VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

Tomas GRIGALIS

STRUCTURED DATA EXTRACTION FROM
TEMPLATE-GENERATED WEB PAGES

DOCTORAL DISSERTATION

TECHNOLOGICAL SCIENCES,
INFORMATICS ENGINEERING (07T)

VGTU

o LEIDYKLA
Vilnius TECHNIKA 2014

Doctoral dissertation was prepared at Vilnius Gediminas Technical University in
2010-2014.

Supervisor
Prof Dr Habil Antanas CENYS (Vilnius Gediminas Technical University,
Informatics Engineering — 07T).

The Dissertation Defense Council of Scientific Field of Informatics Engineering
of Vilnius Gediminas Technical University:

Chairman

Assoc Prof Dr Arnas KACENIAUSKAS (Vilnius Gediminas Technical
University, Informatics Engineering — 07T).

Members:

Dr Robertas DAMASEVICIUS (Kaunas University of Technology,
Informatics Engineering — 07T),

Prof Dr Habil Gintautas DZEMYDA (Vilnius University, Informatics
Engineering — 07T),

Dr Mario Rosario GUARRACINO (Institute for High Performance
Computing and Networking, Italy, Mathematics — 01P),

Prof Dr Olegas VASILECAS (Vilnius Gediminas Technical University,
Informatics Engineering — 07T).

The dissertation will be defended at the public meeting of the Dissertation Defense
Council of Informatics Engineering in the Senate Hall of Vilnius Gediminas
Technical University at 10 a. m. on 16 September 2014.

Address: Saulétekio al. 11, LT-10223 Vilnius, Lithuania.
Tel.: +370 5 274 4956; fax +370 5 270 0112; e-mail: doktor@vgtu.lt

A notification on the intend defending of the dissertation was send on 14 August 2014.

A copy of the doctoral dissertation is available for review at the Internet website
http://dspace.vgtu.lt and at the Library of Vilnius Gediminas Technical University
(Saulétekio al. 14, LT-10223 Vilnius, Lithuania).

VGTU leidyklos TECHNIKA 2262-M mokslo literatiiros knyga

ISBN 978-609-457-699-7

© VGTU leidykla TECHNIKA, 2014
© Tomas Grigalis, 2014
tomas.grigalis@vgtu.lt

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Tomas GRIGALIS

SVTRUKTURIZUOTU DUOMENUY ISGAVIMAS
IS TINKLALAPIY SUGENERUOTUY PAGAL
SABLONUS

DAKTARO DISERTACIJA

TECHNOLOGIJOS MOKSLAI,
INFORMATIKOS INZINERIJA (07T)

VGTU

o LEIDYKLA
Vilnius TECHNIKA 2014

Disertacija rengta 2010-2014 metais Vilniaus Gedimino technikos universitete.
Vadovas

prof. habil. dr. Antanas CENYS (Vilniaus Gedimino technikos universitetas,
informatikos inzinerija— 07T).

Vilniaus Gedimino technikos universiteto Informatikos inzinerijos mokslo
krypties disertacijos gynimo taryba:

Pirmininkas

doc. dr. Arnas KACENIAUSKAS (Vilniaus Gedimino technikos
universitetas, informatikos inzinerija — 07T).

Nariai:
dr. Robertas DAMASEVICIUS (Kauno technologijos universitetas,
informatikos inzinerija — 07T),
prof. habil. dr. Gintautas DZEMYDA (Vilniaus universitetas, informatikos
inzinerija — 07T),
dr. Mario Rosario GUARRACINO (Didelés spartos skaic¢iavimy ir tinkly
institutas, Italija, matematika — 01P),

prof. dr. Olegas VASILECAS (Vilniaus Gedimino technikos universitetas,
informatikos inZinerija — 07T).

Disertacija bus ginama vieSame Informatikos inzinerijos mokslo krypties
disertacijos gynimo tarybos posédyje 2014 m. rugséjo 16 d. 10 val. Vilniaus
Gedimino technikos universiteto senato posédziy saléje.

Adresas: Saulétekio al. 11, LT-10223 Vilnius, Lietuva.
Tel.: (8 5) 274 4956; faksas (8 5) 270 0112; el. pastas doktor@vgtu.lt

Pranesimai apie numatoma ginti disertacija iSsiysti 2014 m. rugpjicio 14 d.

