L](A/(7 (44)
k

(39)—(42) and
U min < HA < ur,max~ (45)

subject to

is solved. After an optimal solution of the problem (44) and
(45) is found, stricter stiffness constraints (43) are verified
using displacement bounds W jns, Urgup OF Upjns, Upgup. 1N
the scheme of the solution algorithm of the volume minimi-
zation problem (Fig. 4), the stiffness conditions are related
to the bounds u, juf, Uy gup.

It should be noted that the numerical solution of the
problems (33)—(43) is easier when the complementary
slackness conditions are moved to the objective function.
Then, for example, the objective function of the problem
(38)—(43) has the following form:

min (Z LA 4 AL froax + AL fmm> .
k

6.2. Shakedown load optimization of frames

In the case of a variable repeated load, there is also the
important problem of determining the limits of the load
Fup, Fing, which is stated as follows: find the shakedown

START
o | Initial cross-sectional
"lareas AL, ke K
Determination of
influence matrixes |- Al = gk , keK
a,G H
No
Formally, lower Solution of minimum volume
and upper limits Are
of il problem (33)-(36), (45) or Lo
displacements (38)-(42), (45). |Ak —Ak|35,
u U are Result ; new cross-sectional ke K ?
" reduced. areas A, jeJ and A . /
Yes
\
A Solution of the problem
e (23)-(25):

u . <u

7, min rinf ? r,sup

satisfied?

stiffness constrains (37) or (43)
u <u,

determination of residual
displacement variation
bounds u u

r,sup rinf

Optimal solution A; =A,, ke K, A"

END

Fig. 4. Flowchart of the proposed solution algorithm.
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load variational bounds F,, Finy, satisfying the prescribed
optimality criterion max{Tsustup T, Fir}, also the
strength and stiffness requirements of the structure. Here
Teup, Tine are the optimality criterion weight coefficient
vectors.

Then the mathematical model of the shakedown load
optimization problem for frames reads:

find

max {TsTustup Ty Fing
fZﬂ M, — Gusej)]} (46)

subject to f; =M, — ®(GA+S,;) = 0, (47)
i >0, A:Zp:l, jed, (48)
Fo, > 0, —Fj; > 0 (49)
Urmin < Upinf,  Ursup < Uppraxe (50)

The vector of limit bending moments M, and the limits of
the residual displacements U, pin, U max are known in the
problem (46)—(50). The optimal solution of the problem
(46)~(50) is the vectors F{ , Fj;and 4, j€J .

sup?
7. Optimal shakedown design of trusses

7.1. Evaluation of bar stability

The yield conditions of a discretized truss read:

fmax = NO - Nr - Ne.max = 01 (51)
fmin = NO,cr + Nr + Nc.min > 0. (52)

where Ne,max = “sustup + inFing Ne,min = “supFinf + dinf
Fy,p are the vectors of the minimum and maximum values
of the elastic axial forces. Here Ny=(Noy)',
Noer = (Noker) s Nox = 0ydis Nog, o = = QrOyiAss keK.
The possible failure of bars under compression because
of lost stability is evaluated by introducing the reduced lim-
it axial force vector Ny, in the yield conditions (52). The
components Ny, of the vector Ny are determined
according to the recommendations of Eurocode 3:

NOﬁcr,k = quNOJm ke Kv (53)
1
O =05 (54)
Y (02 - 2P0
where @, = 0.5(1 4+ a(4 —0.2) — 12), =2 \Bi=

o /ff s s+/B.. Here g, and Ej are the material yield limit
and the modulus of elasticity of the kth bar; A, = L/iy is
the bar slenderness, where iy is the radius of gyration of
the kth bar. In the case of a bar under pure compression
p4 =1, the value of the imperfection factor a depends on
the shape of the cross-sections and the properties of the

material used (¢ =0.21 for hot rolled pipes). A possible

failure because of loss of stability of the bar system is not
evaluated when N = Nj.

7.2. The problem of truss volume minimization

The minimum volume of a truss can be determined by
solving the following problem:

find

min ZLkAk + 45 [No = (GA 4 Nemax )]
+ A’cr [NO@T (Gl + Ne,min)]y (55)

subject to fmax = NO - Gi-— Ne,max = 07 (56)
fmin = NO,cr + G+ Neﬁmin = 07 (57)
j'max = 0, lcr = Oa A= (lmaxalcr)T» (58)
Ak = Akmim ke Ka (59)
U min < Upjinf, Uy sup < Ur max- (60)

Here the load variation bounds Fiyy, F,p, are prescribed, so
in the mathematical model (55)-(60) the extreme forces
Nemax> Nemin are known. It is not difficult to introduce
elastic displacements into the stiffness constraints (60) by
applying formula (9). The unknowns of the problem
(55)—(60) are the cross-sectional areas Ay, k € K of the truss
elements and the vectors of plasticity multipliers Apax, Acr-
The stiffness constraints (60), requiring the solution of
problems (23)—(25), show that the main non-linear truss-
optimization problem is not also a classical mathematical
programming problem.

The minimum of the objective function (55) is obtained
by neglecting the possible loss of bar stability if the factor
of yield stress reduction is ¢, =1 (k € K) in the yield con-
ditions (57) of the mathematical model (55)—(60). The min-
imum truss volume would be obtained according to the
conditions of cyclic—plastic collapse if the stiffness con-
strains (60) were neglected.

7.3. Problem of load optimization

The mathematical model of the shakedown load optimi-
zation problem for trusses is based on the problem (46)—
(50) and is stated as follows:

find

max {T3 Faup — TiFing — Ao [No — (G4 + Nepax )]
— 25 [Noer + (G4 + Nemin)]} (61)

subject to  f.x = Ng — GA — N ax = 0, (62)
fiin = Noer + GA+ Nemin = 0, (63)
Iy =0, Ao =0, A= (hmax, der) s (64)
Fop =20, —Fiyy = 0; (65)
Urmin < Urinf,  Ursup < Upmax- (66)

The limit axial force vectors Ny, Ny and the limits of
residual displacements W, min, Urmax are known in the
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problem (61)—(66), the optimal solution of which is the vec-
tors ¥, Fipand 4., 4.

8. Numerical example

Proposed calculation technique is illustrated by example
of minimization of three-storey frame (Fig. 5). The soft-
ware MOoptl, which is created by authors, is based on
Rosen project gradient method [24] and applied for solu-
tion of presented numerical example.

The three-storey frame shown in Fig. 5 is discretized by
using equilibrium finite elements. Finite elements with six
degrees of freedom are used for columns under bending
and axial loading and finite elements with seven degrees
of freedom are used for beam elements subjected to a dis-
tributed load with linear displacements of the central node
(see Fig. 8). The later elements [36] exactly model the stress
and strain field of the beams and allow the middle section
displacements w10, Ur11,Ur12,Ur0,Ur23 Of the beams to be
computed directly. This creates the possibility of decreasing
the number of unknowns in the optimization problem (33)—
(37) and of obtaining information that is necessary for later
analysis.

The frame is subjected to three independent load sets:
horizontal concentrated forces F, = {F|,F} F; F},F;,
F® F]} acting on the nodes of the frame and vertical uni-
formly distributed forces F, = {F}, F3} acting on the roof
beams and F3 = {F3} acting on the floor beams, respec-
tively. Limits for the variations of the load are defined by
the inequalities Fy jnr < Fi < Fy sup, Foine < Fo < Fo g and
F3’inf< F3 < F3,supa where Fl, inf — { — 516,—606, —3.6,
-7.8,—6.6,—6,—10.2} kN, Fi qp=1{10.2,12.6,7.8,3.6,
3.36,2.7,5.16} kN, Fsnr = {0,0}, Fpqp = {2.52,5.22} kN/

J. Atkociunas et al. | Computers and Structures 86 (2008) 1757-1768
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Fig. 6. Geometry of cross-sections.

beams are shown in Fig. 6. The parameters » and /' remain
the same throughout the optimization process, only the
thickness of the flanges varying. The initial flange thickness
is taken as ), =12mm for the frame columns,
1 oot beam = 8 mm for the roof beams and # ;.. peum =
8mm for the floor beams. Thus, the initial cross-sectional
areas of the columns, roof and floor beams are
A =)= =4 =4, =4 =4} = 4} = 4] = 57.6 cm?,

?oof beam Ag = A(I)O =144 sz and A?'loor beam — A(l)l -
A, = A}, = 57 cm?, respectively. The initial volume of
structure is #°=279,540 cm®. The limit forces of the
cross-sections are calculated according to

hl

Mozay-b~t-h’:o},-A-5,

The initial limit forces of the columns are M, =
155.66 kN m and N{, = 1353.6 kN, the limit forces of

Ny=o0,-2b-t=0, A.

m, F3 e = {0} and F; 4, = {30} kN/m. the roof and floor beams are M{ ¢y = 30.456 KN m,
The frame is made of steel with a modulus of elasticity N oor peam = 3384 kN and M{ g .= 301.388 kN m,
E=21,000 kN/cm® and a yield limit ¢, = 23.5 kN/cm®. 0 floor beam = 1339.5 kN; also ccor = 0.115, ¢oor beam = 0.09,
The cross-sections of the frame column, roof and floor ¢, =0.225
F)
u7 LM o o s e e e e S A A ML
T “of 17 AL, B (@ Yfe
g {}urlo @
=
el Al’ Il F3 AI’ Il F22
F b 3 vV J i v ¥ i Iy vy vy vy vy v vy vy iy A ux
4123 A;,I 24 @ 25 l020? 21 A, T 227116
. 3 13 Vurll @ Fj Urzzi 2 12
= Ay L F; Ay I F; Ay I
U EEEEEEEEREN IEEEEEEREEEEERN 111
2126 A 1 27 2871829 A 1 30 31114
3 13 iurm @ 313 urZSi @ @
g
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Fig. 5. Discretized frame.
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Fig. 7. Variation of frame minimal volume Vy;,.

Table 1
Variation of the residual displacements u,; of the beams

Cases Uy (mm) U3 (Mmm) Location of the plastic strains
Cl 6.0 6.0 7,8, 14, 20, 22, 29

Cc2 12.0 12.0 8, 14, 15, 20, 22, 29

C3 18.0 18.0 7,8, 14, 15, 20, 22, 29, 30
Cc4 24.0 14.48 7,8, 14, 15, 20, 22, 29, 30

The main task is to determine the minimum volume of
the adapted frame (Fig. 5) in the case when the vector of
inner forces of the discretized frame is S=
(M,N)" = (M, M2, M3,...,M31,N\,Ns,...,N13)" =(S)7,
i=1,2,...,n=44,1iec. both bending moments M and axial
forces N are taken into account. In this case the frame
volume minimization is performed according to the math-
ematical model (33)—(37). The unknowns are the cross-sec-
tional areas of the frame columns and beams A, k € K and
the vectors of plasticity multipliers 4;, j=1,2,...,8. Prob-
lem (33)—(37) was solved according to the sequence of oper-
ations shown in Fig. 4.

When the residual displacement constraints (37) are
neglected, the following results were obtained for the
frame: minimum volume Vi, = 156,724 cm?; residual dis-
placements of beams u;9 = 0.088 mm, u.;; =0.36 mm,
ur1o = 0.77 mm, u,> = 51.46 mm, u,,3 = 12.62 mm; plastic
strains appears in sections 7, 8, 14, 15, 20, 22, and 29
(Fig. 5).

The following residual displacement constraints were
imposed for vertical displacements of beams w5y, 3
(Fig. 5), in four cases:

Cl -6 <u2 <6, =6 < U3 < 6;

C2 -12 < Urno < 12, —12 < U3 < 12,
C3 —18 LUy < 18, —18 LUz < 18,
C4-24 < Urpo < 24, —24 < U3 < 24.

Units of displacement constraints are millimetres. The
calculation results depending on prescribed limits is shown
in Fig. 7 and Table 1.

a p
Y ¥V V V VY Y VvV VoYY Vvoy vy
b Pi2 iPkS P4
Py Pr7
Py Pi3
(o
Uk2 JukS U4
Uke U7
Ukl U3

Fig. 8. Finite element subjected by distributed load with linear displace-
ments of central node: (a) external load; (b) generalised forces; (c) nodal
displacements.

9. Conclusions

The formulation and solution of mathematical models
for optimization problems in structural mechanics is just
a first step in practical structural design, and also for struc-
tures at shakedown. An adapted structure is safe with
respect to cyclic—plastic collapse but does not satisfy its ser-
viceability requirements. Strength, stiffness and stability
constraints should be included in the mathematical models
of structure optimization. The determination of displace-
ments is especially complicated if a variable repeated load
is defined by the variational bounds. During the shake-
down process the residual displacements vary non-mono-
tonically as a result of the phenomenon of unloading
cross-sections. The complementary slackness conditions
of mathematical programming do not allow this physical
phenomenon to be evaluated. Thus, the non-linear prob-
lems of volume minimization and shakedown load optimi-
zation are not traditional mathematical programming
problems: while solving them, it is necessary to check the
stiffness conditions, i.e. to determine the lower and upper
bounds of the residual and elastic displacements.
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1. Introduction

The paper considers elastic—plastic frames affected by a variable
repeated load which is a system of forces that may vary indepen-
dently within prescribed bounds. Usually variable repeated forces
are not characterized by a loading history F(t), but only by time-
independent lower and upper bounds on the forces Fgyp, Finr,
(Finf < F(t) < Fsup)‘

Today the evaluation of stability conditions for optimization
problems involving elastic-plastic frames remains a topical scien-
tific problem [1]. For example, it is permitted to design elastic—
plastic frames using the EC3 or NEN 6771 standards, but in these
standards, the methodology and algorithms for stability evaluation
of shakedown structures are not fully described. This situation
influenced the choice of topic for this paper: the optimal shake-
down design of frames subjected to variable repeated load under
strength, stiffness, and stability constraints. The aspects of the
optimal shakedown design of bar structures under strength and
stiffness conditions have been investigated in detail in [2-12]. In
this research, two types of problems are considered [13]. The first
problem is the plastic moments minimization of the shakedown
frame. The unknowns in this problem are the plastic moments
M. The plastic moment, My = o,W,,, is the principal characteristic
of the bending element section (o, is the yield limit of the material
and Wy, the plastic section modulus).

* Corresponding author. Fax: +370 52700112.
E-mail address: Arturas.Venskus@vgtu.lt (A. Venskus).

0045-7949/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2010.11.014

The second problem is the load-optimization problem for a
frame subjected to variable repeated load. By solving the load-opti-
mization problem, the maximal load-variation bounds Fiy and F,,
which ensure frame integrity and which satisfy the stiffness and
stability requirements of the structure can be found.

The solution of frame-optimization problems at shakedown is
complicated because the stress-strain state of dissipative systems
depends on their loading history [14-18]. These difficult optimiza-
tion problems can be solved by using extremum energy principles
and the theory of mathematical programming [19]. This makes it
possible to create a new iterative algorithm based on the Rosen
project-gradient method [20,21]. Stability requirements for both
optimization problems can be evaluated by integrating the Matrix-
Frame commercial software for the building industry with the non-
linear mathematical programming software developed by the
authors. The part of the problem solution that is related to stability
is transferred to the design software which implements the EC3
and NEN 6771 standards. The solution procedure is therefore iter-
ative, in that the structural or load constraints of each ordinary
iteration of the main optimization problem are calculated using
the MatrixFrame design software. In the proposed methodology,
the initial data for the MatrixFrame design software are replaced
by the residual forces and residual displacements obtained from
the solution of the optimization problem, i.e., the evaluation of
the influence of plastic deformations. A criterion for an optimal
solution is the convergence within the desired tolerance of the
objective function of the main optimization problem. For other
investigators, the methodology developed here makes it possible
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to integrate the solutions of nonlinear programming problems
(plastic state variables: residual forces and displacements) into
their structural design software.

This paper is an updated and revised version of the conference
paper [1]. The paper was extended by detailed explanation of the
proposed nonlinear optimization mathematical models and by
the in-depth description of how the variable repeated load is ex-
pressed by the load combinations which occur in engineering
practice.

Numerical examples for frames are presented. The results are
valid if small displacements are assumed.

2. General mathematical models

The discrete model of the frame at shakedown consists of s
equilibrium finite elements. The limit force Sox (k=1, 2, ..., s)is as-
sumed constant in the whole finite element. The kth element has si
nodal points. The approximated nodal forces of each element are
the bending moments M and axial forces N. Generalised nodal force
S,=(M,N)", 1=1,2,...,8, v=1,2,...,¢ where { is the total num-
ber of discrete model design sections. The nodal internal forces of
each element are a combination of one vector of length n of dis-
crete model forces, S=(S1,S,, ..., S, ..., 8" =(S,)", and one vector
of length n, @=(01,0,,...,0,,...,0.)" =(0,), z=1,2,...,n.
The degrees of freedom are m, corresponding to m displacement
vectors U = (Ue 1, U, - - - » Uom)

The load F(t) is characterized by time t and the independent
variation bounds, Fsup = (F1sup, Fasups - - - » Fmsup)” and Fine = (F1inf,
Faints - Fming) " (Fing < F(t) < Fp). The elastic displacements u,(t)
and the forces S, (t) of the structure are determined using influence
matrices of displacements and forces, g=(AKA")"!, a=KA"p,
respectively, where u(t) = BF(t), S,(t)=aF(t), K=D"'. Here A is a
coefficient matrix of equilibrium equations, AS = F, and D is a qua-
si-diagonal flexibility matrix. The residual displacements u, and
the forces S, are related to the vector of plasticity multipliers 4
by the influence matrices H and G, where u, = HO'/A = HA,S, =
G®'/,=Gi,H=a", and G = cAK — K. Here & is the matrix of
piecewise-linearized yield conditions, ¢;. The number of all possi-
ble combinations F; of load bounds Fsup, Fine is p=2" (Fiyr <
F; < Fy), where S,;=aF;, u,;=pF;, j=1,2,...,p. It is possible to
evaluate directly, not only the variable repeated load F;, but also
other loads F, (for example a persistent load), additionally includ-
ing them in combination j. The elastic forces S,. and elastic
displacements u,. resulting from the loads F, are calculated as S, =
oF, u, = pF..

The general mathematical models presented in Table 1 are
the basis for the development of the mathematical optimization
models of frames at shakedown which are considered in this
paper.

In both plastic moments minimization and load optimization,
the objective functions are described by Eqs. (1) and (6), respec-
tively, where the vectors L, Tsp, and Tiys contain weighting coeffi-
cients. The yield conditions ¢;(j=1, 2, ..., p) are given by Egs. (2)
and (7), respectively, where j is the number of all possible combi-
nations F ; of load bounds Fg, Fiys. The complementary slackness
conditions of mathematical programming are given by Egs. (3)
and (8), respectively. Egs. (4) and (9) are the respective constraints
for the problem unknowns. The vectors Max, Minin, Fmax, and Fpn
play a major role in stability evaluation. For further details on this
topic, see Section 3. The stiffness constraints are given in Egs. (5)
and (10), respectively.