Disertacija galima perzitiréti interneto svetainéje http://dspace.vgtu.lt/ ir Vilniaus
Gedimino technikos universiteto bibliotekoje (Saulétekio al. 14, LT-10223
Vilnius, Lietuva).

Abstract

Most of structured data on the Web is found in database-backed web sites.
Typically, upon a web page request in such a site, structured data is retrieved from
an underlying database and embedded into a web page using some fixed template.
Reverse engineering task — extracting structured data from template-generated
web pages is studied in this dissertation. There are thousands of web pages on the
Web that differ in visual style and underlying structure. Automatically extracting
structured data from many structurally heterogonous template-generated web
pages is a difficult and time consuming task, and it is regarded as a grand
challenge. It is assumed, that solving the challenge would improve todays” Web
search and help companies to reduce costs. Thus the main goal of the dissertation
is to propose a novel and more effective method for extracting structured data
from template-generated web pages. The object of the research in this dissertation
is structured data extraction from template-generated web pages.

The dissertation consists of introduction, four main chapters and general
conclusions. In the first Chapter the problem of structured web data extraction is
introduced, state-of-the-art data extraction techniques are reviewed and finally
real life applications for structured web data extraction systems are discussed.

In the second Chapter a novel method for extracting structured data records
from template-generated web pages is presented. The method is based on
clustering visually and structurally similar web page elements. It first renders a
given web page in a contemporary web browser, and then clusters visually and
structurally similar repeating web page elements to identify an underlying pattern
of embedded structured data records. Finally a data extracting wrapper is
generated. The wrapper consists of XPath expressions that can be easily reused in
many third party data extracting applications.

In the third Chapter a novel method for structurally clustering template-
generated web pages is proposed. The method is based on the three observations:
that there is a limited number of different style templates in one particular
template-generated web site; that there is a limited number of inner-site link
locations in all templates of a same site; that each individual location in a web
page containing a link usually points to structurally similar web pages. The
method leverages XPath locations of inbound inner-site links to significantly
speed up web page clustering time.

In the final fourth Chapter more than one million web pages are used to
experimentally evaluate the two proposed methods. The results reveal that the
both proposed methods consistently outperform other state-of-the-art techniques.

Reziumeé

Dauguma struktiirizuoty duomeny internete yra randami duomeny bazémis
paremtose interneto svetainése. Paprastai, narSant tokio tipo svetainése,
kiekvienos uzklausos metu yra kreipiamasi j duomeny baze ir i$ jos iStraukiami
strukttrizuoti duomenys. Naudojant i§ anksto paruostus Sablonus Sie duomenys
yra automatiskai integruojami j narSoma tinklalapj ir atvaizduojami vartotojui.
Sioje disertacijoje yra tyrin¢jama kaip $iuos duomeny iSgauti i§ minéty
tinklalapiy. Internete gausu skirtingo dizaino ir strukttros internetiniy svetainiy,
todél siekis automatiskai atpazinti nezinomos struktiiros tinklalapius ir iSgauti
juose esancius struktiirizuotus duomenis yra itin sudétinga problema. Manoma,
jog issprendus §ig problema buty galima pagerinti informacijos paieskos internete
sistemas ir jgalinti organizacijas Zymiai sumazinti internetiniy duomeny rinkimo
kastus. Tad Sios disertacijos tikslas yra pasitlyti nauja ir efektyvesnj metoda,
skirtg iSgauti strukttrizuotus duomenis i$ tinklalapiy sugeneruoty pagal Sablonus.
Disertacijos tyrimy objektas — struktiirizuoty duomeny iSgavimas i$ tinklalapiy
sugeneruoty pagal Sablonus.

Disertacijg sudaro jvadas, keturi pagrindiniai skyriai ir bendrosios i§vados.
Pirmajame skyriuje yra supazindinama su strukttrizuoty duomeny gavybos
internete problema, nagrinéjami pazangiausi strukttrizuoty duomeny gavybos
metodali, jy pritaikymas verslo analitikos sistemose.