The optimal parameters for frame design using mathematical
model (1)-(5) can be calculated when the yield limit oy of the
frame material, the lengths L, of all elements k (k=1,2,...,5),
and the load-variation bounds Fj,p, Fiyr are known. Depending on
the cross-sectional shape, various yield conditions can be assumed.

Table 1
General mathematical models of optimization problems.

Plastic moments problem

Find Find

Load-optimization problem

minL"M, (1) max(Th,,Foup — Ty Finp) (6)

sup

Subject to Subject to

@, =Mo — B(Gi+S;+Sec) >0 (2) @ =Mo—B(Gi+Se+Sec) 20 (7)

z}qz_,:o.l,zo,lzjzl,, j=12,....p (3) A]q;,:o,;jzo‘;.:gj;a,, j=12..p (8
Mpin < Mo < Minax (4) OEFsup < Fnax, Fnin SFinf >0 (9)

Upin < (HA+ U + Uec) < Uax (5) Upin < (HA + Ug + Uec) < Umax (10)

This paper focuses on yield conditions for rolled I-beam steel sec-
tions (Fig. 1).

The relation ¢, = ",Q’—(‘;kk,k € K should be determined in advance.
The limit moment, Moy = 6 xWpik = &(0yk Ax), and the limit axial
force, Nok = oy Ak, of the element are functions of the cross-sec-
tional area, Ay, and the yield limit of the material, oy, It is usually
true that one or two specific dimensions of the cross-section (for
instance, the flange thickness t; and the web thickness t,, of the I-
beam cross-section, while the width of the flange b and the
height h are fixed); see Examples 1 and 2 can participate in the
functional relation Moy = &(oyr, Ak). The limit moments My, of
the frame elements and the vectors of plasticity multipliers
4;=0,j=1,2,...,p are the unknowns of the nonlinear mathe-
matical programming problem (1)-(5). The structural require-
ments for the frames, M, and M,.x, are given by conditions
(4). The limit moments My and the influence matrices a, g, G, H
are related to the Ay, k=1,2,...,s; these matrices are recalcu-
lated during the solution of problem (1)-(5). If the stiffness and
stability constraints are neglected, the frame will approach, but
not reach, the point of cyclic-plastic collapse. Mathematical mod-
els of shakedown structures where cyclic-plastic collapse (incre-
mental or alternating plasticity) occurs are described in [11].
The optimal solution of problem (1)-(5) consists of the vectors
M, and 4;,j=1,2,...,p.

In the case of variable repeated load, the problem of determin-
ing the load-variation bounds Fy,p, Fiy¢ for problem (6)—(10) is also
important. This problem can be stated as follows: find the shake-
down load-variation bounds Fi,p, Fis, which satisfy the prescribed
optimality criterion, max(Tzustup - TiTaninf), and also the strength,
stiffness, and stability requirements of the structure. The vector of
limit bending moments My and the limits uy,, Umax Of the total
displacements u = u, + U,; + U, are known from problem (6)-(10).
The optimal solution of this problem consists of the vectors
Fp.Fipoand 47,j=1,2,....p.

A rearrangement of mathematical models (1)-(5) and (6)-(10)
for purposes of computer implementation is presented in Table 2.

MIM |y [085 ¢
- k

~085 ¢

NIN, ® = 085 —¢ |, v=L2,.,C

I -0.15 | 0.15 I " 1-085 —¢,
1 0
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Fig. 1. Linear yield conditions.



J. Atkociunas, A. Venskus/Computers and Structures 89 (2011) 435-443 437

In mathematical models (11)-(15) and (16)-(20), the complemen-
tary slackness conditions given in Egs. (3) and (8), /le(pj =0, are
moved to the objective functions given in Eqs. (11) and (16). This
rearrangement is made because the optimal solution gives
i.jT(pj = 0 and because of the Lagrangian relaxation principle, which
allows placing constraints into an objective function. If the comple-
mentary slackness condition is part of the objective function, the
optimization process is considerably faster, because the condition
}va(pj = 0 is satisfied, not during ordinary iteration, but only when
the optimal solution is reached.

3. Stability evaluation

The stability of mathematical models (11)-(15) and (16)-(20)
is evaluated using the structural restrictions given by Egs. (14)
and (19), respectively, which are calculated according to the
stability requirements of the EC3 or NEN 6771 standards (or even
another standard). Various standards have been implemented in
commercial software that is available to meet the needs of
designers. The authors of this paper have used the MatrixFrame
building-industry software, version 4.1, for stability evaluation.
Stability checks can be performed in MatrixFrame for both
standards mentioned. In the case of EC3, the buckling resistance
of members is calculated using equations given in Table 3. In
the case of NEN 6771, the stability check is performed using
equations given in Table 4. An element k meets the stability
requirements when the maximum stability unity check (UCy)
calculated using the equations in the standard is less than or
equal to unity. UC is the ratio of the design value to the design
resistance.

Frame plastic moments minimization is performed using math-
ematical model (11)-(15) in an iterative manner (Fig. 2).

Step 1. The influence matrices «°, p°, G°, H®, and the coefficients
cd,k=1,2,...,s of the yield conditions are determined for the
assumed initial cross-sectional areas Ag, k=1,2,...,s. Con-
straints (14) for the problem variables Mo, are Mgk min =0 <
Mo < Moxmax = oo (the only constraint on variable Mg sign
is applied).

Step 2. The problem described in Egs. (11)-(15) is solved, and
the new distribution of limit moments My, k=1,2,... s, is
determined. The selection of new sections can be performed
in two ways: by changing the cross-sectional dimensions (con-
tinuous optimization) or by selecting a set of new sections from
an available assortment of manufactured cross-sections using
the criterion W}, > Mg, /0y (discrete optimization).

Step 3. Plastic state variables - residual forces S,, and displace-
ments u, are introduced into the MatrixFrame stability calcula-
tion. If the maximal stability UC,>1, k=1,2,...,s, then by

Table 2
Mathematical models used in the computer implementation.

Plastic moments problem Load-optimization problem

Find Find
min(L"Mo + 2] ;) (1) max(T,,Fap — TieFuy — 4 @) (16)
Subject to Subject to

@;=Mo — D(Gi+ Sy +5ec) >0 (12) @ =Mo — B(Gh+ S +Sec) >0 (17)

4j>04=%4 j=12,..p (13) %4>0i=%4, j=12,....p (18)
i i
Mmin SMO SMmax (14) 0 SFsup SFmax‘Fmin SFinf < 0 (19)

Upip < (HA+ U + Uec) < Umax (15) Uiy < (HA+ Uy + Uec) < Umax (20)

changing the cross-sectional dimensions or selecting a new
section from an available set, a new cross-section is found
which has the property UC, < 1. In this case, Mo min has been
determined. This means that, in the next iteration, the limit
moment My, should be greater or equal to Moy min.

Step 4. New influence matrices «, g, G, H, and new coefficients
C k=1,2,...,s, are determined for the cross-sections with
areas Ay, obtained in Step 2.

Step 5. Problem (11)-(15) is solved again using the recalculated
matrices a, g, G, H, the recalculated coefficients c,, and the new
Mok, min Obtained in Step 3.

Step 6. Steps 3-5 are repeated until the cross-sectional areas Ay
obtained in two consecutive steps do not differ by more than a
specified tolerance and the stability requirements are satisfied.

The stability requirements for all elements k=1,2,...,s, are
evaluated in Step 3 by finding cross-sections Ay(Mok min) Which sat-
isfy the requirement that UC, < 1.

The frame load optimization is performed using mathematical
model (16)-(20), also in an iterative manner (Fig. 3).

Step 1. Problem (16)-(20) is solved, and the new vectors of
load-variation bounds Fsy, Firs are determined. Constraints
(19) on the problem variables Fgp, Fiyr are 0 < Fyyp < Frax =
00, Fmin = —0co < Fipr < 0 (the only constraints on variables
Fsy, and Fiy¢ sign are applied).

Step 2. Plastic state variables - residual forces S, and displace-
ments u, are introduced into the MatrixFrame stability calcula-
tion. If the maximal stability UC,>1, k=1,2,...,s, then by
changing the load domain F;, a load domain is found that
ensures that UC, < 1. In this case, Fn.x and F.;, have been
found. This means that in the next iteration, the load-variation
bounds Fs,, and F;ys cannot exceed the load-variation bounds
F.x and F,;, which satisfy the stability requirements.

Step 3. Problem (16)—(20) is solved again using the load-varia-
tion bounds Fy,.x and Fy,;, obtained in Step 2.

Step 4. Steps 2 and 3 are repeated until the load-variation
bounds Fs,, and Fi,s obtained in two consecutive steps do not
differ by more than a specified tolerance and the stability
requirements are satisfied.

The stability requirements for all elements k=1, 2,...,s, are
evaluated in Step 2 by finding load-variation bounds F., and
Fin that satisfy the requirement that UC, < 1.

4. Numerical examples
4.1. Introduction to examples

An Example 1 of the plastic moments minimization problem
(11)-(15) and Example 2 of the load-optimization problem (16)-
(20) illustrate the proposed calculation technique. The convex non-
linear optimization software modules MOopt1 and MaxFopt1 were
used for the first and second problems, respectively. They are
developed by the authors and are based on the Rosen project-gra-
dient method [21] and are used here to obtain a solution of the
numerical example under study. For stability evaluation, the
MatrixFrame software for the building industry is used. Both
examples are applied to a two-story frame (Fig. 4). The frame is
subjected to two sets of independent loads: the horizontal, concen-
trated forces F; = {F},F> F3 F{ F}} acting on the nodes of the
frame, and the vertical, uniformly distributed forces F, = {F}, F3}
acting on the roof beams (6,7,8,9). A permanent load
F.=117kN/m acts on the floor beams (10,11) The limits of
load variations are defined by the inequalities Fj s < F; < Fysyp,
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Table 3
Stability evaluation formulas according to EC3 standard.

Ngq
<10,
Ny : (EC3#6.46)
Meq
< 1.
Mg < 10 (EC3#6.54)

Ngq k My gg + AMy gq +ky M_gd + AM; kg <1,

Ty Nri vy o Myre M R
Tt VE T Tm

/

(EC3#6.61)

N, M AM M AM,
e g My +M a vEd | ks, zEd + 2Ed
Ly Y.

T T ey Ve VS 1 (EC3#6.62)

T LLT T

Ngq the design values of the compression force

Npra the design buckling resistance of the compression member

Meq the design value of the moment

Mp ra the design buckling resistance moment

My g4, Mz ga the maximum moments about the y — y and z — z axis along the member, respectively

AIVIy.Ed 3 AI‘/Iz.Ed

the moments due to the shift of the centroidal axis, according to EC3#6.2.9.3 for class 4 sections, see EC3# Tables 6

and 7
Lys Xz the reduction factors due to flexural buckling from EC3#6.3.1
Nrx the characteristic resistance to normal force of the critical cross section

My.Rk ) Mz.Rk

Xir

Ky, kyz, Kzy, Kz the interaction factors

the characteristic moments resistance of the critical cross section about the y — y and z — z axis, respectively

the reduction factor due to lateral torsional buckling from EC3#6.3.2

Tmi partial factor for resistance of members to instability assessed by member checks

F>jnf < F, < Fo5yp. It is noteworthy that the load combinations
which occur in engineering practice can be modeled as separate cases
of variable repeated load. The number of all possible combinations
F; of load bounds F, Fi¢ in the current example is p = 22=4120].
The load domain can be described using four load combinations:

(]) F1,sup + F2,sup + Fc;
(2) F],sup +Fyinet Fe;
(3) Fl,inf+ FZ,sup + FC;
(4) Frint + Fajint + Fe.
The load combinations which occur in engineering practice can
be described by introducing additional multipliers:

(1) k11F1 sup *+ K12Fasup + Ka3FC;

(2) k21F1 sup * k22Fo ing + kasFe,

(3) k31Fiinf + k3oFo sup + kssF;

(4) ka1Fyint + KaoFo ing + KasFe,

where the values of the multipliers (the coefficients of each load
combination) kq1, ki3, ..., k43 and the load-variation bounds can
be determined by the requirements of the various standards. For
example, if F; represents wind load, F, snow load, and F, perma-
nent load, then the load bounds are: F;i,s=wind from right
(WFR), F;sp=wind from left (WFL), F,j,r=snow from bottom
(SFB, included to complete the formal description, but cannot occur
in reality), and F,, =snow from top (SFT). In this paper, the
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Table 4

Stability evaluation formulas according to NEN6771 standard.

439

Nc;s:d
el
wz.buch:u.d

N, csid
P S
6Oy:bucl\lc:u.d

My.max.s:d
—e <,
6Okipl\/]y:u:d

Nesa ny My:equ:s.d + Fy:tot:s.de; 4 n; XyMz:equ:s:d

<1
Nc.u.d ny -1 wkipMy u;d n; — 1 Mz.ud =

Nc.s:d ny XzMy equ;s:d n; Mz equ:s:d + Fz:tot.s:de2
N <1,
Newa Ny —1 0pMyug N, —1 M_ua

Nc:s:d

Nc.u.d

Wzbuc, (Uy:buc

My:max s:d

My:ud

Wip

ny,n;

My.equ.s.d 3 My equ;s:d

Fy.tot:s.d‘ Fz:tot:s:d

e e,

Yz

Ly Xz

(NEN6771#12.1-1a)

(NEN6771#12.1-1b)

(NEN6771#12.2-3)

(NEN6771#12.3-1)

(NEN6771#12.3-2)

the design values of the compression force

the reduction factors due to flexural buckling from

NEN6771# 12.1.1.4

the design value of the moment

the design buckling resistance moment

the reduction factor due to lateral torsional buckling

the proportionality coefficients

the equivalent moments about the y — y and z — z axis along the member, respectively

the values of the compression load

excentricities about the y — y and z — z, respectively

the coefficients depending on the classification of the structure

distributed wind-load action is replaced by a set of concentrated
equivalent loads, F; = {F},F3,F3,F;,F;}. The numerical values of
the load bounds are determined according to the Eurocode 1 stan-
dard. According to this standard, the load domain can be expressed
as follows:

(1) k]1WFL + klstT+ k]3FC;
(2) ’(21WFL + kzzSFB + k23Fc;
(3) k31WFR + k325FT + k33FC;
(4) k41 WEFR + k425FB + k43FC.
If external influences are incompatible (for example, snow and
wind), then they can be easily excluded from the load combination

by setting the corresponding multipliers to zero. In the current
example, all multipliers ki1, k12, .. ., K43 are equal to unity.

The vector of inner forces of the discretized frame is
S=(M,N)"=(M;, Mz, Ms, ..., Mg, N1, Na, ..., Ni1)' =(S,)", z=1,
2,...,n=39, ie., when both bending moments M and axial forces
N are taken into account. The frame is made of steel, with a mod-
ulus of elasticity E=210 GPa and a yield limit g, =235 MPa. The
material is elastic—perfectly plastic. The cross-sections of the frame
columns, roof, and floor beams are shown in Fig. 5. The upper
bound of total displacements constraints u,,,x are chosen accord-
ing to ratio Li/dmax Where L is the length of the kth element
(beam), dmax is the value related to building type and is specified
in national standards; in the paper Jmax =200 is assumed. The
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Fig. 4. Discretized frame.
Columns Beams knowns are plastic moments My, and the vector of plasticity
I ' I _ multipliers, 4, j=1,2,...,4. Five calculation cases were
Y [ ] Tu investigated:
; l Case C1. Only strength constraints (12) are taken into account.
= b N y Optimization is continuous.
Case C2. Only strength (12) and stiffness (15) constraints are
Iw evaluated. The following total displacement constraints are
imposed: —co<u5<0.03m, —oco<uUy<0.0225m, —oo<
p Y v ] 1y U3 < 0.0225 m (Fig. 4). Optimization is continuous.
: L / b Case C3. Only strength (12) and structural constraints (14) are
—_—

Fig. 5. Cross-sectional shapes for frame columns and beams.

lower bound total displacements constraints uy,;, = —oco (displace-
ments aren’t limited).

4.2. Example 1

The plastic moments minimization problem (11)-(15) with sta-
bility constraints calculated according to the EC3 standard is inves-
tigated in this example. The limits of load variations are
Fyine={-9.75, -4.9, -5, —=6.75, =19.5} kN, F;4,,={13,6.5,6.75,5,
14.6} kN, F,jnr={0,0}, Fysup={48,48} kN/m. The parameters b
and h remain the same throughout the optimization process, with
only the thickness t=t;=t,, of the flanges and web varying. The
values b and h of the cross-sections are given in Table. 5. In the case
of discrete optimization, the cross-sections are selected from an
assortment of available manufactured cross-sections.

The limit forces for the cross-sections when t = ty=t,, are calcu-

lated according to My = a,W,,, = g, <t3 —(b+ht*+ (%—% bh) t),
No = 6,A = a,(2bt + t(h — 2t)).
The main task is to determine the minimal plastic moments of

the affected frame (Fig. 4). The frame plastic moments minimiza-
tion is performed using mathematical model (11)-(15). The un-

Table 5

Values of cross-sections.
Elements k=1,2,..., s b (m) h (m)
1,2,3 0.15 0.15
4,5 0.1 0.12
6,7,8,9 10,11 0.15 0.2

taken into account. Optimization is continuous.

Case C4. Only strength (12) and structural constraints (14) are
taken into account. Optimization is discrete.

Case C5. All constraints (strength (12), stiffness (15), and struc-
tural (stability) (14)) are evaluated. The following total dis-
placement constraints are imposed: —oco < U5 < 0.03 m, —oo <
U14 < 0.0225 m, —oo < Up3 < 0.0225 m (Fig. 4). Optimization is
continuous.

The calculation cases C1 and C2 was solved using the software
MOopt1, whereas for the cases C3-C5 the software coupling
MOoptl - MatrixFrame, using the sequence of operations de-
scribed in Section 2 and Fig. 2 was used.

The calculated results for all the cases described within the im-
posed constraints are shown in Table. 6. In cases C2 and C5, the to-
tal displacement u,3 reaches the upper bound umax=0.0225 m.
When discrete optimization is used in case C4, the limit moments
Mo: = 174986 N m, Mg, = 57610 N m, and Mys = 189018 N m corre-
spond to cross-sections HE240, HE160, and IPE330, respectively. It
is noteworthy, that the same discrete cross-sections were obtained
in 4th and 5th iterations, and therefore the optimization process
was stopped and assumed that optimal solution was reached.
The discrete optimization (case C4) is very important for civil engi-
neering, however the continuous optimization (cases C1-C3, C5)
could be an introductory step to discrete optimisation. For exam-
ple, using section properties, obtained from the continuous optimi-
zation, is possible to choose nearest fitting discrete cross-section
from assortment.

Convergence of the main optimization-problem objective
function within the desired accuracy is a criterion of the optimal
solution. In case C2, with a convergence tolerance ¢ = 0.25%, the
iteration process is shown in Table 7. Convergence of the
optimization-problem objective function for all cases is illustrated
in Fig. 6.
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Calculated results for the volume-minimization problem.