Antrajame skyriuje pristatomas naujas metodas skirtas automatiskai iSgauti
strukttirizuotus duomenis is tinklalapiy sugeneruoty pagal Sablonus. Metodas yra
gristas struktiiriskai ir vizualiai panaSiy tinklalapio elementy klasterizacija.
Vaizdinei informacijai iSgauti tinklalapis yra atvaizduojamas interneto narsykléje.
Vizualiai ir struktiiriSkai panasiis tinklalapio elementai suklasterizuojami, o gauti
klasteriai iSnaudojami siekiant atpazinti tinklalapyje esan¢iy duomeny struktiira.
Tuomet automatiskai sugeneruojamas XPath eiluciy rinkinys, kur] naudojant
galima iSgauti strukttrizuotus duomenis i$ atitinkamo dizaino tinklalapio.

Treciajame skyriuje pristatomas naujas metodas skirtas sparciai klasterizuoti
panasios struktiiros tinklalapius. Metodas grjstas trimis jzvalgomis: kad vienoje
interneto svetainéje dazniausiai yra randamas ribotas skaicius skirtingo dizaino
vidiniy tinklalapiy; kad kiekvienam svetainés tinklalapio Sablone yra numatytas
ribotas skaicius viety, kuriose yra talpinamos nuorodos j kitus vidinius svetainés
tinklalapius; kad kiekviename to paties Sablono tinklalapyje konkreti vieta su
nuoroda veda j tarpusavyje panasios struktiiros tinklalapius.

Paskutiniame ketvirtajame skyriuje yra eksperimentiskai iSbandomi pasiiilyti
metodai naudojant daugiau kaip vieng milijona tinklalapiy. Bandymy rezultatai
atskleidzia, jog abu pasiiilyti metodai visais iSbandytais atvejais savo efektyvumu
lenkia kity autoriy naujausius metodus.

vi

Symbols

|Dataltems|
IN1l, |N-|
(D)
Is1],[s2]
bxp(P)|
AB

c

CPD

d

Dy, D

DR,
DRactural

DR correctly
DRextracted
editDistance()

Notations

number of data items per given data record
number of nodes in corresponding HTML trees
the size of a shingle set from a given document D,
length of the strings

size of a given XPaths set

HTML trees

containment of given text documents

common paths distance of given paths sets

string edit distance

text documents

area in pixels of a data region in a web page
number of data records present in given web pages
number of correctly extracted data records

number of extracted data records

function for calculating atree edit distance of a web page

vii

Ew -
FN -
FP -
max() —
ND -
Nodes() -
NSTM -
pq -
P, P -
PP(T) _
pqGDist() -
r _
s() -
s, 82 -
STM -
T, T, -
TED() -

xp(Py) -

Abbreviations

AJAX -
CPU -
CSS -
DOM -
FTP -
GB -
GHz -
HTML -

viii

a program that executes wrapper and extracts data
false negative

false positive

a function returning the biggest number
normalized string edit distance

number of nodes in given HTML tree

normalized simple tree matching distance

integers

web pages

pg-grams of given tree data structures

pg-gram distance between given trees
resemblance of given text documents

function generating shingle set from given document
strings

simple trees’ matching score

tree data structures

HTML tree edit distance

true negative

true positive

source data schema

target data schema

visual weight of web page element

data extracting wrapper (rules set for data extraction)
a bag of XPath strings from a given web page

Asynchronous JavaScript and XML
Central Processing Unit

Cascading Style Sheets

Document Object Model

File Transfer Protocol

Gigabyte

Gigahertz

Hypertext Markup Language

Random-Access Memory

Revolutions per minute

World Wide Web

Extensible Markup Language

a query language for selecting nodes from an XML document

server-side scripting language designed for web development
general-purpose, interpreted, dynamic programming language

a server-side script engine for dynamic web pages

X

Contents

INTRODUCTION ..ottt ettt sttt 1
The Investigated Problem............ccooiiiiiiiiiiiiieeeeee e 1
Importance of the TRESIScceiiiieieeeee e 2
The Object 0f RESEAICHccuiiuiiiieiieieeee e 3
The Goal Of the THESISeoveiuiieiiiieieee et 3
The Tasks 0f the TheSiS.......coereriiiiieir e 3
Research MethodoIOgYcocoiiiiiiiiiiniineeeteeeee et 3
Importance of Scientific NOVEILYcccevieriinininiiiiiiiiccceese e 4
Practical Significance of Achieved Results..........ccoceeiiviiiininininiciciinccnceeee 4
The Defended Statements..........coceeeeieriiririnineneee ettt 5
Approval of the ReSUILScooviiiiiiiiiiiicc e 5
DiSSEItation STIUCTUIEcc.viiuiiiiieiieiieicete ettt sttt sttt saee et 6
ACKNOWIEAZEIMENLS ...ttt sttt eneene 6

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 7

1.1 PreliMINATIES. . .vvveiieeiee ettt et e ettt e e e e e s eeaeeseenteeessnaeeesennneeas 8
1.1.1. Structured Web Data..........ccooouvvviiiiiiiiiieiiie e 8
1.1.2. Definition of the Web Data Extraction Problem................cccccoooveiiiininennn. 9
1.1.3. HTML Document Object Model and XPath............cccccooviervenieniiirnen. 11
1.1.4. Challenges Posed by Modern Web Pages..........ccccecueveveninincncniencniennn, 13

1.2. Structured Web Data Extraction Techniquescccccvevveriieiiiiciesienieeeeeee 14
1.2.1. Pattern Search Based Methods.............cooovveieeieiiiiiiieeeeieeeeeeeeeeeeee e 17

xi

1.2.2. Visual Signals Aided Methodsc.cccccoerininniniiininininneeececcens 20

1.2.3. Ontology Based Methods............cocuieiirieiieiieiee e 21
1.3. Web Page Clustering for Data Extraction Techniquesc.ccccevcerereeierienennne. 22
1.3.1. Cross-linkage Based Methodsccccoiiiiiininieieeeeeceeee e 22
1.3.2. Text Content Based Methods...........cceoiiiiiiiiiiiieieeeeeceeeeeee e 23
1.3.3. HTML Tree Based Methodscccuereriiieiiniiieieeeseeeeeeieeeee e 25
1.3.4. URL Pattern Search Based Methods...........ccccoeoirieiiniieniniiceceeeeee 26
1.4. Web Data Extraction Systems in Enterprise Environment...........c.ccccooceeeeerenenee. 26
1.4.1. Applications for Web Data Extraction Systems........c.ccccceverenereneenieniennns 28
1.4.2. A Typical Commercially Available Web Data Extraction System............. 31
1.5. Research on Data Extraction in Lithuania..........c.ccococviiiiiiininninnniccns 33
1.6. Conclusions of Chapter 1 and Formulating Tasks for the Dissertation................. 34

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE-

GENERATED WEB PAGES.....ccooiiiiietieeeet ettt 37
2.1. Data Extraction from Web Pagescccoeoiriiriiiiiiiiieeeeee e 37
2.2. The Proposed Method.............ooiiiiiiiiiiiieieeee e 40
2.2.1. The ATCRItECTUIEc.eiieiiiiieieeie ettt 41
2.2.2. Exploiting Structural and Visual Features of Web Pages............cccccceee.e. 43
2.2.3. Web Page Pre-proCessingccoceeeerieriereneseniieiieieie e 46
2.2.4. Generating XPath Strings With Visual Data (XStrings)ccccceeeeeveneense. 48
2.2.5. Clustering Visually Similar Web Page Elements...........ccococevenenecicnenne. 48
2.2.6. Data Records Identification and EXtractioncccceceevenencneneneenennenne. 49
2.2.7. Finding Data Regions, Data Records and Data Items.........c..c.cceceveevennne. 51
2.2.8. Finding Visual Weights of Data Regionscccceevvieciirienienienieicee, 53
2.2.9. Extracting Data RECOrdScovieiieriieiiiieeiesieeeieee e 53
2.2.10. Wrapper GeNETAtiON.cc.eeuerueruieeieieiereeete ettt eteeeetesteseesteseeeneeneenseseeneas 55
2.3. Conclusions of ChapLer 2ccceouerieiiiiiieieieee et 55
3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED
WEB PAGES ..ottt et 57
3.1. Structural Clustering of Web Pages...........ccooeiieiiiiiiiiiieeeeeeeceeeee e 58
3.2. RUNNING EXAMPIE ...ttt 59
3.3. Structural Similarity of Template-Generated Web Pages...........ccccerverienrennne. 62
3.4. The Proposed Method...........coecuieiiiieiieieeec et 64
3.4.1. Crawling and Extracting XPath of Inner-site Links.............ccccvecurrcrrnnnnen. 64
3.4.2. URL and XPath Tuples Generationccceeeerveeveeriereeneenieeieeeeseeeen 65
3.4.3. Approximate CIUSLEIING.........ccevveiieiireieeieeiese et 66
3.4.4. Clusters RefINement............cccoereiiininieiiinciiceeereeeesee e 67
3.5. Conclusions of Chapter 3oocoiiriiiiieieiee ettt 69
4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS.................... 71
4.1. Evaluating the Method for Structurally Clustering Template-Generated Web
PAZES .o 71
4.1.1. THE DAASELc.eeveiieiieieie ettt ettt ettt see et eseeneeneeneas 72