Case Mop; (N m) Mo, (N m) Mps (N m) Objective function (OF) Volume (m?) Location of the plastic strains
C1 75441 41673 204168 3991522 0.26149777 6, 2,23
2 93970 34942 223206 4403462 0.292369813 23
c3 120537 48302 186579 4173339 0.283231289 23
C4 174986 57610 189018 4755802 0.350856685 23
c5 108090 44151 215258 4466587 0.300776204 23
Table 7 4.3. Example 2

Convergence of the optimization-problem objective function for case C2.

The load-optimization problem (16)-(20) with stability con-

Iteration Mp; (Nm) Mo, (N m) Mops (N m) OF 6 OF% ) ] )
p 96358 42400 240460 4733292 §trall?ts calculated according to the NEN 6771 standard is analyzed
2 93807 37591 204883 4143051 1247 in this example. ] )
3 95221 37257 236064 4621487  -11,55 The values of the cross-sections are shown in Table 8. The cross-
4 93755 35439 211158 4223807 8,61 sections remain unchanged throughout the entire optimization pro-
5 94299 35814 231966 4543060 -7, 56 cess. Limits for load variations F inr < Fy < Fi sup, Fainf < Fo < Fasyp
6 93670 34931 215459 4284503 5,69 R ’ " ’
7 04140 35320 228876 4492323 4 85 are unknowns of the optimization problem. The loads F; and F, rep-
8 93767 34832 218090 4324254 3,74 resents the wind and snow loads, respectively. The snow load can’t
9 94083 35129 226802 4459547  -3,13 act from bottom to top, so the constraint F,min=—10 < Fojnr <0
1? gigig g‘;gi; 5;2‘71‘712 ﬁgg;?g 2.2452) X was applied for load F, variation bound F; ;. Predicted optimal value
12 93885 34860 220870 4367176 1,60 is in range of ten to hunFlred thpusands and. it is possible to. trfeat
13 94016 34999 224559 4424527  —1.31 F> min = —10 = 0. The main task is to determine the load-variation
14 93912 34882 221583 4378244 1,05 bounds of the affected frame (Fig. 4). The frame load optimization
15 93997 34973 223983 4415558 -0, 85 is performed using mathematical model (16)-(20). The unknowns
16 93929 34898 222047 4385447 0,68 are the load-variation bounds, F; inf, F2inf, F1 sup, and F>sp, and the
17 93984 34958 223609 4409735 -0, 55 .. - s ' " .
18 93939 34909 222348 4390121 0. 44 vector of plasticity multipliers, 4; j=1,2,...,4. Three calculation
19 93975 34948 223365 4405942 -0, 36 cases were investigated:
20 93946 34916 222545 4393195 0,29
21 93970 34942 223206 4403462 -0,23 Case C1. Only strength constraints (17) are taken into account.
4900000
4800000 7\
4700000 “\\ ]
g 4600000 \ /"' —+—C1
B 4500000 — = C2
2 4400000 \{\ / Wﬁ P_ . = g = C3
o /\w v N " D 2 ~-— ———a—
= 4300000 / \ / v ¥ —x—C4
-é’T 4200000 i %« C5
4100000 +—
4000000 o o, .
3900000 T T T T T T T T T T T T T T T T T T T T
|
1 2 3 4 5 6 7 8 9 10 14 12 13 14 15 16 17 18 19 20 21
Iteration
Fig. 6. Convergence of the optimization-problem objective function.
Table 8
Values of cross-sections.
Elements k=1,2,...,s b (m) h (m) t(m) Ar (m?) Mok (N m) Nok (N)
1,2,3 0.15 0.15 0.016 0.006688 88665 1571680
4,5 0.1 0.12 0.01 0.003000 31725 705000
6,7,8,9,10,11 0.15 0.2 0.03 0.013200 21432 3102000
Table 9
Calculated results for the load-optimization problem.
Case Fy sup (N) F sup (N/m) Fiinf (N) Fy ine (N/m) OF Location of the plastic strains
1 23679 44035 —-29349 -10 97073 4,6,8,23
C2 15777 26006 —23958 -10 65751 4,6
c3 11839 19200 ~14673 -10 45722 4
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Case C2. Strength (17) and stiffness (20) constraints are taken
into account. The following total displacement constraints are
imposed: —oo < U5 <0.03m, —oo < U4 <0.0225m, —oo < Ups
< 0.0225 m (Fig. 4).

Case C3. Strength (17) and structural constraints (19) are taken
into account.

The calculation cases C1 and C2 was solved using the software
MaxFopt1, whereas for the cases C3 the software coupling
MOopt1-MatrixFrame, using the sequence of operations described
in Section 2 and Fig. 3, was used.

The calculated results for all cases described within the im-
posed constraints are presented in Table 9. In case C2, the total
displacement u,3; reaches the upper bound umax=0.0225m. In
presented example the stability evaluation plays important role.
In case C3 the value of objective function (OF) is the smallest.
The difference of OF value between C3 and C2 is 44% and be-
tween C3 and C1 is 112%. The iterative solution procedure
was performed only for case C3, while the optimal solutions
for cases C1 and C2 were obtained in the first iteration. Only
one iteration was needed because no software coupling was
used and the stiffness matrix K is constant in the whole optimi-
zation process.

5. Conclusion

Practical implementation of a shakedown structural-design
methodology should be based, not only on theoretical improve-
ments and new mathematical models, but also on a close relation
with existing building design practices. In this way, it is possible to
avoid a gap between the theoretical methods of structural optimiza-
tion and real design practices based on standards. For this purpose,
this paper presents main optimization problems with strength, stiff-
ness, and stability constraints, in which the part of the solution
related to stability is transferred to a design software package which
conforms to implemented standards. The solution procedure there-
fore becomes iterative: the structural or load constraints for an
ordinary iteration of the main optimization problem are calculated
using the design software. On the other hand, the initial data for
the design software become residual forces and residual displace-
ments obtained from the solution of the optimization problem, i.e.,
the influence of plastic deformations is evaluated. Convergence of
the main optimization-problem objective function to the desired de-
gree of accuracy is a criterion of the optimal solution. The proposed
ways of solving optimization problems include the implementation
of discrete-optimization principles. For future investigators, the
methodology developed here offers the possibility of integrating
the solution of nonlinear programming problems (plastic state vari-
ables - residual forces and displacements) into their structural de-

sign software. In this way, shakedown theory can become a
generalized tool for calculation and optimization of elastic-plastic
structures under different loading conditions.
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1. Introduction

For the purpose of saving material, structures are designed by
applying the methods of optimization [1-7]. The various specific
algorithms for nonlinear optimization problems of structures are
recently created: incremental [8], genetic [9-11], discrete opti-
mization [5], evolutionary [12], homogenization [13] and other
optimization algorithms [ 14-16]. The solution algorithms for non-
linear optimization problems are not as universal as the latter
for the linear problems. They are mostly dedicated to solving
a particular type of problem. Furthermore, the problem of con-
vergence of finding an optimal solution occurs frequently, while
they are applying. Therefore, nonlinear optimization problems fre-
quently are solved by using the approximation technique when
the linear programming problem is solved in each iteration. This
method is applied in the paper [17], which is dedicated to the op-
timization of elastic structures. While designing the structures, an
additional economy of the structural material is obtained for the
structures with plastic deformations with respect to optimal ones
with elastic deformations. However, the optimization problems of
elastic-plastic structures [6-9,15] are evaluated where not only
the strength, but also stiffness and stability requirements, are com-
plex nonlinear programming problems and the realization of them
is complicated. In this paper design problems of the elastic and
elastic-plastic steel structures are investigated. Their mathemat-
ical models are formulated as nonlinear mathematical program-
ming problems by taking into account requirements of design
codes. Mathematical models are created by using the finite ele-
ment method. In these models there are evaluated the conditions

* Corresponding author. Tel.: +370 68447077.
E-mail addresses: kal@st.vgtu.lt (S. Kalanta), juozas.atkociunas@st.vgtu.lt
(J. Atkocitinas), arturas.venskus@st.vgtu.lt (A. Venskus).

0141-0296/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2009.01.004

of strength, stiffness and stability [18]. The cross-sections are de-
signed from standard steel rolled profiles. The formulated non-
linear optimization problems are solved by the iterative method
where each iteration comprises the selection of the cross-sections
of the bars from the assortment and solution of the linear prob-
lems of discrete programming. The requirement of discrete cross-
sections is ensured by the branch and bound method.

2. The volume minimization problem for elastic structures

2.1. Mathematical models

There is considered the bar structure loaded by load combina-
tions v = 1,2, ..., p, which bars are designed from steel rolled
profiles set I71. Let the vector Ag denote the structural bars’ cross-
sectional areas and F,, S,, u, define the load, internal forces and
displacements of v-th load combination, respectively. Then the
volume (mass) minimization problem for the elastic structure is
expressed by the following mathematical model:

find minf = L'Ag

subjectto  [A] S, =F,, [D] S, — [A]'u, =0, )
[G1A) — [®] S, =0,  [E]lu, <u*,
v=12,...,p; A()ZAE, Ay e Il.

In this model: equalities—equilibrium and geometrical equa-
tions, describing the structural forces and displacements; first
inequality— strength and stability conditions; other inequalities—
displacements (stiffness) and constructive constraints. L is the
vector of the structural elements’ lengths. The unknowns of this
problem are the vectors Ag, S, and u,. Thus, the objective func-
tion of the problem expresses volume and the mass of the structure
at the same time. Flexibility matrix [D] of the structural elements
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together with the strength and stability matrix [@ ] depend on the
unknown Ag. Therefore the model (1) is the nonlinear program-
ming problem: the cross-sections of the structural bars, satisfying
the requirements of the minimum volume (mass) of the structure,
strength, stiffness and stability, are searched for.

By eliminating the internal forces S, = [5]71 [A]"u,
and geometrical equations, this model can be rewritten as the
following optimization problem:

find minf = LA,
subject to [Klu, =F,, [GlAg — [®4]u, >0, 2)
[Elu, <u™, v=1,2,...,p; Ao > Ay,
Ay ell.

where [®,] = [®] DI [AI"; [K] = [A] [5]_1 [A]" is the global
stiffness matrix of the structure.

2.2. Formulation of the main dependencies

The main dependencies composing the problems (1) and (3) are
formulated in terms of the finite element method. For this purpose
the structure is divided into the elements (bars) k = 1,2,..., r
joined in the nodes. The dependencies of the model (1) can be
composed by using the equilibrium finite element method [19],
and the model (3) can be created with the help of the equilibrium or
geometrically compatible finite element method [20], because the
stiffness matrix [K ] can be formulated not only from the indicated
formula, but also from the stiffness matrices of elements too.

Two equation groups compose the equilibrium equations
[A] S, = F,:

(1) the equilibrium equations for nodes describing the relation
between the nodal forces of connected into nodes elements
and the external forces acting on the nodes;

(2) the equilibrium equations for elements describing the relation
between the nodal forces and acting on the element external
load, and are formulated only for elements affected by a
distributed load. Expressions of these equations are presented
in the papers [17,19].

The equilibrium equation matrix [A] could be formulated from
the coefficients of the equilibrium equations of nodes and elements
or from the formula [A] = [C]" [A] [19]; here the compatibility
matrix [C] describing the relation between global displacements
of the structural nodes and nodal displacements of elements;
[A] = diag[A,] is the quasi-diagonal matrix, whose diagonal sub-
matrices are composed from the coefficients of the static equations
P = [Ai] S of the elements.

Flexibility matrix [D] = diag[Dy] of geometrical equations
[D] S, — [AI"w, = 0 contains in the principal diagonal the
flexibility matrices of the finite elements [Dy]. Its coefficients are
calculated by formula dj = di f,k Hyi (x) Hij (x) dx, where Hy; (x)
is the shape function of the internal forces; flexibility of the
element under tension or compression is d, = 1/EAy, flexibility

of an element under bending is dy = 1/Ely; E is the elasticity
modulus, A, I are the cross-sectional area and moment of inertia,
respectively.

First-order and second-order approximation functions of forces
(bending moments and axial forces) for equilibrium finite elements
and expressions of flexibility matrix [Dy] and equilibrium equa-
tions are presented below.

(a) Expressions of first-order element (Fig. 1):

2 X X
M) =Y Hg )My =(1- = )M+ =M,
=1 Ik lk

Ny (x) = Ny;

Py 1 2 ~\ Pps

P
= l Py

Fig. 1. First-order element.

Py
P E IEEEEREEERE LG
—» —» —_ = = = —p J i
Py ]! Y 2 3] 7 Py
Pkﬁ
Pr Pys
Fig. 2. Second-order element.
Pr1 0 0 -1
P 1/1 —-1/1 0
P 1/ ' o/k o | [Ma
P = Pu | = 0 0 1| 1>/1sz = [Ak] Sk,
Pys -1/l 1/l 0 k
Py 0 -1 0
I 2 1 0
D=—11 2 o0 |;
6Elc [0 0 6l /A

(b) Expressions of second-order element (Fig. 2) subjected to
distributed load:

3 3x  2x?
My (x) = Zij Mg =11- m + 7 Miq
j=1 k

N 4x 4x2>M +< P N 2x2>M
lk lﬁ k2 lk lﬁ k3

X X
Ne(x) = [ 1= — | Niu + —Nis;

I li
-0 0 0 -1 0
3/l —4/L 1/l 0 0 v
1 0 0 0 0 M’“
0 0 0 0 1 k2
Pe= | 11 -4/, 3/, 0 0 Mis | ,
0 0 10 0 x’“
—4/B  8/E  —4/E 0 0 3
L o0 0 0 1/ —1/I
2 1 -0,5 0 0
I 1 8 1 0 0
D] = 0,5 1 2 0 o |.
15El; 0 0 0 5i, 2, 5i;
0 0 0 2,5 5i

where iy = I /Ay.

The matrices [Ax] and [Dy] for elements under tension or under
bending can be obtained by removing corresponding columns and
rows.

Strength and stability condition. Strength condition of the
element under bending and tension or compression of the j-th
section is described via inequalities:

N+ GM; — RA; <0,
N — My — R4; <0,
Here R = f} a¥c; fy.q is the yield strength; y, is the partial factor
of the exploitation conditions; ¢; = A;/W,;; Aj, W,; are the cross-
sectional area and section modulus, respectively.

Furthermore, the bars under compression must satisfy the
stability condition

—Nj/¢j < RA; or —Nj/¢; —RA; < 0. (4)

Strength (3) and stability (4) conditions of elements meet the
Lithuanian national standards of civil engineering [18]. However,

N 3
— j—CjIVI]'—RAjEO.
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in the general case the conditions of strength and stability of
elements can be formulated according to other design codes, for
example Eurocode 3 [21]. Strength conditions (3) are created
for all nodes of elements and stability conditions (4) only for
the elements under compression. All of them are described via
inequality [G] Ag — [®] S, > 0.

2.3. Solution algorithms

The direct solution of the nonlinear discrete programming
problems (1) and (3) is fairly complicated. However, their solutions
can be found in the iterative process, where in each iteration
the cross-sectional profile is selected from the assortment and
the linear programming problem solutions, which are obtained
when matrices [D], [®] and [K],[®,] of models (1) and (3)
are replaced by matrices [D], [®]and [K], [®,],in which all
coefficients are known, because the cross-sections of bars are set.
The iterative process is finished, when it is found cross-sectional
areas coincide with the previously set ones. For the purpose of
minimizing problem volume it is possible to consider each load
case separately and for every one solve such a problem:

find minf = LA,
subjectto [A] S, =F,, [D]S, —[A]"u, =0; 5)
[G]Agy — [@]S, >0, [Elu, <u';
AOU = AO,vflv A()v ell
or
find minf = L'A,
subject to [K] u, = Fy;
[ClAg, — (@] u, >0, [Elu, < u; ®)
Aoy > App—1, Aoy €11.

Inequality Ag, > A, for the load cases v > 11is replaced by the
condition Ag, > Ag y—1. The vector Ag, corresponding to the last
load case is the solution of the problems (1) and (3).

Furthermore, the optimization problems (5) and (6) can be
solved in two stages:

(1) classic problem of structural mechanics is solved i.e. the
displacements u, = [K]"'F, and internal forces S, =
[D]7" [A]" u, are calculated; for this can be applied the equilibrium
or geometrically compatible finite element method and various
state-of-the-art computer technologies dedicated for this kind of
problems;

(2) it is determining the vector of strength and stability
conditions Sg, = [®] S, and solving the minimization problem:

find minf = LTAg
subjectto  [G] Ag > Sou, [Go] Ao > [E] u,, (7)
Ao >A;, Ajell, v=1,2,...,p.

Here the vector Ag is unknown, whereas Sp, = [®] S,. Having
software for the internal forces calculations, the solution method
is easier, because the volume of this problem is smaller. It should
be noted that it is possible to search for the optimal solution when
stability requirements are neglected. But in this case it is necessary
to verify if received cross-sections of bars under compression
satisfy stability conditions. If they are violated, then cross-sections
should be augmented and additional calculation iterations should
be performed and included into the mathematical model stability
conditions.

In the following optimization problems, the value of reduction
factor ¢ for eccentrically compressed elements is determined
by national standards of civil engineering [18] by taking into
account the eccentricity of the compression force, the slenderness
of the element and form coefficient of cross-sectional shape. In
each iteration value of eccentricity is determined by internal

2
27.6 kN P — P 27.6 kN
N AT
Yo+
' . fl|n
0.8KkN/M-| 5 > A x \
- / AN \
g Y 7/ o "8 \6 N4 | g5kNim
s 3y Pl
\L .
35700 w7
Fig. 3. Calculation schema of the framed truss.
2
27.6 kN P — P2 27.6 kN
0.8 kN/m 4 / ~
= = /
2 \ 6/
- St

Fig. 4. Framed truss with parabolic sketch bottom chord.

forces obtained in previous iteration and values ¢; of strength
conditions are determined by choosing characteristics of cross-
sectional shape A; and We;(Wy;).

Example 1. Let the bar structure, shown in Fig. 3 be loaded by
three load cases: | — p; = 16.4kN/m, p, = 16.4kN/m; Il — p; =
16.4kN/m, p, = 4kN/m; lll — p; = 4kN/m, p, = 16.4kN/m.
Moreover, the vertical load F = 27.6 kN and indicated wind load
acts in each load case. The optimal cross-sections from steel rolled
profiles must be found. Columns and the upper chord are designed
from I profiles and other bars from hollow rectangle tubes. Yield
strength R, = 275 MPa, elasticity module E = 2.1 x 10° MPa.
Stiffness requirements are described via constraints u, < 5 cm and
uy, < 10cm, where uy is the horizontal displacement of top node
of the column; u, is the vertical displacement in the middle of the
bottom chord of the truss.