Xii

4.1.2. Ground Truth and Measurementscccoeeeeveeeeeveeeeeeeeeeeereeeeeeeeeeeennens 73

4.1.3. Selecting Parameters for Two Baseline Algorithmsc.ccoccvveeeeiennnne. 74
414 RESUILS -ttt ettt eee ettt ean 76
4.2. Evaluating the Method for Extracting Structured Data from Template-Generated
WED PAZES ...ttt ettt ettt sttt n bt nen 81
4.2.1. ThE DAASELS.ccueeuieuieieieieeeteete ettt e sttt ettt et et et e sbe st beeeeeseeneenseneeneas 81
4.2.2. Evaluation METIICSccueueruiruieiiiiieiieiee sttt ettt see e see s 82
4.2.3. Results with ClustVX Datasetccceeerererenieieieiesiesese e 83
4.2.4. Results with VINTS-2 Datasetccccovvuevueirinieinineieenceeeseeeeseeenes 85
4.2.5. Results with Alvarez Dataset............cccoveivecinineoinincenceerceeeene 85
4.3. Conclusions 0Ff ChaPLEr 4cccuieiieiieieeieciereeste ettt eeaeseee e nneas 87
GENERAL CONCLUSIONS ..ottt sneaee e 89
REFERENCES ...ttt sttt st sttt 91
A LIST OF PUBLICATIONS BY THE AUTHOR ON THE TOPIC OF THE
DISSERTATION ..ottt ettt 101
SUMMARY IN LITHUANIANcooiiiiieeteeneeereiee ettt 103
ANNEXES ...ttt ettt etttk etttk ettt sttt bt b s 123
Annex A. The Co-authors Agreements to Present Publications for the Dissertation
DIETENCE ...ttt ettt ettt 123
Annex B. Copies of Scientific Publications by the Author on the Topic of the
DISSEITAION......c.eviiiieiiieeeiieteee e 123

xiii

Introduction

The Investigated Problem

Structured data on the World Wide Web (Web) is usually embedded into
template-generated web pages (Cafarella et al. 2011). Typically, upon a page
request, this data is retrieved from databases and inserted into a web page using
some fixed style templates. There are thousands of web pages on the Web that
differ in visual style and underlying structure. Automatically extracting structured
data from these template-generated web pages is not a trivial task and much of
research efforts in the field of information extraction are put into tackling the
problem (Bohannon et al. 2012; Dalvi et al. 2011; Furche et al. 2012b).

Traditional information extraction techniques considered in the database
community tend to be aimed at extracting target information from manually
specified sources (Bohannon et al. 2012). Although there are some proposals to
extract data automatically (Crescenzi 2001; Liu ef al. 2010; Zhai, Liu 2006; Zhao
et al. 2005), but, unfortunately, these and many other state-of-the-art solutions do
not demonstrate required level of precision and recall high enough to power real
applications (Bohannon et al. 2012). Web-scale data extraction is remaining an
open challenge (Blanco er al. 2011).

2 INTRODUCTION

In this thesis we study automatic structured data extraction from template-
generated web pages. Two methods are proposed that have potential to be
implemented into Web-scale data extraction systems.

Importance of the Thesis

Data on the Web is about everything. An ability to automatically locate,
extract and integrate that data can bring huge benefits (Madhavan et al. 2007).
Indeed, it can fundamentally shift the search to allow a more semantic view of
content (Dalvi et al. 2009). Currently search engines see the Web as hyper-linked
pages, each containing a bag of words. A user searching the Web is presented with
list of links to the web sites. However, the true value of the Web lies in the wealth
of information provided by those pages (Dalvi et al. 2009). So instead of following
the links, search engine users could instantly see the exact information they were
looking for, such as list of products, movies, books, flights, real estate listings or
any other real world entities (Weikum, Theobald 2010). Furthermore, Web-scale
data extraction could enable and speed up data integration from multiple web
sources. This would lead to building enormous size knowledge bases. A long
standing goal for the Web search, that is — to return answers in the form of facts,
would be much more tangible (Cafarella et al. 2011). So Web-scale structured
data extraction could fundamentally change the way we see and browse the Web
today.

Furthermore, automatic web data extraction solutions are also important for
companies. The success of todays’ company hinges on identifying and responding
to competitive pressures (Connotate 2012). Many companies gather information
from online sources and such activity belongs to online business intelligence
(Baumgartner et al. 2009b). One of the key objectives of online business
intelligence is to collect valuable information from many web sources to support
decision making and thus gain competitive advantage. However, the online
business intelligence presents non-trivial challenges to web data extraction
systems that must deal with technologically sophisticated modern web pages
where traditional manual programming approaches often fail to successfully
extract data. Web sites are designed differently. If a company wants to collect data
from hundreds of sources it is practically infeasible to try manually write data
extracting rules for each source. A fully automatic web data extraction approaches
should be used to achieve cost effective results. However, automatic web data
extraction is still an active research area. Even if there are a limited number of
web pages to be monitored a business intelligence system could have some degree
of automation to reduce human efforts needed to build extraction rules and thus
save costs to organization (Ferrara et al. 2012). In best case scenario the user

INTRODUCTION 3

without any programming knowledge should be able to include easily a new web
site to be monitored or fix an old one. Furthermore, online business intelligence
systems extracting data from many sources would further benefit by automatically
adapting data extraction rules to constant changes of web sites (Dalvi, Bohannon
2009).

As we see, fully-automatic structured data extraction techniques would help
to improve todays’ web search, enable companies to reduce costs and gain
competitive advantage.

The Object of Research

The object of the study is structured data extraction from template-generated
web pages.

The Goal of the Thesis

The main goal of the thesis is to propose a novel more effective method for
extracting structured data from template-generated web pages.

The Tasks of the Thesis

In order to achieve the goal, the following tasks have to be solved:

1. To review state-of-the-art data extraction techniques.

2. To analyse technologically sophisticated modern web pages
containing structured data.

3. To propose a method capable of extracting structured data from
technologically sophisticated modern template-generated web pages;

4. To propose a method for clustering structurally similar template-
generated web pages into clusters.

5. To experimentally evaluate the proposed methods and compare the
results to other state-of-the-art techniques.

Research Methodology
To achieve the goal, the following research methods are employed:

1. Exploratory research method is used while studying the object of
research and reviewing the state-of-the-art.

INTRODUCTION

Constructive research method is employed to develop and test the
proposed methods for extracting structured data and structurally
clustering template-generated web pages. The proposed methods are
implemented as prototypes using Perl, Python and JavaScript
programming languages.

Importance of Scientific Novelty

The main scientific contributions of our research are the following:

1.

A novel method called ClustVX is proposed for extracting structured
data from template-generated web pages. The method is based on
clustering visually and structurally similar web page elements and it
can extract structured data from web pages of any design where more
than one data record is present. The method can handle
technologically sophisticated modern web pages. Experimental
evaluation results reveal that the method achieves higher than 98%
precision and recall.

The proposed ClustVX method is domain-independent as it does not
require any a priori knowledge about target data. The method is also
unsupervised as it does not require any learning or any manual human
effort to induce wrappers and extract structured data.

A novel method called UXClust is proposed for structurally
clustering template-generated web pages. The method is
unsupervised and it exploits a novel idea to leverage XPath addresses
of inbound inner-site links to radically speed up web page clustering
time. Experimental evaluation results reveal that the method can
cluster more than 1 million web pages in less than 4 minutes in turn
achieving higher than 90% precision and recall.