The columns and the upper chord are calculated as the elements
under bending and compression and the other ones are calculated
as the elements under tension or compression. Cross-sections are
selected from the assortment. Initial height of the truss h = 3.3 m.
After optimization the following cross-sections were obtained: 1
— HEA300; 2 — IPE330; 3—180 x 180 x 6; 4—150 x 150 x 5 ;
5-90 x 90 x 5;6—90 x 90 x 4; 7—70 x 70 x 4; 8—80 x 80 x 4;
9—60 x 60 x 5. Total weight of the optimal structure is 5229 kg.

Optimization of the structure is influenced not only by the
height of the truss, but also by the web shape and the length of
the segments. For this purpose the problems of truss height and
web shape were created and considered.

3. Truss height and web shape optimization problems

In this section there are considered and formulated the optimal
height and the rational shape of bottom chord of the framed
truss, shown in Fig. 3, search problems. Two designed versions
are considering: (1) truss with horizontal bottom chord (Fig. 3);
(2) truss with parabolic bottom chord (Fig. 4). Height optimization
problems of these trusses are described by such mathematical
models of Box I: Here s; is number of bottom chord bars; s;,—
number of web bars; f—camber of the truss; l;—length of j-th bar,
a; = 4 (1—x)/ 12, I-length of the span; Yoj—the sketch of the
truss upper node j with respect to the support nodes. The vectors of
internal forces, displacements S,, u, and design parameters of the
structure - cross sectional areas A; and sketch of the truss f are the
unknowns of these problems. There are nonlinear programming
problems, which can be solved iteratively.
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(a) truss with parabolic bottom chord

find minL"Aq

subject to

[AD]S, = F,, (D1, A)]S, —[AD] u, =0,
[G)A) — [®(Ap)]S, = 0, [Elu, <u™,
v=12,...,p;

2 21/2 .
h=[B+0p+yo)’] . G=12 s

1
=10+ O0p+y)’l2, j=1,2,....5:

Vi — qﬁf = O, i= 1, 2; A0 € Il;

Ag > Ay,

(b) truss with horizontal bottom chord
find minL"A,

subject to

[AD] S, = F,,

[D{, Ap)IS, — [A(D]'w, =0,

[G] Ag — [@ (Ap)] S, = O,

[Elu, <u",

AOZAav A0€H9

1/2

=B+ +y*]".

ji=12,...,5sv=1,2,...,p.

Box I.
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Fig. 5. Mass of trusses with parabolic bottom chord dependence on height.
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Fig. 6. Mass of N-shaped trusses with horizontal bottom chord dependence on height.

Example 2. For the analyses of the framed structure in the first
example, which is loaded by three prescribed load cases, must be
determined: (1) truss rational bottom chord sketch; (2) rational
length of the web segment and bar placing; (3) optimal height
of the truss. The investigations were performed for three types of
trusses:

(1) N-shaped truss with parabolic bottom chord (Fig. 4):

(2) N-shaped truss with horizontal bottom chord (Fig. 3);

(3) M-shaped truss with horizontal bottom chord (Fig. 9).

The purpose of the investigation is the determination of the
optimal height and the optimal segment count by comparing steel
input and determination of minimal mass - economic truss. We
investigated trusses of height h = 3.3 + 4.5 m composed of 6, 8
and 10 segments. The results of frame optimal design are presented
in Figs. 5-10. They show various truss mass dependencies on their
count of segments and height. The results of the optimal design
of N-shaped trusses with parabolic and horizontal bottom chord
are presented in Figs. 5 and 6. They show that for any number of
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Table 1
Mass of the truss.
Type of the truss Number of the segments Mass of the truss (kg)
h=33m h=3.6m h=4m h=45m
1 (Fig. 4) 6 3519 3239 3123 2858
8 3219 3106 2956 2668
10 3330 2972 2800 2718
2 (Fig. 3) 6 3121 3027 2761 2801
8 2957 2679 2600 2657
10 2792 2721 2591 2606
3 (Fig.9) 8 2960 2714 2672 2639
10 2726 2729 2471 2491
segments the optimal height of the truss with parabolic bottom
chord is h = 4.5 m, and latter of the truss with horizontal bottom
chord — h = 4m. The minimal mass of the first truss is G = 4 7 18 e 2
2668 kg (count of segments is s = 8), and latter of the second / il 2
— G = 2591kg. (s = 10) is less by 77 kg. In that case when ” KT/(U< T/(V\L/“\\‘I;/‘ ’\I//u ;
count of segments and height are the same, the mass of truss with \ ¢ 4
horizontal bottom chord in all cases is less. Therefore the truss with § \i 9 8

horizontal bottom chord is optimal (see Table 1).

Fig. 7 shows investigation results of an M-shaped truss with
horizontal bottom chord and in Fig. 8 optimal design results of all
three trusses are presented. By comparing the presented results
we state that an M-shaped truss with horizontal bottom chord is

1

35.7m

3

Fig. 9. Framed truss with the optimal shape web.
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Truss mass dependance on its height
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Fig. 10. Investigations results of the optimal web truss height.

optimal (Fig. 9) with count of segments s = 10, and heighth = 4 m.
Their mass is G = 2471kg. Their graphical dependencies of the
bottom chord, count of segments and total mass on height are
shown in Fig. 10. The only mass of the trusses is shown in all figures
(the mass of columns, 1982 kg, isn’t evaluated).

In Fig. 8. the four top graphs are distinguished unfavorably
by steel input with three of them correspond to the truss
with parabolic bottom chord (Fig. 4). That obviously shows the
advantage of trusses with parallel chords.

4. The problem of elastic-plastic structure volume optimiza-
tion

In the case of the monotonically increasing load the mathemat-
ical model of the problem of the minimal volume (mass) elastic-
plastic structure can be formulated according to the corresponding
optimization model of elastic structure, when the plastic strains
&, = [®]" X and additional complementary slackness condition
are evaluated

{16180 - [3]'s} =0 (8)

that must correspond to plastic multipliers A > 0. So, referring
to the model (1), it is found such a monotonically increasing
load acting on elastic—plastic structure, which corresponds to the
requirements of the strength, stiffness and stability, mathematical
model of the optimization problem:

find
subject to

minL"A,
[AIS=F, [D]S+[®]'»—[Al'u=0,
A {[GlA — [®] S} =0, A>0, [E]lu<u’,
[GlA) — [®]S>0, Ao>=A;, Ajell.

The search of this nonlinear programming problem solution
S, u, N, A is very difficult. It is especially hardened by the non-
linear conditions (8). Therefore the problem is solved iteratively, in
each iteration selecting cross-sections of bars and solving a simpler
problem of nonlinear programming where only additional com-
plementary slackness conditions are nonlinear. For the purpose of
admissible (design) set simplification of the problem and its nu-
merical realization, it is needed to eliminate these conditions from
the constraints of the problem. This can be done in two ways — by
moving them to the objective function (such a possibility is proved
in the paper [22] and used in the paper [23]) or eliminating and

solving a reduced optimization problem. So in each iteration it is
possible to solve such a problem:

find minf = L'A; + AT {[G]A; — [®] S}
subjectto [A]S=F, [D]S+[®]"\—[A]'u=0, (10)
[G1A) —[#]S>=0, XA >0, [EJu<u’,
AO > Aa, Ao eIl
or
find minf = LTAg
subject to [A]S=F, [G]A;—[®]S=>0, (an

[DIS+[@]"»—[A'u=0, r>0,
[Elu<u*, Ag>A;, A€l

In the first case is the problem with nonlinear objective function
and linear constrains, and in the second case the reduced linear
programming problem (RLPP). It's understandable that while
solving RLPP, the condition A; { [G;] Ao — [®#;] S} = 0 of some
calculated section won't be satisfied. Therefore in this case for
defining the optimal solution it is needed to apply the method of
branch and bound, setting additional constraints A; < 0 for the
recent sections.

Example 3. It is needed to set the cross-sections of the bars of
the steel rolled profiles of the optimal framed structure, which
calculation scheme is shown in Fig. 3. The height of the trussis h =
3.3 m. The columns and the upper chord of the truss are designed
from I profiles, and other bars from a rectangular profile tube.
The yield strength of the metal R, = 275 MPa, elasticity module
E = 2.1 x 10° MPa. The requirements of the strength is described
via constraints u, < 5cm and u, < 10cm; here u,—horizontal
displacement of column top node, u,—vertical displacement of
truss bottom chord middle node.

Frame bars’ optimal cross-sections were determined with the
help of the branch and bound method by solving reduced nonlinear
programming problems. Such cross-sections of the bars were
found: 1-HEA300; 2 - IPE330; 3—180 x 180 x 6; 4—140 x 140 X 5;
5-90 x 90 x 5;6—90 x 90 x 4; 7—70 x 70 x 4; 8—80 x 80 x 4;
9—60 x 60 x 5. This solution shows that while designing a structure,
in which plastic deformations are allowed, it is possible to reduce
only tension 4-th bar cross-section. Minimal mass of the optimal
elastic-plastic structure f = 5178 kg is only 51 kg smaller than
the mass of the optimal elastic structure.
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5. Conclusions

1. The problems of steel structure designing are formulated as
nonlinear optimization problems. It is demonstrated that elastic
and elastic-plastic structures designed from rolled profiles
problems are nonlinear discrete optimization problems, whose
solutions can be found in an iterative way applying branch and
bound method and linear programming.

2. There are proposed three algorithms of optimal bars’ structures
design, whose relations can be formulated applying the
methods of equilibrium and geometrically compatible finite
elements.

3. While performed analysis of the bottom chord sketch, as it were
various height of the truss, it was determined that the truss
with parallel bottom chord (Fig. 3) is more rational, compared
with the truss whose bottom chord was formed of quadratic
parabolas (Fig. 4).

4. The problem of optimal height determination for truss is
formulated and the accomplished calculations determine that
height of optimal truss with horizontal bottom chord is hoy; =
4m (hepr = 1/91, I—span length) and latter of optimal truss
with parabolic bottom chord is 4.5 m (hep; = 1/81.)

5. While fulfilling the analysis of the truss web form and density
it was determined the most rational is the triangle web with
vertical bars (Fig. 5), while the length of segment is 3.6 m or
1/10- L

6. Elastic-plastic framed structure analysis confirmed the state-
ment that often an optimal structure project is determined not
by the strength, but the stiffness, stability and structural re-
quirements.

7. Created mathematical models and solution algorithms for 2D
optimization problems can be adopted for solution of 3D
optimization problems.
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Abstract. An elastieplastic axisymmetric steel bending plate subjetted repeated variable load (RVL) is considered.
The solution to the load optimization problem aalsddown is complicated because the stress-stat@ sf the dissipa-
tive systems (e.g. the plate plastic deforming)etiels on their loading history. A new algorithm floe load optimization
problem combining von Mises and Tresca yield ddtebased on the Rosen project gradient methotbisosed. The op-
timization results are obtained by integratingékisting software and that created by the authors.

Keywords: elastic-plastic plates, shakedown, energy pringiplises and Tresca yield criterion, mathematicalgpam-
ming.

1. Introduction plates optimization based on the Rosen projectignad

. . . . . method is proposed in this pap€lyfas and Atkéiinas
An elastic — plastic axisymmetric steel bendingtla gg4. Atkasitinaset al. 2007a; Atkgitnaset al. 2007b;
subjected to a repeated variable load (RVA(Y) is con-  atkogianaset al. 2008). The algorithm is based on the
sidered in this paper. The RVL is the system ofd$oa linear Tresca vyield criterion. When the optimalusian is
where each of which can independently vary witlia t obtained, the von Mises yield criterion is appliadthe
time t independent lower and upper bounds of the forcefatest step. The proposed algorithm simplifies the
Fint+ Fsup (Fing < F(t)g Fsup)- An ideal elastic — plastic merical solution of the complicated optimizatiorolplem

i . : e !
structure subjected by RVL can exceed its constreict when the Mises yield criterion is applied.

requirements due to a failure caused by its increate
collapseand/or its alternating plasticity. Both cases ar
usually referred to as cyclic plastic collapse. Bheke- The discrete model of a symmetric round plate i@ th

down plates are investigated in this paper. Thestigla polar coordinate system:(p, H)T is obtained by divid-

strains®, developed in the initial loading cycle produceing the plate intok=12,..s (kOK) circular finite

e2. The main dependencies of a discrete plate

the residual moment®!, which ensure the purely elastic

response of the plates during the following loadaygy
cles. Load shakedown analysis via humerical andhenat
matical programming methods is relevant for civil
engineering. This has been confirmed by the growin
number of investigations in this field (Mr& al. 1995;
Weichertet al. 2002; Kaliszky and L6gd 2002; Pham

) . - - » sequently, the second order circular element (tkernal
2003; Atkaitnaset al. 2004; Merkewiuté and Atkdi- . .
finas 2006; Stonkust al. 2009; Zilinskai¢ and Ziliukas forces approximated by a second order polynomié) w

2008). three nodes, distributed along the radpsis used. The

The solution of load optimization at shakedown isfinite elements are numbered along the radius @ora
complicated because the stress — strain statessipdtive ~ Secutive order, starting from the center of théepla
systems (e. g. the plate deforming) depends onftvel- T he circular plate can be subjected by a uniformly
ing history (Lange-Hansen 1998). The load optinizat distributed load and_lmearly d|str|but¢d load Itmh_on
problem is formulated by integrating extreme energy€ plate’s boundaries. The properties of the rater
principles and methods of mathematical programmingmodulus of elasticityE and Poisson coefficient ),
theory. A new algorithm for the problem combining thicknesst and intensity of the distributed loagl re-
Mises and Tresca vyield criterion for adapted flekur main constant in the whole finite element. The fiorns

elements withs, nodesl =125, =3 (I0L), where the

master nodes are numbered 1 and 3, respectivety (se
Fig. 1). The polar coordinate system is locatedtha
center of the plate. It is enough to investigatéy ame
Yadius of the plate because of the internal foeres the
displacements do not depend on the coordit@teCon-
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The algebraic equilibrium equation for the finiteraent
is obtained after differentiating the expressiohw®ich
was applied (2):

A(pM =, 4)
where

A (p) =N (p). ©)

The separate elements are joined to a system by
writing the equilibrium equations for the mastedas of
the adjacent elements. Thus, the continuity of ridal
momentsM , and the shear force@p are ensured. The

set of plate equilibrium equations while the bouwyda
conditions are applied are:

[AlM=F or Y[A M =F. (6)
k

a)

The dimension of the matrix[A] is(mxn), where
n=¢x2. The geometrical equations for the discrete

plate model are obtained by applying the virtuabss
principle:

SFTu=Y [oM{ (p)7M(p)dA. )
b) K A,

Fig. 1. a) The finite element of a round plate; ; : .
b) gt’he po)sitive directions of internal focms and by using equations (2) and (6):
of the internal forces distribution can have didourities

(in the place of master nodes) when the equilibriofm
finite elements are applied (Belytschko 1972; Baltko  Here, the symmetric flexibility matri>{Dk] of the ele-
et al. 2000; Gallager 1975; Faccioli and Vitiello 1973; mentk is calculated by the formula:

Kalanta 1995) for elastic-plastic plates. Therefdte

finite elements have their own master nodes antiosesc [Dk]: JNI(p)S@Nk(p)dA- 9)
under investigation and are indexed by the doutndiex A

kI (kOK, TOL) or by common section index The geometrical equations for the finite elemest ar
i=12..¢=sxs (i0l) for the discrete plate model.

smilfussmib . ®

The vectors of internal forces of the finite ele&nare: [Ak]TU _[DK]M k=0 (10
M, :(Mp,ijJ Mo M, k2 My o, M, s, Ma,ks)T and for whole discrete plate model:
Al'u-[pjm =0. (11)
=My Mo, Myg) =(My)" 1 [ ] [ ]

Here, [D] is the quasidiagonal flexibility matrix of the
elements. The sequence of the equilibrium equations
[A]M =F determine the physical meaning of the compo-
nents of the displacements vector

If the transition to the plastic state is descrilvéa
the nonlinear Mises-Huber yield condition:

HereMy =(M 5, Mak,)T , and the indexep and ©

denote the radial and angular internal momentges
tively; the positive directions are shown in Fig. 1

The bending moments’ interpolation function, in
applying the finite elemerk shape functiorN, (o) is:

M =N M. 2
k(0) =Ny (O)M ) MS_MPMQ+MéS(MO)2- (12)
;Ii'lgssfunctmns (2) do not satisfy the plate ele & The plasticity condition is verified in all the resl of the
' finite element:
- d_z - Ei + ii M, = q or 2
do? pdo) © pdo ° Mg [ My <(Mg ), kOK, 10L. (13)

AM(p):q @) Here, [1'[kI ] is the matrix of the Mises-Huber plasticity

Therefore, equilibrium for the plate elements isuaed ~condition for the bending circular plate

for the elements and master nodes (Karkauskas 1994)
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1 -05
[, ]—[_ 05 1 } : (14)

The plasticity condition is often expressed in tbkow-
ing form:

#a=Mo ) -My MM, 20.

The bending moment limit is constant in the enrtfiinége
element: My, =const. If the linear Tresca plasticity

condition is applied, the equation (15) is desatibe:

(15)

¢y =Cy ~PyMy 20- (16)
The Tresca plasticity condition matriR, is:
S
0 1
1 -1
Dy = 17
o I (17
-1 0
L 0 _1_

The vector of the limit moment€,; match the matrix
@, . For the sake of simplicity, the calculation sect
will be indexed as = 12....J ,i Ol .

3. The main dependenciesin the case of cyclic loading

In the practice of engineering, it is necessarkriow the
deformed state of the plate under plastic defoirnatist
before its cyclic plastic failure (plate geometdimit
moments M, and load F are known) (Kalantaet al.
2009; Jankovski and Atkoinas 2008). Such a type of
structural mechanics problem is referred to asretyais
problem (Cyras 1983). In such a case, it is ugefskpa-
rate the elastic momentd, and residual moments!, :
Mi=Mg+M,,
calculated by the formula\/le:[a]F, where the mo-
ments influence matri*a] have the following dimensions

(nx m). When the Ioad:(t) is a function of timet :
M, ([t)=M g (t)+M i 01 (18)

If RVL is described by their variation boundaries a

Fnt» Fsups it is possible to determine the possible load

combination countp (j=12..,p;j0J) and the
equation (18) is rewritten as:

M =M +M

ei,j ri» il (19)

The determination ofM, ; is described in the work

(Pham 2003). Then, the Mises-Huber plasticity ctioli
(15) is rewritten as follows:

0 =(Mo )’ -Mj []mM; 20,i01, jOJ. (20)

il . The elastic moments can be
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Thus, in the analysis of shakedown structuress ithe
convenient separate residual momehts, residual dis-

placementsu, and deformation®, :[D]M r +0,. Then,

the equilibrium equations (6) and geometrical eiguat
(11) are described by mentioned terms:

[A]M r= 0 or Z[A]kM k= 0 (21)
k

and

[A]"u, =[D]m, +8,,. (22)

The components of the plastic deformation’s vector
0, :(ep,i) are calculated by formula:
0, =X [00; Me; +M )]
i

420,101, jOJ. (23)
Here, %; is the plastic multiplier vector{;D¢ij] —a ma-

trix composed from the gradients of the plasticiondi-
tions (20).