Practical Significance of Achieved Results

The proposed novel method for structured web data extraction can be used to
automatically extract structured data records from template-generated web pages.
Since no learning or manual work is required the method could significantly
reduce costs for companies which gather data from web pages. Furthermore, the
method can generate XPath wrappers that can be reused in Web-scale data
extraction systems.

The proposed novel method for structural web page clustering can be used to
automatically cluster template-generated web pages according to their structural

INTRODUCTION 5

similarity. Since the method has very low computational complexity it is
applicable in Web-scale structured data extraction and web page clustering
systems.

The Defended Statements

In what follows the defended statements of this thesis are presented:

1. Clusters with XPaths of visually and structurally similar web page
elements can be leveraged to detect repeating patterns of embedded
structured data records in template-generated web pages.

2. XPaths of inbound inner-site links can be leveraged to significantly
speed up clustering time of template-generated web pages.

Approval of the Results

Research results related to the dissertation subject are published in 8 scientific
publications. Four of them are published in reviewed scientific journals. Two of
the journals are included in the Thomson Reuters Science Citation Index.

The author has also made 4 presentations at international scientific
conferences, 2 presentations at international scientific workshops and 1
presentation at international summer school:

e 10™ International Baltic Conference on Databases and Information
Systems (Baltic DB&IS 2012). July 8—11, 2012, Vilnius, Lithuania;

e 12" International Conference on Web Engineering (ICWE 2012).
July 23-27, 2012, Berlin, Germany;

e 18" International Conference on Information and Software
Technologies (ICIST 2012). September 13-14, 2012, Kaunas,
Lithuania;

e 6™ ACM International Conference on Web Search and Data Mining
(WSDM 2013). February 4-8, Rome, Italy;

e 3 Workshop on Data Extraction and Object Search (DEOS 2013).
July 6-8, 2013, Oxford, United Kingdom;

e 12" Estonian Summer School on Computer and Systems Science
(ESSCaSS 2013). August 18-22, 2013, Voore, Estonia;

e 4™ [nternational Workshop on Data Analysis Methods for Software
Systems. December 5—7, 2013, Druskininkai, Lithuania.

6 INTRODUCTION

Dissertation Structure

The dissertation consists of introduction, four main chapters, general
conclusions, references, a list of publications by the author on the topic of the
dissertation and a summary in Lithuanian. The total scope of the dissertation is
123 pages, 23 equations, 37 figures and 20 tables.

Acknowledgements

First of all I would like to thank my supervisor Prof Antanas Cenys for his
continuous support and guidance throughout my PhD studies. I truly appreciate
his time and effort spent with me.

I am very grateful for Prof Olegas Vasilecas and Prof Gintautas Dzemyda for
reviewing my dissertation and providing me with very helpful comments and
suggestions.

I would like also to thank all my friends and colleagues, especially Dr Lukas
Radvilavi¢ius, Dr Juozas Gordevicius and Assoc Prof Dr Nikolaj Goranin for
countless invaluable discussions, comments and suggestions. Furthermore,
without proper and very timely encouragement from Dr L. Radvilavi¢ius I would
hardly have started my PhD studies at all, thank you Dr Lukas!

I also especially thank my friend Ausriné Benediktaviciaté for her support
and encouragements during my PhD studies and for proof-reading my
dissertation.

I am also deeply thankful my family and will be eternally indebted to my
parents who brought me into this wonderful world where I can pursue my dreams
and live in peace.

Finally I thank all the people who somehow helped or supported me during
my PhD studies.

Structured Web Data Extraction,
Methods and Applications

In this Chapter we introduce the structured web data extraction research
problem, review state-of-the-art methods and discuss real life applications for
structured web data extraction systems.

Web data extraction is the problem of extracting target information from web
pages. There are two general problems: extracting information from natural
language text and extracting structured data from web pages (Bing 2012). The key
difference in web data extraction is that a large part of the data on the Web is
structured (Cafarella et al. 2011) by Hyper Text Markup Language (HTML) and
visual styling, especially when web pages are automatically generated and
populated from templates and underlying databases. This sets web data extraction
apart from information extraction where entities, relations, and other information
are extracted from free text, which, of course, may also come from web pages
(Furche et al. 2012a).

Extracting information from free text is studied mainly in the natural
language processing community (Bing 2012), while this review concentrates on
extracting structured data from web pages.