4. The mathematical models of the analysis problem

The static formulation of the analysis problemaséxd on
the additional energy minimum principle and in tase
of Mises plasticity conditions:

find

1
min EEMHDK]M ko (24)

when

Y[AM =0,kOK, (25)
k

;i _(Moi)z_(Mei,j +My )T [Hi](Mei,j +Mri)201

ioK, joOJ. (26)
The optimal solution of the problem (24)—(26)!\?[5r .

The kinematic formulation of the problem under
analysis is created in accordance with the mathieaiat
programming duality theory:

find
{‘%Mjk [DM =22 [D¢ij ]M fi

max ! , (27)
_Zz/lij [(Moi )Z—MHHi]M ij ]}

when

DM +Z[D¢kj]T)‘kj -AJ"u, =0, (28)
i

hg20, kOK,iDl, jOd. (29)
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The optimal solution of the kinematic formulatiod7§— and only in the latest step is the Mises plasticiiferion
(29)isM 7, ny, uy. applied.

In the case of the Tresca plasticity condition,yonl ¢ The algorithm of RVL optimization

equation (26) should be changed:
The shakedown plate is safe in respect to plastlapgse,
$;=Ci- [(Di](M ei,j M ri)2 0. (30)  put it can exceed the requirements of servicegljiie.
stiffness constraints). Therefore, in the matherahthodel

The vectorC; contains the limit moments of the corre- ¢ ihe plate load, optimization should not onlyibeluded

sponding finite element. in the requirements of the strength (plasticityj, the con-
. . . straints for displacements, too. The mathematicadehin
5. Theinfluence matrixes of theresidual the case of Tresca plasticity conditions is:
displacements and residual moments find
If the solution of the static (24)—(26) and kineind27)— max (T2, Feup + T For ) (39)
(29) analysis problem is unknown, then it can bioked when
from the nonlinear set of equations:
[A]M ;= 0, (31) <I’ij = Ci - [(Di ](M ei,j + [G])“)2 0, (40)
rlCi -l M, +[c]h)]=0, (41)
¢u:(M0k)2‘MHHi]Mu, (32) ”l - ']( o e} )J
r=(y), 01, jOY (42)
/]ijl,(MOk)z‘MHHi]Mij]:Ox A; 20, (33)
Unin S[H])“ + ue,inf ’ (43)
oM, +3 08, ]2, -[A]'u, =0, (34)
j [HI + U cgup < Uy (44)
azly ) ion, jog. (35)  Here, U o, andu,,; are the maximal and minimal elas-

The equation set is composed of the constraintthef tc displacements, respectively. They, summaringether
static formulation problem (24)—(26) and the KuhneRer  with the residual displacements , should not exceed the
conditions (Bazaraat al. 2004). When the plastic defor- prescribed maximal and minimal displacements bounda
mations B*p are known, then from the set of equations  ries, U, and u,,,. The solution of the optimization
AM: -0 problem is F;up, Fif» M . The algorithm of the load op-

. . . timization problem illustrating the switch from Bea to
DM, +0, -AT u =0 the Mises plasticity condition is shown in Fig. 2.

it is possible to find the right values ™" and u®:

1. Solving the load optimization problem (39)—(44)

ul= ([A][D]_l[A]T )_l[A][D]_lG% :[ﬁ]B% , (36) with Tresca plasticity conditions.
=/ I {aT (AlloIAT ) [Allo] |07 : ’
M _[ DIFIAIIAIID] A AllD }GP ’ 2. Optimal solution of (39)—(44!;“-;up, Fi;f A
M =[Gl 37) v

3. The optimal solution of (39)—(44) becomes the

0 0
The vectorsu and M, calculated by formulas (36) and initial point for the Mises plasticity conditions.

(37), respectively, coincide with the optimal orcedcu-
lated by the mathematical models (24)—(26) and-(2B). +
The residual displacement and residual moments in

o _ 4. Solving the optimization problem (45)-(5®ith
fluence matrixes[HJ and [GJ and in the case of Tresca | Mises plasticity conditions.

plasticity conditions, do not depend on internatcés
M

it
Fig. 2. The algorithm of load optimization with Tresca and

urD:[ﬁ][fl)]TXD= [H]lD’ M D= [6][(1)]T3\.D: [G]lD. (38) Mises plasticity conditions

This feature has an important significance fordteation The mathematical model of the load optimization
of the mathematical models for the load optimizatio Problem in the case of Mises plasticity conditieasom-
problem: initially, the Tresca yield condition ipmied posed using the influence matrix[ﬁ] and [H]:
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find
max (T;—ustup + Ti-r|1—f I:inf ) (45)

when

¢ = (Mg ) - (M eij ¥ [G]X)T [Hi ](M ei,j ¥ [G]l) =0, (46)

Aj kM 6) - (M eij t [G]X)T [, ](M eij t [G]x) ]: 0, (47)

r >0, 2=y ), i0r, jod (48)
Uin S[HP+ Uit (49)
[H]L+u esup S Umax- (50)

The graphical illustration of the switch from Trasto
Mises plasticity conditions is shown in Fig. 3.

Mg

Tresca

%",

B

Mises
— MO

Fig. 3. The fragment of the switch from Tresca plasticiyndi-
tions to Mises plasticity conditions

7. Numerical example

The proposed calculation technique is illustratgdthe
example of a circular plate with a hole in the nkédd
(Fig. 4). The supports are applied in the outsioerlary
of plate.

Radius of plateR=10 m, height h=0.025m, di-
ameter of hole d =030m. The material — steel,

Fig. 4. The geometry of the round plate and boundary
conditions
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E =210 GPa, v=0.3, g, =235 MPa. The limit mo-

ment of the plateM, :%Uyt2 = 36719 kNm.

The outside boundary of the plate is loaded by the
uniformly distributed linear momenM =5.0 kNm/m,
and the surface of the plate is subjected to aotmify
distributed loady, which is an unknown of the optimiza-
tion problem. The displacement variations have datin
ries which areuy,; =0.m, U,,=0.037m in the place

of the hole. When the problem (39)—(44) was soltkd,
optimal load of g* =131246kPa was obtained. In the
case of the Mises plasticity condition, the follogsimore
optimal solution was obtainedy =140747 kPa.

8. Conclusions

1. The influence matrixes of residual moments and
displacements do not depend on the residual monoénts
M,.

2. In the case of Mises plasticity conditions, e
fluence matrixes should be formulated using theligras
of plasticity conditions, which themselves deperml o
M. The main load optimization problem, in the cake o

Mises, becomes practically not realizable, evetn vajp-
plied computer algebra methods.

3. One of the possible resolutions of the load-opti
mization problem with a Mises plasticity condititmthe
application of an analogous problem solution ofgdin
with Tresca plasticity conditions.
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Optimal shakedown design of steel structures

J. Atkogianas, D. Merkeviciaté, A. Venskus, L. Rimkus

1 Introduction

Steel structures, which undergo plastic strains and are subjected by variable repeated
load, are considered in the paper. Under repeated loading a structure can lose its service-
ability because of its progressive plastic failure or because of alternating strain (usually
both cases are called cyclic—plastic collapse). The third case is also possible, when the
structure adapts to existing load and further behaves only elastically. For civil engineering,
calculation of any complexity elastic—plastic structures subjected by variable repeated
load is relevant. Growing number of scientific works dedicated to adapted structure calcu-
lation shows importance of these researches [1]-[9]. But there is especially small number
of works concerning optimization of adapted structures under stiffness and stability con-
straints. That had influence on the topic of this paper: optimal shakedown design of struc-
tures, subjected by variable repeated load, under stiffness and stability constraints. Solu-
tion of structure optimization problems at shakedown is complicated as stress—strain state
of dissipative systems depends on loading history [10]-[14]. These difficuit optimization
problems are implemented applying extremum energy principles, theory of mathematical
programming [15]. New iterative algorithm based on Rosen project gradient method is
created [16]. Numerical examples of frame, truss and plate design are presented (Fig 3).

2 General mathematical models of optimization problems

The mathematical models presented in Table 1 are applied for optimization of bending
plates, frames and trusses at shakedown in this research. Stiffness conditions (4), (8) are
realized by the restriction of structure nodal displacements v . Non-linear mathematical
programming is applied for problem solution. The Rozen project gradient method is ap-
plied to solve the cyclically loaded non-linear shakedown steel structures strain evalua-
tion.

Table 1. Mathematical models of structure optimal design problem

Linear yield conditions Non-linear yield conditions
find find
min v (S,) =min L'S,, (1) min L'S,, (5)
subject to subject to
o - | ~
?=5-®(GA+Sy)20. @ min £(S,)=min ~S'DS,, ()
Y €=0. 420, DN as c-f(s by W
=0, ¢,=C- =0, jeJ,
A"—"'EA}!J‘.EJ, d ?i AN ej) J
i C=C(S,). S0, U
Uy minS Up jnr s "’r,s{.«pg U, rax - (4) u,',,,,-,,g U, ot Ur.supﬂ 8 s (8)
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3 Frame volume minimization at shakedown.

Mathematical model of the problem (F,,., Fyy, 0, L., k €K are known) reads:

find

min LA, ©
subject to

p

,E%A;[Mﬂ*‘p(e""'sef)]zor Ai20, A= i’i,n jed; (1)
1= j=1

A 2 A min» keK (12)
“r.rru‘rrS ur.infv ur.sup s ur,max (13)

In the problem (9)-(13) unknowns are the cross—sectional areas A,, k eK of frame ele-
ments and vectors of plasticity multipliers A;20, jeJ(My, =0, W,, = rf(Uyk,Ak),
Noy = 0, A, are functions of the cross—sectional area A, and material yield limit Oy -

Depending on the cross-sectional shape various yield conditions can be considered. In
this paper, focus is placed on yield conditions for rolled I, H and hollow square steel sec-
tions (Fig.1):

MiM |y

NIN,
-1 015 ] 0.15 1

-1

Fig 1. Linear yield conditions

Lower bounds of the cross—sectional areas A, ,;, are included into constructive con-

straints (12). Limit moments M,, influence matrices a, B, G, H are related with design
variables A,, k eK ; listed matrices are recalculated during the solution process of the
problem (9)-(13).

4 Evaluation of bar stability

For trusses stability conditions (besides strength and stiffness requirements) are related
with recommendations of EC3, when admissible forces of compressive bars are obtained
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by reduction of their material yield limit o, (vector of limit forces N, (N, i= OuAy, keK)

is substituted by N, ., ). Then yield conditions of discretized truss read:
Prax = NO '"Nr - Ne,max = 0! 'pmt'n 7= Nﬂ.cr +~r + Ns,min 20. (14)

Here N, .. =a., F.,+a.,F,, Nemin =95 Fir + a;F,,, are vectors of minimal and
4 . . T
maximal values of elastic axial forces; Ny=(N,,)", No'c,=(N0klc,)T, Nox =0 4A,,

No ko =010 Ac, keK. N, ., are calculated according to the formulas:

1

Nocrk = PulNox » @4 = — 705 (15)
o, +| 07 -72]
when
( . —z) = Ay Ay
@, =0.5(1+a(x, -02)-%2), %, =B, “2IE. Jo %% VBa . keK. (16)
k k ¥k

Here E, is an elasticity modulus of the k-th bar: A =Ly /iy is bar slenderness, where i,
is the radius of gyration of the k—th bar. In the case of bar under pure compression f, =1;

value of imperfection factor a, depends on the shape of cross—sections and properties of
applied material. Possible failure because of stability lost is not evaluated when
NG.CF = Na &

5 The problem of truss volume minimization

Project of minimum volume of adapted truss is determined (when load variation bounds

Fsp: Fior, material yield limit o, and lengths L, of all k (keK) elements are pre-
scribed) by solving the following problem: find truss of minimum volume V=3LA,
k

(k€K ), satisfying requirements of strength, stiffness and stabifity.
Mathematical model of non—linear problem reads:

find

min %‘,LkAk (17)
subject to

Pmax (A): ND - Ggp - Nt;-..-m\f2 0, ¢mfn(A)= NU,cr + Gep + Ne.mfh 20, (18)
N, =(No,k)Ts Noor =(No,k.cr)r» Nok=0uwAis Noyor = kO Ay » (19)
A 2 A s keK, (20)
©,= Ay — A, (21)
Arax®Pmax =01 Ai@rmin=0, A, 20, A, 20, (22)
ur,miﬂ < ur,inf y U'_rsup < Ur_m : (23)
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Unknowns are cross—sectional areas A,, k eK of bars and vectors of plastic multipliers
Anax» A . Stiffness constraints (23) are realized via restriction of nodal displacements.
Influence matrices a, B, H and G depend on design variable A,, keK . Possibility to

evaluate load combinations, change of temperature and distortions makes mathematical
model (17)—(23) important for practical design.

6 Load optimization problem of bending plates

General mathematical model of load optimization problem for bending plates at shake-
down reads:

find

min {TI F,, +T Fo}=W (24)
subject to

minimize % s7[p]s;. (25)
when o, =C, - S5, [®]S,,20, C, =(S,)*. Sy, = S, +Su. S, =[B]'S], (26)
F.20, F_2>0, (27)
and

U, iy < U, =min [H,]0O,, u,,, =max [H,]©,<u, .. keK, leL, jed. (28)

In the problem unknowns are F,,, F_,, A,. Therefore the residual deflections variation

bounds u,,,. u,., evaluation problem (29)-(31) needs to be solved:

r

il 45 bd @
subject to

-B.|x=[&]s;. 7=o0. (30)
X={X ).;xgégam @1)

During structure adaptation process the energy is dissipated, which the upper bound D,
can be calculated by Koiter's suggested formula [17]. The fictitious structure method al-
lows to determine more exact the energy dissipation bound magnitude 5,,,8, and obtain

improved residual displacement variation bounds v, _,,, u Here the notation of plas-

rF.5up *

ticity multipliers Ais compatible with notation 5,,“ :
7 Numerical examples

Example 1. Numerical illustration of two-storey frame volume minimization at shakedown
is presented in Fig 3a. Frame is discretized by using equilibrium finite elements. For col-
umns and for beams are used finite elements with six degrees of freedom under bending
and axial loading. In case of beams subjected by distributed load, elements with seven
degrees of freedom with linear displacements of central node can be used (Fig 2).
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Ujy Uy

Fig 2. Finite element subjected by distributed load with linear displacements of central
node: a) external load; b) generalised forces; c¢) nodal displacements

The later elements [18] exactly models the stress and strain field of beams and allow to
compute directly the middle section displacements of beams. It creates conditions for de-
crease the number of unknown of optimization problem and obtaining information, whish
is necessary to be analyzed later.

Example 2 and 3. Calculations results of volume minimization problem of 9-bar and 20—
bar (in case of moving load) trusses are showed in Fig 4a and Fig 4b.

Example 4. Incremental analysis example of bending annular plate is presented in Fig 3b.

iom

&
=2
3
e
=
2.1
=
7 Case A1
'/ casenz
Residual displacement uc2 (cm)
a) b)

Fig 3. Objects of numerical examples
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Fig 4. Objects of numerical examples

Example 5. The hinge-fixed perfectly elastic-plastic circular radii R plate is under consid-
eration (Fig. 5). The plate limit bending moment M, = const is prescribed (sandwich
cross-section), the Poisson ratio is equal to 0.3. The plate is subjected to the cyclic uni-
formly distributed load g (0 < g <q,,,) and that of uniformly applied bending moment, dis-
tributed onto the outer contour M (0 <M <M, ) Fig. 5. The load variation upper bounds
9., and M, are to be determined taking into account the plate middle point deflection

restriction: 0<u,,,. =0.84 M,R?/K. The load optimization problem of plate at shake-
down is realized via the mathematical model (24)-(28).

q
Fr i T T i3 1 1 ¢ 8 ¢ % % 14
e 2

| R

|
= =t

R |

Fig 5. Hinge-fixed circular plate

The equilibrium finite elements are applied for discretization, Huber-Mises yield conditions
(Fig 6) are verified for all (p =3) elastic stresses locus apices. The solution process is

iterative. When g*~' = 5.3881 M,R?, M"" =0.8882 M, the plate analysis problem (25)-

(27) is realized applying the Rozen project gradient method. The optimality criterion's
mathematical-mechanical interpretation (32)

»=(volx)] el )T Felx)] vF(x). A" 20 (32)
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Fig 6. Huber-Mises yield conditions

resulted in the following vector of plastic multipliers A™*": A;**' =0.1064, A;*"' =0.6300
(other components equal to zero). The second problem aims at verifying the plate stiff-
ness conditions 0 <u,, £ U,, ... The residual deflection magnitude u,, = 0.2985 M,R? IK

is obtained from the vector u™*' = H A™"'. The stiffness condition is satisfied but one must
take into account the possible unloading of the cross-section. Therefore, the stiffness con-
straint 0 <u,, <u,,,,, is changed to the stricter one (28): 0<u,,,,, <0.84. The upper

bound of the deflection u,,,, is calculated applying the mathematical model (29)-(31). Fi-

sup

nally, the main problem (24)-(28) optimal solution reads: gq;, =5.7716M,R™,
M, =0.8091 M,.

8 Conclusions

New potential, which is provided by connections between mathematical programming and
extremum energy principles, are shown for formulation of analysis and optimization prob-
lems of shakedown theory and their numerical solution. Constructed mathematical models
are universal: when stiffness constraints are neglected optimal solution is obtained ac-
cording to cyclic—plastic failure, it is very easy to interpret monotonically increasing load-
ing. Type of cyclic—plastic collapse is identified using complementary slackness condi-
tions.
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Optimal Shakedown Design of Frames Under
Stability Conditions

J. Atkocininas and A. Venskus
Department of Structural Mechanics
Vilnius Gediminas Technical University, Lithuania

Abstract

A shakedown frames volume minimization and load optimization nonlinear
mathematical models with strength, stiffness and stability constraints are
investigated. There were developed methodology and algorithms for stability
evaluation according to various design codes (Eurocode 3 (EC3) and Dutch NEN
6771) by integrating commercial software for the building industry MatrixFrame
and the authors created nonlinear mathematical programming software. For the other
investigators it provides the possibility to integrate the solutions of nonlinear
programming problems (variables of plastic state: residual forces and displacements)
into their structural design software. It is noteworthy, that proposed methodology
allows the load combinations, occurring in the engineering practise realise as
separate cases of variable repeated load. Numerical examples concerning
optimization of frame structures are presented.

Keywords: optimal shakedown design, frames, stability, energy principles,
mathematical programming.

1 Introduction

There are investigated the aspects of optimal shakedown design of bar structures
under strength and stiffness conditions in details [1] - [8], although today the
evaluation of stability conditions for the optimization problems of elastic-plastic
frames remains topical scientific problem. For example, it is allowed to design
elastic-plastic frames by EC3 or NEN 6771, but therein the methodology and
algorithms for stability evaluation of shakedown structures are not fully elaborated.
This had an influence on the topic of this paper: optimal shakedown design of
frames, subjected to variable repeated load, under strength, stiffness and stability
constraints. Herein two types of problems can be considered [9]. The first problem is
optimal shakedown design of cross-sectional parameters (design problem) and the



second one - load optimization problem for a frame subjected to variable repeated
load. By solving load optimization problem maximal load variation bounds,
ensuring adapted state of the frame and satisfying stiffness and stability
requirements of the structure, are to be found.

Solution of frame optimization problems at shakedown is complicated as stress—
strain state of dissipative systems depends on loading history [10]-[14]. These
difficult optimization problems are implemented applying extremum energy
principles and the theory of mathematical programming [15]. That enables to create
new iterative algorithm based on Rosen project gradient method [16] - [17].
Evaluation of stability requirements for both optimization problems is implemented
by integrating commercial software for the building industry MatrixFrame and the
authors created nonlinear mathematical programming software. Numerical examples
of the frames are presented. The results are valid for small displacement assumptions

2  General mathematical models

General mathematical models presented in Table 1 are the basis for the development
of optimization mathematical models of frames at shakedown considered in this

paper.

'Volume minimization problem Load optimization problem
find find

min (LS, ~ 4] 9,) (0| max (T, Fp =T Foy =27 9,) (6)

subject to subject to
9,=8,-0(G1+5,+5.)20 ()| p,=8,-®(Gi+S,+5,.)>0 (7
2]20,l=;l],]eJ (3) }»]20,2:;}'],‘]6.] (8)
Smin = SO SS'mazx (4) 0 < Fsup < Fmax 2 Fmin = Enf = 0 (9)
umm = (u” + uej + uec‘) S u”wx (5) umin < (ur + uej + uec) < umax (10)

Table 1: General mathematical models of optimization problems

In both volume minimization and load optimization problems objective

functions are described by formulas (1) and (6), where the vectors L , T, and T,

contain coefficients of weight, lf @, is the complementary slackness conditions of
mathematical programming. Yield conditions ¢; (j€J) are shown in formulas (2)
and (7) , where j is the number of all possible combinations F, of load bounds
F,,, F,,. Formulas (4) and (9) are constraints for the problem unknowns. Vectors
S S

see in Section 3. Stiffness constraints are shown in (5) and (10). Discrete model of
the frame at shakedown consists of s (k=1,2,...,s, k€K ) finite elements. Limit

F, and F, , play major role for stability evaluation. About this role

max min > max



force S, (k€ K)is assumed as constant in the whole finite element. The degree of
freedom is m, corresponding m - vector of displacements -
u, =(ue,1,ue’2,..., uevm)T. Nodal internal forces of the element compound one n —

vector of discrete model forces S:(SI,S2 ..... S,.... Sg)T =(S.)" and strains —
n—vector 0=(0,,0,,...0,,..0,)" =(0.)", v=12,..¢ (veZ), z=12,..,n.

The total number of design sections is & .
Load F(t) is characterized by time ¢, independent variation bounds

F :(F F, and F, = (Fl,inf Y T RRI Fm,inf )T

sup Lsup > L2, sup 2 =2 m,sup )T nf —
(F, <F (t) < F, ). Elastic displacements u, (t) and forces S, (¢) of the structure
are determined wusing influence matrixes of displacements and forces,
/)’=(AK AT)_1 , a=KA"p, respectively: u,(t)=pF(), S.(t)=aF(t),
K=D"".Here A is a coefficient matrix of equilibrium equations 4.8 =F and D is
a quasi-diagonal flexibility matrix. Residual displacements u, and forces §, are
related to the vector of plasticity multipliers 4 by influence matrixes H and G :
u,=H® \i=H), S,=G®" i=Gi, H=(4KA") " AK and G=KA'H-K .
Here @ — the matrix of peace—wise linearized yield conditions @, (2) and (7). The

number of all possible combinations F; of load bounds F, F,, is p=2"

sup ° i

(F,<F, <F, ) S,=aF,, u,=pF,, j=12,..,p, (jeJ). It is possible

sup
directly evaluate not only variable repeated load F; but also other loads F, (for

example persistent load) additionally including them into set J . Elastic forces §

ec?

and elastic displacements u
SeC:aFc’ uec:ﬂFc'

Design of the frame for optimal parameters by mathematical model (1)—(5) is
performed when yield limit o, of the frame material and lengths L, of its all

resulted by loads F, are calculated by formulas

ec

elements k (k €K') and load variation bounds F,,,, F,, are known. Depending on

sup > i
the cross-sectional shape various yield conditions can be considered. In this paper,
the focus is placed on yield conditions for rolled I steel sections (Fig. 1).

MIMy | _ B}
0.85 ¢,
-0.85 ¢,
N/NO ¢ _ 0.85 _Ck N VEZ
-1 -0.15 [ 0.15 1 " 1-0.85 -c,
1 0
-1

Figure 1: Linear yield conditions



0k

Relation ¢, = , ke K should be prescribed in advance. Limit moment

0k
My =0, W, = §(ayk,Ak) and limit axial force N, =0, 4, of the element are

functions of cross-sectional area 4, and yield limit of material o , . True, usually

one or the other specific dimension of the cross-section (for instance, flange
thickness 7, and web thickness 7, of I-section while the width of flange b and

height # are fixed; see Examples 1 and 2) participate in functional relation
M, = f(ayk,Ak) instead of cross-sectional area A,. Limit moments M, of the

frame elements and vectors of plasticity multipliers 4, > 0, jeJ are unknowns of

nonlinear mathematical programming problem (1)-(5). Constructive requirements of
frames S, and S, are shown in conditions (4). Problem (1)—(5) is not exactly

min X

the volume minimization problem, because limit moments A, are used in
objective function. Limit moments M, and influence matrixes a, f, G, H are
related with unknowns A4,, k€K ; the listed matrixes are recalculated during
solution of the problem (1)—(5). If stiffness and stability constrains are neglected,
cyclic-plastic collapse of the frame is reached. Optimal solution of the problem (1)—
(5) is vectors S5 and 4}, jeJ.

In the case of variable repeated load, the problem of load variation bound (6)—(10)
F,,, F,, determination is important also. It stated as follows: find shakedown load

sup >

variation bounds F F

sup inf 2

T T
max (Tsup Fsup - Tirgf Enf

of the structure. Here T T

sup inf

satisfying the prescribed optimality criterion
— ijT o, ), also strength, stiffness and stability requirements
are the optimality criterion weight coefficient

u__ of total

min 2 max

vectors. The vector of limit bending moments M, and the limits u

displacements u=u, +u, +u, are known in the problem (6)-(10). Optimal

solution of the problem (6)—~(10) is vectors F, , F, and4;, jeJ.

sup 2

2 Stability evaluation

Stability in the mathematical models (1)—(5) and (6)—(10) are evaluated through the
constructive restrictions (4) and (9) respectively, which are calculated by stability
requirements of design codes EC3 or NEN 6771 (or even other code). Various
design codes are implemented in commercial software that is available for needs of
designers. Authors of the paper for stability evaluation use software for building
industry MatrixFrame, version 4.1. Stability check in MatrixFrame is performed for
both mentioned design codes. In case of EC3 there are calculated buckling resistance
of members according to formulas of design code: 6.46, 6.54, 6.62. In case of NEN
6771 stability check is performed by formulas: 12.2-3 and 12.3-2. Element & meet
the requirements of stability when maximal stability unity check (UC, ) calculated



by formulas of design code is less or equal to unity. UC is the ratio of design value
and design resistance.

The frame volume minimization is performed according to the mathematical models
(1)—~(5) by iterations:

Step 1. Influence matrixes a’, f°, G°, H", coefficients c,? , keK of yield
conditions are determined for the assumed initial cross-sectional areas A,
keK . Constraints (4) for problem variables M, are neglected.

Step 2. Problem (1)—(5) is solved and the new distribution of limit moments M, ,
ke K, is found. Selection of new sections can be performed by two ways:

by changing cross-sectional dimension (continuous optimization) or by
selecting them from available assortment of manufactured cross-sections by

applying the formula W, > M, /o, (discrete optimization).
Step 3. Variables of plastic state, residual forces §, and displacementsu,, are

introduced into MatrixFrame stability calculation. If the maximal stability
UC, >1, keK, then by changing cross-sectional dimension or selecting

from assortment is found cross-section heaving the property UC, <1. In
this case M, . is found. This means so in next iteration limit moment
M, should be greater or equal to M, ...

Step 4. New influence matrixesa, f, G, H, coefficients c¢,, keK are
determined for cross-sections with areas A, obtained in Step 2.

Step 5. Problem (1)—(5) is solved again using recalculated matrixes a, g, G, H,
coefficients ¢, and M, . obtained in Step 3.

Step 6. Steps 3-5 are repeated until the cross-sectional areas A4, obtained in two
consecutive steps do not differ.

Stability requirements for all elements £, k€K is evaluated in Step 3 by founding
such cross-sections 4, (M, .. ) that satisfies requirements UC, <1.

The frame load optimization is performed according to the mathematical models
(6)—(10) by iterations too:

Step 1. Problem (6)—(10) is solved and the new distribution of load variation bound
F F,, is found. Constraints (9) for problem variables F F,, are

sup i sup i
neglected.

Step 2. Variables of plastic state, residual forces S, and displacementsu,, are
introduced into MatrixFrame stability calculation. If the maximal stability
UC, >1, keK, then by changing load domain F; is found such load

domain that ensure UC, <1. In this case F,, and F

max min

are found. This



means so in next iteration load variation bounds F, , and F,,

load variation bounds F,, and F,  satisfying requirements of stability.

ax min

can’t exceed

Step 3. Problem (6)—(10) is solved again using load variation bounds F,  and
F . obtained in Step 2.

min

Step 4. Steps 2 and 3 are repeated until the load variations bounds F, , and F,

obtained in two consecutive steps do not differ.

Stability requirements for all elements £, k€K is evaluated in Step 2 by founding
load variations bounds F,  and F,, that satisfies requirements UC, <1.

min

3 Numerical examples

3.1 Example 1

Proposed calculation technique is illustrated by example of volume minimization
problem (1)-(5) of two-storey frame (Fig. 2) The software MOopt1, which is created
by authors, is based on Rosen project gradient method [17] and applied for solution
of presented numerical example. For stability evaluation is used MatrixFrame.
Stability constraints are calculated according to design code EC3.
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Figure 2: Discretized frame

The frame is subjected to two independent load sets: horizontal concentrated
forces F, = {Ff,Ff,Ff,Ff,Ff} acting on the nodes of the frame and vertical
uniformly distributed forces F, = {F;,Ff} acting on the roof beams (6, 7, 8, 9),
respectively. Permanent load F, act on the floor beams (10, 11). Limits for the



variations of the load are defined by the inequalities F,. <K <F

Linf 1 Lsup >
F,, <F,<F, . where F,,, =1-9.75-4.9,-5-6.75-19.5}-kN,
F,,, =1{3656.755146}-kN, F,, =100}, F,,  =1{4848}-kN/m and

F. =117 kN/m.
The frame is made of steel with a modulus of elasticity £ =210 GPa and a yield
limit o, =235 MPa. The cross-sections of the frame columns, roof and floor beams

are shown in Fig. 3.

Columns Beams
Iy ' B
_ Y _ l | IR

- o=
<
<

Figure 3: Cross-sectional shapes for frame columns and beams

The parameters b and /4 remain the same throughout the continues optimization
process, only the thickness ¢ =¢, =7 of the flanges and web varying. The values b

and 4 of cross-sections are shown in Table 2. In case of discrete optimization cross-
sections are selected from available assortment of manufactured cross-sections.

Elements b h
k, keK | [m] [m]
1,2,3 0.15 0.15
4,5 0.1 0.12
6.7, i’19’ 10, 0.15 0.2

Table 2: Values of cross-sections

The limit forces of the cross-sections when 7 =7, =1, are calculated according to
2

My=oc W, =0, [13 —(b+n)’ +(%+bh}t], N, =0,4=0 (2bt +t(h-2t)).

y' " ply

The main task is to determine the minimum volume of the adapted frame (Fig. 2) in
the case when the vector of inner forces of the discretized frame is §= (M N )T
=(M,,M,,M,,...M,,, N,, N,,...N,,) =(S,)", i=1,2,...,n=38, i.e. both bending
moments M and axial forces N are taken into account. In this case the frame



volume minimization is performed according to the mathematical model (1)—(5).
The unknowns are the cross-sectional areas of the frame columns and beams 4,,

keK and the vectors of plasticity multipliers & ;, j=1,2,...,4. Problem (1)—(5) was

solved according to the sequence of operations shown in Section 2 and five
calculation cases were investigated:

Case C1. When only strength constraints (2) are taken into account. Optimization
continuous;

Case C2. When only strength (2) and stiffness (5) constraints are evaluated. The
following total displacement constraints were imposed: —oo<u,<0.03m,
—o<u,<0.0225m, - <u,, <0.0225m (Fig. 2). Optimization continuous;
Case C3. When only strength (2) and constructive constraints (4) are taken into
account. Optimization continuous;

Case C4. When only strength (2) and constructive constraints (4) are taken into
account. Optimization discrete;

Case CS5. When all (strength (2), stiffness (5) and constructive (stability) (4))
constraints are evaluated. The following total displacement constraints were
immposed: —o0<u, <0.03m, —c0<u, <0.0225m, -0 <u,, <0.0225m (Fig. 2).
Optimization continuous.

The calculation results for all described cases, depending on applied constraints, is
shown in Table 3.

Location

Case M, M,, M., Objective Volugne of the

[Nm] [Nm] INm] function (OF) [m] plastic

strains

C1 75441 | 41673 | 204168 3991522 0.26149777 | 6, 2,23
C2 93970 | 34942 | 223206 4403462 0.292369813 23
C3 |120537| 48302 | 186579 4173339 0.283231289 23
C4 |174986| 57610 | 189018 4755802 0.350856685 23
C5 |108090| 44151 | 215258 4466587 0.300776204 23

Table 3: Calculation results of volume minimization problem

In case of C2 and CS5 total displacement u,; reach upper bound u,, =0.0225m.

When discrete optimization is applied for the case C4, limit moments
M, =174986 Nm, M, =57610Nmand M, =189018 Nm correspond to the

cross-sections HE240, HE160 and IPE330, respectively.

Convergence with desirable precision of the main optimization problem objective
function is a criterion of the optimal solution. In the case C2 value of convergence
0 =0.25%, iteration process is shown in Table 4. Convergence of optimization
problem objective function for all cases is shown in Figure 4.
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Figure 4: Convergence of optimization problem objective function
lteration | M, [Nm] | M,, [Nm] | M, [Nm] OF o O/?F
1 96888 42400 240460 4733292
2 93807 37591 204883 4143051 12,47
3 95221 37257 236064 4621487 | -11,55
4 93755 35439 211158 4223807 8,61
5 94299 35814 231966 4543060 | -7,56
6 93670 34931 215459 4284503 5,69
7 94140 35320 228876 4492323 | -4,85
8 93767 34832 218090 4324254 3,74
9 94083 35129 226802 4459547 -3,13
10 93840 34837 219776 4350228 2,45
11 94044 35043 225444 4438312 -2,02
12 93885 34860 220870 4367176 1,60
13 94016 34999 224559 4424527 -1,31
14 93912 34882 221583 4378244 1,05
15 93997 34973 223983 4415558 | -0,85
16 93929 34898 222047 4385447 0,68
17 93984 34958 223609 4409735 | -0,55
18 93939 34909 222348 4390121 0,44
19 93975 34948 223365 4405942 | -0,36
20 93946 34916 222545 4393195 0,29
21 93970 34942 223206 4403462 | -0,23

Table 4: Convergence of optimization problem
objective function for case C2




3.2 Example 2

Proposed calculation technique is illustrated by example of load optimization
problem (6)—(10) of two-storey frame (Fig. 2) The software MaxFoptl, which is
created by authors, is based on Rosen project gradient method [17] and applied for
solution of presented numerical example. For stability evaluation is used
MatrixFrame. Stability constraints are calculated according to design code NEN
6771.

The frame is made of steel with a modulus of elasticity £ =210GPa and a yield
limit o, =235 MPa. The cross-sections of the frame columns, roof and floor beams

are shown in Fig. 3. Values of cross-section are shown in Table 4. Cross-sections
remains not changed through entire optimization process.

Elements b h ¢ [m] A, M,, N,,

k, keK | [m] [m] [m?] [Nm] IN]
1,2,3 0.15 0.15 | 0.016 | 0.006688 88665 1571680
4,5 0.1 0.12 0.01 | 0.003000 31725 705000

0.15 0.2 0.03 | 0.013200 21432 3102000

Table 4. Values of cross-sections

The frame is subjected to two independent load sets: horizontal concentrated forces
F, = {EI,EZ,E3,E4,E5 } acting on the nodes of the frame and vertical uniformly

distributed forces F, = {F;,F;} acting on the roof beams (6, 7, 8, 9), respectively.
Permanent load F, =117- kN/m act on the floor beams (10, 11). Limits for the
variations of the load defined by the inequalities F, <F <F ,
F,, <F,<F,

to determine the load variation bounds of the adapted frame (Fig. 2) in the case

they are unknowns of the optimization problem. The main task is

sup 2

when the vector of inner forces of the discretized frame is S=(M,N)’
=(M,,M,,M,,...M,,, N,, N,,...N,,) =(S,)", i=1,2,...,n=38, i.e. both bending
moments M and axial forces N are taken into account. In this case the frame load

optimization is performed according to the mathematical model (6)—(10). The

unknowns are the load variation bounds F,,., F,,, F,, and F, . and the

vectors of plasticity multipliers & ,, j=1,2,..,4. Problem (6)-(10) was solved
according to the sequence of operations shown in Section 2 and three calculation
cases were investigated:

Case C1. When only strength constraints (7) are taken into account;

Case C2. When strength (7) and stiffness (10) constraints are taken into account.
The following total displacement constraints were imposed: —oo <u;<0.03m,

—w<u, £0.0225m, —o <u,, <0.0225m (Fig. 2).;
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Case C3. When strength (7) and constructive constraints (9) are taken into account.
The calculation results for all described cases, depending on applied constraints, is
presented in Table 5.

Case E sup F2 sup E inf FZ inf OF Locat-lon Of-the
’ ’ " ’ plastic strains
C1 23679 44035 -29349 -10 97073 4,6, 8, 23
C2 15777 26006 -23958 -10 65751 4,6
C3 11839 19200 -14673 -10 45722 4

Table 5: Calculation results of load optimization problem

In case of C2 total displacement u,, reach upper bound u,,  =0.0225m. Iterative

solution process was performed only for case C3, while optimal solution for cases
C1 and C2 were obtained in first iteration.

4 Conclusions

Practical implementation of the shakedown structures design methodology should be
based not only on the theoretical improvements and created new mathematical
models but also on close relation with existing building design. In this way it is
possible to avoid the gap between the theoretical methods of structures optimization
and real design that is based on design codes. For this purpose in this paper there are
created main optimization problems with strength, stiffness and stability constraints
where solution part that is related to stability is transferred to the design software
with implemented design codes. Solution procedures become iterative: structural or
load constraints of ordinary iteration of the main optimization problem are
calculated with design software. On the other hand, initial data for design software
become residual forces and residual displacements obtained from the solution of
optimization problem i.e. influence of plastic deformations is evaluated.
Convergence with desirable precision of the main optimization problem objective
function is a criterion of the optimal solution. Proposed ways of optimization
problems solution allow to realize discrete optimization principles. In such way
shakedown theory become generalization tool for implementation of calculation and
optimization for elastic-plastic structures in case of different loading.
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Abstract. In this paper there are considered the optimal design problems of the elastic and elastic-plastic bar struc-
tures. These problems are formulated as nonlinear discrete optimization problems. The cross-sections of the bars are
designed from steel rolled profiles. The mathematical models of the problems, including the structural requirements
of the strength, stiffness and stability. are formulated in the terms of finite element method. The stated nonlinear op-
timization problems are solved by the iterative method, where each iteration comprises of the selection of the cross-
sections of the bars from the assortment and solution of linear problems of the discrete programming. The require-
ment of discrete cross-sections is ensured by the branch and bound method.

Keywords: elastic and elastic-plastic steel bar structures, discrete optimization, finite element method. mathematical

programming.

1. Introduction

For the purpose of saving material, the structures are
designed by applying the methods of optimization [1-13].
The various algorithms for nonlinear optimization prob-
lems of structures are recently created: specific genetic
[3-5]. discrete optimization [6] and others optimization
algorithms [7-11]. The solution algorithms for nonlinear
optimization problems are not as universal as the latter
for the linear problems. They are mostly dedicated to
solve particular type of the problems. Furthermore, the
problem of convergence of finding optimal solution oc-
curs frequently, while they are applying. Therefore,
nonlinear optimization problems frequently are solved by
using the approximation technique when the linear pro-
¢ramming problem is solved in each iteration. This
method is applied in the paper [12], which is dedicated
for the optimization of elastic structures. While designing
the structures, an additional economy of the structural
material is received for the structures with the plastic
deformations in respect to optimal ones with the elastic
deformations. However, the optimization problems of
elastic-plastic structures [3, 8, 13] where are evaluated
not only the strength, but also stiffness and stability re-
Quirements, are complex nonlinear programming prob-
lems and realization of them is complicated. In this paper
design problems of the elastic and elastic-plastic steel
structures are formulated as nonlinear optimization prob-
lems. Their mathematical models are created by using
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finite element method. In these models there are evalu-
ated the conditions of strength, stiffness and stability
[14]. The cross-sections are designed from standard steel
rolled profiles. The formulated nonlinear optimization
problems are solved by the iterative method where each
iteration comprises of selection of the cross-sections of
the bars from the assortment and solution of linear prob-
lems of the discrete programming. The requirement of
discrete cross-sections is ensured by the branch and
bound method.

2. The volume minimization problem for elastic
structures

Mathematical models. There is considered the bar
structure loaded by load combinations v=12...p,

which bars designed from steel rolled profiles set TI. Let
the vector A, denote the structural bars cross-sectional

areas and F,, S, u, define the load, internal forces and

displacements of v-th load combination, respectively.
Then the volume (mass) minimization problem for the
elastic structure is expressed by the following mathemati-
cal model:

find (n
min f=L"'A.J

subject to



[4]s. =F.. [D]s, -[4] u, =0

[6la, -[BJs, 20, (EJu, <u”,

v=12l..p Ao 2 Ag, Ay ell.
In this model: equalities — equilibrium and geometrical
equations, describing the structural forces and displace-
ments; first inequality — strength and stability conditions;
other inequalities — displacements (stiffness) and con-
structive constraints. L is the vector of the structural
elements lengths. The unknowns of this problem are the
vectors Ay, S, and u,. Thus, the objective function of
the problem expresses volume and the mass of the struc-
ture in the same time. Flexibility matrix [D] of the struc-
tural elements together with the strength and stability
matrix ldﬁ] depend on unknown A . Therefore the model
(1) is the nonlinear programming problem: the cross-
sections of the structural bars, satisfying the requirements

of the minimum volume (mass) of the structure, strength,
stiffness and stability. are searching.

By eliminating the internal forces S, = [;Drl_][A]Tu‘.

and geometrical equations, this model can be rewrote to
the following optimization problem:

find
min f=LTA,
subject to
Bl <F.. Gho-ufu 20, @
[Eju, =07, v=12 .0}
Ag 2 A5, Apell;

bere [B. |= @)D [4F: [K]=[AB]'[AF s the
global stiffness matrix of the structure.

Formulation of the main relationships. The main
dependencies composing the problems (1) and (2) are
formulated in the terms of finite element method. For this
purpose the structure is divided into the elements (bars)
k=12,...,r joined in the nodes. The dependencies of the

model (1) can be composed by using the equilibrium

finite element method [15], and the model (2) can be

created with the help of the equilibrium or geometrically
compatible finite element method [16], because the stiff-
ness matrix [K ] can be formulated not only of the indi-
cated formula, but also of the stiffness matrices of ele-
ments too.

Two equations groups compose the equilibrium
equations [A S, =F,.:

L. the equilibrium equations for nodes describing the
relation between the nodal forces of connected into
nodes elements and the external forces acting on the
nodes;

2. the equilibrium equations for elements describing
the relation between the nodal forces and acting on
the element external load, and are formulated only
for elements affected by a distributed load. Expres-

sions of these equations are presented in the papers

[12,15].

The equilibrium equation matrix [A] could be for-
mulated from the coefficients of the equilibrium equa-
tions of nodes and elements or from the formuly

[4]=[c) [4] 115): here compatibility matrix [C] de-
scribing relation between global displacements of the
structural nodes and nodal displacements of elements:

[§]=dfag[Ak] is the quasi-diagonal matrix, which di-
agonal sub-matrices are composed from the coefficients
of the static equations P, = [Ak ]S ; of elements.
Flexibility matrix [5]: diag[ﬁ,,] of geometrical
equations [I_)]S‘,—[A]Tu‘. =0 contains in principal di-
agonal the flexibility matrices of finite elements [5# ] lts

coefficients are calculated by formula
dy =dy [H,(x)Hy(x)dx, here H(x) is the form
Iy

function of the intermal forces; flexibility of the element
under tension or compression is d, =1/EA4, , flexibility
of an element under bending is d, =1/El,; E is the
elasticity modulus, A4;,/;, are the cross-sectional area
and moment of inertia, respectively. Expressions of a
matrix [f)'k} are given in the paper [17].

Strength and stability condition. Strength condition

of the element under bending and tension or compression
of j -th section is described via inequalities:

N;+c;M;—R4; <0, -N;+¢;M; -RA; <0,

3)
N,~c;M;~RA; <0, =N, —c,M, ~RA; <0.

Here R=f, 47, f,4 is the yicld strength; . is the

exploitation  conditions:
Wey‘ cross-sectional area and section

partial factor of the
cj=AJfW¢j; A

modulus, respectively.
Furthermore, the bars under compression must sat-
isfy the stability condition

-N;/@;<RA; or -N;/p;,-RA; <0. (4

i

The reduction factor ¢ for bars under centric or eccentric

compression is defined in the national standard of civil
engineering [14]. Strength conditions (3) create for all
nodes of elements and stability conditions (4) only for the
elements under compression. All of them are described
via inequality [G]A, -|@]s, 2 0.

Solution algorithms. The direct solution of <
nonlinear discrete programming problems (1) and (2) :
fairly complicated. However, their solutions can be fous<
in the iterative process, where in each iteration the cros*
sectional profile is selected from the assortment and &%
linear programming problems solves, which obtam ¥ hes

matrices [5] 15] and [1?-] E,J of models (1) and (=)
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are replaced by matrices [D] [GD] and [K] [th ]‘“hich
all coefficients are known, because the cross-sections of
pars are set. The iterative process is finished, when it is
received cross-sectional areas coincide with the previ-
ously set ones. For the purpose of minimizing of problem
volume it is possible to consider each load case sepa-
rately and for every one solve such problem:

find
min f=L"TA,,
subject to
[4ls, =F,, [Dls, -[4]u,=0:  ©®
[Gla,, -[@]s, 20, [Elu, su™;
Ag 2Ag,,, Ag cll
or
find
min f=LTA,,
subject to
[K]u, =F,; (6)

[GlA,, -[®]S, 20, [E]u, <u®;
Ag 2Ay, Ag eIl

Inequality Ay, = A for the load cases v>1 is re-
placed by the condition Ay, 2 A, ;. The vector Ay,

corresponding to the last load case is the solution of the
problems (1) and (2).

Furthermore, the optimization problems (5) and (6)
can be solved in two stages:

1) classic problem of structural mechanics is solved

i.e. the displacements u, =[K ]“‘ F, and internal forces

5.= [D]"[A]ruv are calculated; for this can be applied
the equilibrium or geometrically compatible finite ele-
ment method and various state-of-the-art computer tech-
nology dedicated for this kind of problems;

2) it is determining the vector of strength and stabil-
ity conditions S, =[®]S, and solving the minimization
problem:

find

min f=L"A,
subject to (7)
[6)As 28, [Go]A, 2[Ew,.

Ay 2 A, Agell, v=0L12,..0

Here unknown is the vector A, whereas S, = [@]S‘..

Having software for the internal forces calculations, solu-
tion method is easier, because volume of this problem is
smaller. [t should be noted that it is possible to search for
the optimal solution when stability requirements are ne-

5

glected. But in this case it is necessary to verify if re-
ceived cross-sections of bars under compression satisfy
stability conditions. If they are violated, then cross-
sections should be augmented and additional calculation
iteration should be performed with including into the
mathematical model stability conditions.

Example 1. Let the bar structure, shown in Fig 1, be
loaded by three load cases: 1 - p; =164 kN/m,
py =16 4KkN/m; [1- p; =16,4kN/m, p, =4 kN/m; [lI -
py =4kN/m, p; =164kN/m. Moreover, the vertical
load F=27,6kN and indicated wind load acts in each
load case. The optimal cross-sections from steel rolled
profiles must be found. Columns and the upper chord are
designed from I profiles and others bars from the hollow
rectangle tubes. Yield strength R, = 275 MPa, elasticity

E=21: 10° MPa. Stiffness requirements are
described via constraints #, <5cm and v, <10cm, here

module
u, is the horizontal displacement of top node of the col-

umn; u,, is the vertical displacement in the middle of the

bottom chord of the truss.

27.6 kN |

i ;
| 0.8 kh/m
| N

11200

i
[
b

35700

Fig 1. Calculations schema of the framed truss

The columns and the upper chord are calculated as
the elements under bending and compression and other
ones are calculated as the elements under tension or com-
pression. Cross-sections are selected from the assortment.
Initial height of the truss 4 =3,3 m. After optimization it
was obtained the following cross-sections: 1 — HEA300;
2 - IPE330; 3 — 0 180x180x6; 4 — O 150x150x5; 5 = O
90x90x5; 6 — — 90x90x4; 7 — [0 70x70x4; 8 - — B0x80x4;
9 — O 60x60x5. Total weight of the optimal structure is
5229 kg.

Optimization of the structure is influenced not only
by the height of the truss, but also by the web shape and
the length of the segments. For this purpose the problems
of truss height and web shape were created and consid-
ered.

3. Truss height and web shape optimization problems

In this section there are considering and formulating
the optimal height and the rational shape of botiom chord
of the framed truss, shown in Fig 1, search problems.
Two designed versions are considering: 1) truss with
horizontal bottom chord (Fig 1); 2) truss with parabolic
bottom chord (Fig 2). Height optimization problems of




theses trusses are described by such mathematical mod-
els:

a) truss with parabolic bottom chord

find
min L"A,
subject to
[40)]s, =F,. [D(,A,)]S, —[40)] u, =0,
[G]A, - [0(A,)]s, =0, [E]u, <u®,
v=12,.,p
IJ-=fo+(yj2—yﬂ)z]}é, j=l,2,...,s|;
l;= ?x +(y‘,.2 +y0j)l]%, F=L2 8
Yi—a;f=0 Ag2A;, Ajell;
b) truss with horizontal bottom chord
find
min LTA,
subject to

[4(1)]s, =F,,

[Dl.A IS, ~[40)] u, =0,
[G]a, - [#(a, )]s, 20,
[Elu, Su®, Aj2A;, A ell
g =[’fx+(f+-1’nf)2]y2’

0 i S S =

Here s, is number of bottom chord bars; s, — number of
web bars; [ — height of the truss; I, —length of j-th bar,
aj =4x,(!—x,- Y2, f = length of the span. Main un-
knowns of these problems are cross-sectional areas A ; of

bars and height of truss f. There are nonlinear pro-
gramming problems, which can be solved iteratively.

27,6 kN 27,6 kN
H i
0.8 kN/m] 4 05 kN/m
5 % o
5 N
3857 m o

Fig 2. Framed truss with parabolic sketch bottom chord

Example 2. For the analyses of the framed structure
in the first example, which is loaded by three prescribed
load cases, must be determined: 1) truss rational bottom
chord sketch; 2) rational length of the web segment and
bars placing; 3) optimal height of the truss. The results of
truss investigation are presented in the Figs 3-5. While
performing the analysis of truss bottom chord sketch and
web structure it were comparing weight of optimal frame
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with horizontal and parabolic bottom of truss, while
number of truss segments was equal to 6, 8, and 10, and
its height A =33+45m. In the Fig 3 are shown the re-
sults of these investigations. The results of calculations

showed, that more rational was the truss with horizontal
bottom chord.
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Fig 3. Analysis results of various web and chords shapes

It was investigated N-shaped truss (Fig 1) and M-
shaped truss (Fig 4). It was determined, that most rational
was the structure of the web which was showed in the Fig
4, and the optimal height of such truss was 7 =4 m.
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4 2 ] £ 2
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> e 35,7m }

Fig 4. Framed truss with the optimal shape web

In the Fig 5 are showed chords, web and total mass
of truss with optimal shape web dependence on its height.
In the Fig 3 and Fig 5 are showed only the mass of trusses
(mass, equal to 1982 kg, of the columns are not evalua-
ted ).
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Fig 5. Investigations results of the optimal web truss height



4. The problem of elastic- plastic structure volume
optimizﬂtioﬂ

vathematical models. In the case of the monotoni-
cally increasing load the mathematical model of 1?1& prob-
jem of the minimal volume (mass) elastic-plastic sirgc~
ure can be formulated according to the corresponding
optimization model of elastic structure, when the plastic

srains 9, :[tﬁ]rl and additional complementary

slackness condition are evaluated

27 {[Gla, _[3] s}=0

that must correspond plastic multipliers & 2 0. So, refer-
ring to the model (1), it is received such, monotonically
increasing load acting on elastic-plastic structure, which
corresponds to the requirements of the strength, stiffness
and stability, mathematical model of optimization prob-
lem:

(8)

find
min LTAO
subject to

[4ls=F. [Dls+[@fr-[4fu=0, O

2 {[GIA, -[@]s}=0. 220, [Elusu’,
[Glao-[ols 20, a,2A5, Ajel

The search of this nonlinear programming problem
solution S, u, &, A, is very difficult. It is especially

hardened by the nonlinear conditions (8). That's why it is
solved in iteration way, in each iteration selecting cross-
sections of bars and solving simpler problem of nonlinear
programming, in which only additional complementary
slackness conditions are nonlinear. For the purpose of
admissible (design) set simplification of the problem and
its numerical realization, it is needed to eliminate these
conditions from the constraints of the problem. This can
be done in two ways - by moving them to the objective
function (such possibility is proved in the paper [18] and
used in the paper [19]) or eliminating and solving re-
duced optimization problem. So in each iteration it is
possible to solve such problem:

find
min f=L"TA, +17{G]A, -[®]s}
subject to
[4]s=F, [Dls+[o]a-[afu=0, ¥
[GlA,-[@]s=0, &z0, [Elu<u,
Ag2Aj, Agell
or
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find
min f=LTAq
subject to

[4]s=F, [Gla,-[®]s=0, (n

[Dls +[@] x-[4] u=0, 220,
[Ehsu*, A 245, Ajell

In the first case it is received the problem with nonlinear
objective function and liner constrains, and in the second
case - the reduced linear programming problem (RLPP).

It's understandable, that while solving RLPP, the condi-
tion 4, {lGj ]AU —].@J,-JS}-——O of some calculated section

won't be satisfied. Therefore in this case for defining the
optimal solution it is needed to apply the method of
branch and bound, setting additional constraints
A; < 0. for the recent sections.

Example 3. It is needed to set the cross-sections of
the bars of the steel rolled profiles of the optimal framed
structure, which calculations scheme is exampled in the
Fig 1. The height of the truss is A=33m.

The columns and the upper chord of the truss are de-
signed from [ profiles, and other bars - from rectangle
profile tube. The yield strength of the metal

R, =275 MPa, elasticity module E =2,1-10° MPa. The

requirements of the strength is described via constraints
#,<5cm and u, <10cm; here u, — horizontal dis-

placement of columns top node, u, — vertical displace-

ment of truss bottom chord middle node.

Frame bars optimal cross-sections were determined
with the help of the branch and bound method by solving
reduced nonlinear programming problems. It were re-
ceived such cross-sections of the bars: 1 — HEA300; 2 -
IPE330; 3 — O 180x180x6; 4 — [0 140x140x5; 5 — [
90x90x5; 6 — T 90x90x4; 7 — [0 70x70x4; 8 — 11 80x80x4;
9 — T 60x60x5. This solution show, that while designing
structure, in which it is allowed plastic deformations, it is
possible to reduce only tension 4-th bar cross-section.
Minimal mass of the optimal elastic-plastic structure
f =5178kg is only 51 kg smaller than the mass of the

optimal elastic structure.
5. Conclusions

1. The problems of the steel structures designing are
formulated as nonlinear optimization problems. It is
demonstrated, that elastic and elastic-plastic struc-
tures designing from rolled profiles problems are
nonlinear discrete optimization problems, which so-
lutions can be found in the iterative way applyving
branch and bound method and linear programming.
It is proposed three algorithms of optimal bars struc-
tures designing, which relations can be formulaied
applying the methods of equilibrium and geometn-
cally compatible finite elements.



It was formulated the problem of truss optimal
height determination and, performed calculations it
was established, that most rational is 4 m height, i.e.
1/9-1 truss (/ - length of the span).

While performed analysis of the bottom chord
sketch, as it were various height of the truss, it was
determined that more rational is the truss with paral-
lel bottom chord (Fig 1), comparing with the truss
which bottom chord was form of quadratic parabola
(Fig 2).

While fulfilling the analysis of the truss web form
and density it was determined, that most rational is
the triangle web with vertical bars (Fig 3), while
length of segment is 3,6 mor 1/10-7.

Elastic-plastic framed structure analysis confirmed
statement, that often optimal structure project is de-
termined not by the strength, but stiffness, stability
and structural requirements.
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Abstract. In this paper there are considered the optimal design problems of the elastic and elastic-plastic bar
structures. These problems are formulated as nonlinear discrete optimization problems. The cross-sections of the bars
are designed from steel rolled profiles. The mathematical models of the problems, including the structural
requirements of the strength, stiffness and stability, are formulated in the terms of finite element method. The stated
nonlinear optimization problems are solved by the iterative method, where each iteration comprises of the selection
of the cross-sections of the bars from the assortment and solution of linear problems of the discrete programming.
The requirement of discrete cross-sections is ensured by the branch and bound method.

Keywords: elastic and elastic-plastic steel bar structures, discrete optimization, finite element method, mathematical

programming
1. Introduction

For the purpose of saving material, the structures are
designed by applying the methods of optimization [1-13].
The various algorithms for nonlinear optimization
problems of structures are recently created: specific
genetic [3-5], discrete optimization [6] and others
optimization algorithms [7-11]. The solution agorithms
for nonlinear optimization problems are not as universal
as the latter for the linear problems. They are mostly
dedicated to solve particular type of the problems.
Furthermore, the problem of convergence of finding
optimal solution occurs frequently, while they are
applying. Therefore, nonlinear optimization problems
frequently are solved by using the approximation
technique when the linear programming problem is
solved in each iteration. This method is applied in the
paper [12], which is dedicated for the optimization of
elastic structures. While designing the structures, an
additional economy of the structural material is received
for the structures with the plastic deformations in respect
to optimal ones with the elastic deformations. However,
the optimization problems of elastic-plastic structures
[3,8,13] where are evaluated not only the strength, but
also stiffness and stability requirements, are complex
nonlinear programming problems and realization of them
is complicated. In this paper design problems of the
elastic and eastic-plastic steel structures are formulated
as nonlinear optimization problems. Their mathematical
models are created by using finite element method. In
these models there are evaluated the conditions of
strength, stiffness and stability [14]. The cross-sections

are designed from standard steel rolled profiles. The
formulated nonlinear optimization problems are solved
by the iterative method where each iteration comprises of
selection of the cross-sections of the bars from the
assortment and solution of linear problems of the discrete
programming. The requirement of discrete cross-sections
is ensured by the branch and bound method.

2. The volume minimization problem for elastic
structures

Mathematical models. There is considered the bar
structure loaded by load combinations v=12,...,p,

which bars designed from steel rolled profiles set TI. Let
the vector A, denote the structural bars cross-sectional

areasand F,, S,, u, define the load, internal forces and

displacements of v-th load combination, respectively.
Then the volume (mass) minimization problem for the
elastic structure is expressed by the following
mathematical model:

find
min f=LTA,
subject to
[Als,=F,, [Pls,~[ATu,=0,
[GlA, - [#]s, 20, [E]u, <u”,
v=12..p; Ag=Ag, Agell.



In this model: equalities — equilibrium and geometrical
equations, describing the structural forces and
displacements; first inequality — strength and stability
conditions; other inequalities — displacements (stiffness)
and constructive congtraints. L is the vector of the
structural  elements lengths. The unknowns of this
problem are the vectors A, S, and u,. Thus, the objec-

tive function of the problem expresses volume and the
mass of the structure in the same time. Flexibility matrix

[5] of the structural elements together with the strength

and stability matrix [5] depend on unknown A,.

Therefore the model (1) is the nonlinear programming
problem: the cross-sections of the structural bars,
satisfying the requirements of the minimum volume
(mass) of the structure, strength, stiffness and stability,
are searching.

By eliminating the internal forces S, =[D | '[A] u,

and geometrical equations, this model can be rewrote to
the following optimization problem:

find
min f=LTA,
subject to
[K]UVZFV’ [G]AO_EUJUVZO, 2
[E]lu, <u*, v=12,..,p;
Ag=Ag, Agell;

here [@u]=[@|DI AT ; [K]=[AD] AT is the
global stiffness matrix of the structure.

Formulation of the main dependencies. The main
dependencies composing the problems (1) and (2) are
formulated in the terms of finite element method. For this
purpose the structure is divided into the elements (bars)
k=12,..,r joined in the nodes. The dependencies of the
model (1) can be composed by using the equilibrium
finite element method [15], and the model (2) can be
created with the help of the equilibrium or geometrically
compatible finite element method, because the stiffness

matrix [IZ] can be formulated not only of the indicated

formula, but also of the stiffness matrices of elements

too.
Two equations groups compose the equilibrium
equations [A]S, =F, :

1) the equilibrium equations for nodes describing the
relation between the nodal forces of connected into
nodes elements and the external forces acting on the
nodes,

2) theequilibrium equations for elements describing the
relation between the nodal forces and acting on the
element external load, and are formulated only for
elements affected by a distributed load. Expressions
of these equations are presented in the papers [12,
15].

The equilibrium equation matrix [A] could be formulated
from the coefficients of the equilibrium equations of
nodes and elements or from the formula [A]=[C]'[A]
[15]; here compatibility matrix [C] describing relation
between global displacements of the structural nodes and
nodal displacements of elements; [A]= diag[A] is the

quasi-diagonal matrix, which diagonal sub-matrices are
composed from the coefficients of the static equations
P, =[ASx of elements.

Flexibility matrix [D]= diag[Dy| of geometrical
equations [D]S, -[Al'u, =0 contains in principal
diagona the flexibility matrices of finite elements [ﬁk].
Its coefficients ae caculated by formula
dij = deHki (X)ij (X)dX, here Hki (X) is the form

I

function of the interna forces; flexibility of the element
under tension or compression is d, =1/EA , flexibility of
an element under bending is dy =1/Ely; E is the
elasticity modulus, A, 1 arethe cross-sectional areaand
moment of inertia, respectively. Expressions of a matrix
[ﬁk] are given in the paper [17].

Strength and stability condition. Strength condition

of the element under bending and tension or compression
of ] -th section is described viainequalities:

3
Nj—Cij—RAjSO, —Nj—Cij—RAjSO. ()

Here R=fy qvc; fy 4 istheyield srength; vy, isthe
partial factor of the exploitation conditions;
Cj =Aj/Wg; Aj, Wy cross-sectional area and section
modulus, respectively.

Furthermore, the bars under compression must satisfy
the stability condition

—-Nj/o;<RA; or -N;/¢;—RA <0. 4

The reduction factor ¢ for bars under centric or eccentric

compression is defined in the national standard of civil
engineering [14]. Strength conditions (3) create for all
nodes of elements and stability conditions (4) only for the
elements under compression. All of them are described
viainequality [G]A, -|o]s, > 0.

Solution algorithms. The direct solution of the
nonlinear discrete programming problems (1) and (2) is
fairly complicated. However, their solutions can be found
in the iterative process, where in each iteration the cross-
sectional profile is selected from the assortment and the
linear programming problems solves, which obtain when
matrices [D], [@J and [K], [@uj of models (1) and (2)
are replaced by matrices [D], [@] and [K], [@, ], which



all coefficients are known, because the cross-sections of
bars are set. The iterative process is finished, when it is
received cross-sectional areas coincide with the
previously set ones. For the purpose of minimizing of
problem volume it is possible to consider each load case
separately and for every one solve such problem:

find
min f=LTA,,
subject to
[Als,=F,, [D]s,-[Au,=0; ©®
[G]a,-[@]s, >0, [E]lu, <u”;
Ao 2Agy1 Agell
or
find
min f =LTA,,
subject to

[K]u, =F,; (6)
[G]A —[®,]u, >0, [E]u, <u™;
AOv 2 AO,v—l! AOv ell.

Inequality Ay, = A, for the load cases v>1 is
replaced by the condition Ag, > Ay, ;. The vector Ag,

corresponding to the last load case is the solution of the
problems (1) and (2).

Furthermore, the optimization problems (5) and (6)
can be solved in two stages:

1) classic problem of structural mechanics is solved

i.e. the displacements u, =[K]™F, and internal forces

S, = [D] Y[A]'u, are calculated; for this can be applied
the equilibrium or geometrically compatible finite
element method and various state-of-the-art computer
technology dedicated for this kind of problems;

2) it is determining the vector of strength and stability
conditions S,, =[®]S, and solving the minimization
problem:

find
min f=LTA,
subject to (7)
[G]Ao 2 So. [GolA 2 [E]u,,
Ag=2Ay, Ajell, v=12,.,p.

Here unknown is the vector A, whereas S, = [qb]SV.

Having software for the internal forces calculations,
solution method is easier, because volume of this
problem is smaller. It should be noted that it is possible to
search for the optima solution when stability
requirements are neglected. But in this case it is
necessary to verify if received cross-sections of bars

under compression satisfy stability conditions. If they are
violated, then cross-sections should be augmented and
additional calculation iteration should be performed with
including into the mathematicad model stability

conditions.
Example 1. Let the bar structure, shown in Fig. 1,
be loaded by three load cases: | — p;=16,4kN/m,

p, =16,4KkN/m; Il — p; =16,4 kN/m, py, =4 kN/m; Il —
pp =4kN/m, p,=16,4kN/m. Moreover, the vertical
load F =27,6kN and indicated wind load acts in each
load case. The optimal cross-sections from steel rolled
profiles must be found. Columns and the upper chord are
designed from | profiles and others bars from the hollow
rectangle tubes. Yield strength R, = 275MPa, elasticity

module E=21-10°MPa Stiffness requirements are
described via constraints u, <5cmand uy <10cm, here
uy is the horizontal displacement of top node of the
column; uy isthe vertical displacement in the middle of
the bottom chord of the truss.

27,6 kN 2y P | 27,6 kKN

0,8 kN/m

5 ' 0,5 kN/m

11200
|
-
|
[eo
@
|4

35700

Fig 1. Calculations schema of the framed truss

The columns and the upper chord are calculated as
the elements under bending and compression and other
ones are calculated as the elements under tension or
compression. Cross-sections are selected from the
assortment. Initial height of the truss h=33m. After
optimization it was obtained the following cross-sections:
1 - HEA300; 2 — IPE330; 3 — [1 180x180x6; 4 — [1
150x150x5; 5 — [ 90x90x5; 6 — [ 90x90x4; 7 — [
70x70x4; 8 - [1 80x80x4; 9 — [1 60x60x5. Total weight of
the optimal structure is 5229 kg.

Optimization of the structure is influenced not only
by the height of the truss, but also by the web shape and
the length of the segments. For this purpose the problems
of truss height and web shape were created and
considered.

3. Truss height and web shape optimization problems

In this section there are considering and formulating
the optimal height and the rational shape of bottom chord
of the framed truss, shown in Fig. 1, search problems.
Two designed versions are considering: 1) truss with
horizontal bottom chord (Fig. 1); 2) truss with parabolic
bottom chord (Fig. 2). Height optimization problems of



theses trusses are described by such mathematical
models:
a) truss with parabolic bottom chord
find
min LTA,
subject to
[A(I )]Sv =K, [D(l’AO)]Sv - [A(I )]T u, = 0,
[G]Ao - [@(A,)]s, 20, [Elu, <u”,
v=12,.,p;

l; :[Ijzx +(Yj2—yj'1)2]}é, i=12,..,s;

IJ:[Ijszr(yszryo,')z]}/z, i=12,..,s;
yi—a;f=0 Ag=Ag, Agell

b) truss with horizontal bottom chord
find
min LTA,
subject to
[A(l )]Sv :Fvv
[D(. A )]s, ~[Al)] u, =0,
[G]A, - [2(A,)]s, >0,
[E]u, <u®, Ag=A,, Agell,

=Bz (v P

i=12..,s; v=L12..p

Here s, is number of bottom chord bars; s, — number of
web bars; f —height of thetruss; |; —length of j-th bar,
a; =4%(1—x)/1?, | — length of the span. Main un-
knowns of these problems are cross-sectional areas A; of

bars and height of truss f. There are nonlinear
programming problems, which can be solved iteratively.

27.6 kN pr —~ P 27,6 kN
]
0.8kNm | 4 : A 0.5 kN/m
5 6/ 8 \ 7 \5
- = \3 -
= g
1
| I—— —t
35,7 m

Fig 2. Framed truss with parabolic sketch bottom chord

Example 2. For the analyses of the framed structure
in the first example, which is loaded by three prescribed
load cases, must be determined: 1) truss rational bottom
chord sketch; 2) rational length of the web segment and
bars placing; 3) optimal height of the truss. The results of
truss investigation are presented in the Fig. 3-5. While
performing the analysis of truss bottom chord sketch and

web structure it were comparing weight of optimal frame
with horizontal and parabolic bottom of truss, while
number of truss segments was equal to 6, 8, and 10, and
its height h=33+45m. In the Fig. 3 are shown the
results of these investigations. The results of calculations
showed, that more rational was the truss with horizontal
bottom chord.

) .
S polygonal

X m— g
3400 o % 1 | polygenal
3300 o .
. 3 105

3200 R L 1 1 polygenal

6 5., horis
3000 4 ! & beo - N.shaped

Mess, kg

x—5§ 5, horiz
N-shaped

—e— 105, boriz.,
N-shaped

—— 5, heviz
M-shaped

36 1.0
105, boriz.,
M-shaped

Height of the truss, m

Fig 3. Analysisresults of various web and chords shapes

It was investigated N-shaped truss (Fig. 1) and M-
shaped truss (Fig. 4). It was determined, that most
rational was the structure of the web which was showed
in the Fig. 4, and the optimal height of such truss was
h=4m.

10
7 . 2
A 5~ 5
= = 11 \3 \&
1
L 35,7m _‘

Fig 4. Framed truss with the optimal shape web

In the Fig. 5 are showed chords, web and total mass
of truss with optimal shape web dependence on its height.
In the Fig. 3 and Fig. 5 are showed only the mass of
trusses (mass, equal to 1982 kg, of the columns are not
evaluated ).

Truss mass dependance on its height

L B w2 i

1700 + ! ! ! ! s e T S P
i 1400 +

1100 -+

m? |
EIRIEE

HEEREDRED

Height af the truss, m

Fig 5. Investigations results of the optimal web truss height




4. The problem of elastic- plastic structure volume
optimization

Mathematical models. In the case of the
monotonically increasing load the mathematical model of
the problem of the minimal volume (mass) elastic-plastic
gtructure can  be formulated according to the
corresponding optimization model of elastic structure,

when the plastic strains ©,=[@] % and additional
complementary slackness condition are evaluated

AT {[G]A0 _l@] s}:o ®

that must correspond plastic multipliers A >0. So,
referring to the model (1), it is received such, monotoni-
cally increasing load acting on elastic-plastic structure,
which corresponds to the requirements of the strength,
gtiffness and stability, mathematical model of optimiza-
tion problem:

find
min LTA,
subject to
[Als=F, [Dls+[@] »-[A]'u=0, @
2T {[GlA,-[@]s}=0,2>0, [Elu<u®,
[GlA,-[p]s=0, Ag=Ag, Agem

The search of this nonlinear programming problem
solution S,u,A,A, is very difficult. It is especialy
hardened by the nonlinear conditions (8). That's why it is
solved in iteration way, in each iteration selecting cross-
sections of bars and solving simpler problem of nonlinear
programming, in which only additional complementary
slackness conditions are nonlinear. For the purpose of
admissible (design) set simplification of the problem and
its numerical realization, it is needed to eliminate these
conditions from the constraints of the problem. This can
be done in two ways - by moving them to the objective
function (such possibility is proved in the paper [18] and
used in the paper [19]) or eliminating and solving
reduced optimization problem. So in each iteration it is
possible to solve such problem:

find
min f =LTA, +1" {G]A, -[@]S}
subject to
[Als=F. [D]s+[e] »-[Au=0 (O
[GlA,-[®]s>0, *>0, [E]Ju<u,
Ag>Aq, Agell
or

find
min f=LTA,

subject to
[Als=F, [G]a,-[®]s>0, (11)

[D]s+[@] »-[A]'u=0, >0,
[El<u®, Ag=A;, Ayell

In the first case it is received the problem with nonlinear
objective function and liner constrains, and in the second
case - the reduced linear programming problem (RLPP).

It's understandable, that while solving RLPP, the

condition lj{[GjJAO—[dijJS}:O of some calculated

section won't be satisfied. Therefore in this case for
defining the optimal solution it is needed to apply the
method of branch and bound, setting additional
constraints 2.; < 0. for the recent sections.

Example 3. It is needed to set the cross-sections of
the bars of the steel rolled profiles of the optimal framed
structure, which calculations scheme is exampled in the
Fig. 1. The height of the trussis h=3,3m.

The columns and the upper chord of the truss are
designed from | profiles, and other bars - from rectangle
profile tube. The vyield strength of the meta

Ry =275MPa, elasticity module E = 21-10°MPa The

requirements of the strength is described via constraints
uy<5cm and u,<10cm; here u, - horizontal

displacement of columns top node, u, - verticd

y
displacement of truss bottom chord middle node.

Frame bars optimal cross-sections were determined
with the help of the branch and bound method by solving
reduced nonlinear programming problems. It were
received such cross-sections of the bars: 1 — HEA300; 2 —
IPE330; 3 — [] 180x180x6; 4 — [1 140x140x5; 5 — []
90x90x5; 6 — 1 90x90x4; 7 — 1 70x70x4; 8 — [ 80x80x4;
9 — 7 60x60x5. This solution show, that while designing
structure, in which it is allowed plastic deformations, it is
possible to reduce only tension 4-th bar cross-section.
Minimal mass of the optimal elastic-plastic structure

f =5178kg is only 51 kg smaller than the mass of the

optimal elastic structure.
5. Conclusions

1. The problems of the steel structures designing are
formulated as nonlinear optimization problems. It is
demonstrated, that elastic and elastic-plastic
structures designing from rolled profiles problems
are nonlinear discrete optimization problems, which
solutions can be found in the iterative way applying
branch and bound method and linear programming.

2. It is proposed three agorithms of optimal bars
structures designing, which relations can be
formulated applying the methods of equilibrium and
geometrically compatible finite elements.



3. It wasformulated the problem of truss optimal height
determination and, performed calculations it was
established, that most rational is 4 m height, i.e.
1/9-1 truss (I - length of the span).

4. While performed analysis of the bottom chord
sketch, as it were various height of the truss, it was
determined that more rational is the truss with
paralel bottom chord (Fig. 1), comparing with the
truss which bottom chord was form of quadratic
parabola (Fig. 2).

5. While fulfilling the analysis of the truss web form
and density it was determined, that most rational is
the triangle web with vertical bars (Fig. 3), while
length of segmentis3,6 mor 1/10-1.

6. Elastic-plastic framed structure analysis confirmed
statement, that often optimal structure project is
determined not by the strength, but stiffness, stability
and structural requirements.
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