Parts of this Chapter are published in (Grigalis, Cenys 2014a), (Grigalis,
Cenys 2014b), (Grigalis, Cenys 2013), (Grigalis 2013), (Grigalis 2012), (Grigalis
et al. 2012b).

8 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

1.1. Preliminaries

In this Section we review the main concepts, background techniques and
challenges facing structured data extraction from modern web pages.

1.1.1. Structured Web Data

Generally, structured data on the Web (web data) are data records retrieved
from underlying databases and displayed in web pages using some fixed templates
(Bing 2012; Cafarella et al. 2011; Dalvi et al. 2012). In such database-backed web
sites, each time a visitor request a web page the server-side scripting language
engine, such as PHP, PERL, ASP or any other, issues a query to an underlying
database, retrieves structured data records and embeds them into HTML template.
Such web pages may also be referred to as template-generated.

Structured data in web pages can be presented in many visual formats,
including HTML tables, horizontal lists, vertical lists, and etc. Each such page and
their collections can be seen as online datasets (databases). For an example
consider Figure 1.1 where a snippet from database-backed online shop’s web page
is shown. The snippet contains three data records, i.e. three products (boots).

GRIPFAST Men's Honey Boot THE NORTH FACE Wreck HI TEC Raider Mid Waterproof
WAS £40.00 WAS £130.00 WAS £70.00
NOW £35.00 NOW £85.00 NOW £60.00

Fig. 1.1. An example of three data records rendered as a list

According to (Cafarella ef al. 2011) structured data on web pages differs from
data stored in traditional relational databases in several ways. First, data must be
extracted from “page context”. To the human user the data records (as seen in
Figure 1.1) appears to be clearly structured, as title, price, picture and other
information can be easily identified and seen as placed in an invisible table.
However, a computer program seeing just the HTML source code must be able to

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 9

automatically distinguish valuable information from, say, HTML markup tags. So,
according to (Cafarella ef al. 2011), there is nothing akin to traditional relational
metadata that leaves no doubt as to how many tables there are and the relevant
schema information for each table.

Second, there exist no centralized data design or data quality control. In a
traditional database, the relational schema provides a topic-specific design that
must be observed by all data elements. The database and the schema may also
enforce certain quality controls (such as observing type consistency within a
column, disallowing empty cells, and constraining data values to a certain legal
range) (Cafarella et al. 2011).

Third, there is vast number of topics. A traditional database typically focuses
on a particular domain (such as products or proteins) and therefore can be
modelled in a coherent schema. On the Web, data covers everything, and is also
one of its appeals. The breadth and cultural variations of data on the Web make it
inconceivable that any manual effort would be able to create a clean model of all
of it (Cafarella et al. 2011).

(Bing 2012) observes that typically there are two types of structured data rich
pages:

1. List pages: Each of such pages contains several lists of data objects.
Figure 1.1 shows a snippet of such a page, which has a list three of
products. From a layout point of view, we see that each data record
is formatted using the same style, i.e. the same template. So list pages
contain more than one data record formatted using some fixed style.

2. Detail pages: Such a page focuses on a single object and typically
contains one data record. For example, in Figure 1.2, the page
focuses on the product “Men’s Honey Boot Twister Industrial
Shoes”. That is, it contains all the details of the product, including
title, image, manufacturer, price and other purchasing information,
product overview, available sizes, etc.

1.1.2. Definition of the Web Data Extraction Problem

As we already know, structured data found in template-generated web pages
typically come from underlying relational database and upon a page request is
embedding into a web page using some fixed HTML templates. Data extraction
may be viewed simply as the reverse engineering task. That is, given the HTML
mark-up encoded data (i.e., web pages), the extraction process recovers the
original data model and extracts data from the encoded data records (Bing 2012).

Structured data extraction process can also be seen as a wrapper construction
task (Doan et al. 2013). A wrapper is typically a set of rules, often presented as a
computer program that can be repeatedly re-used to extract structured data.

10 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

GRIPFAST
Men's Honey Boot Twister Industrial Shoes

was s4000 £25.00

Write a Review
OVERVIEW DELIVERY RETURMS

Be prepared for the working week with these men's Honey Boot Twister
Industrial Shoes from Gripfast.

1 SELECT SIZE: Info & Sizing

nDooo
2 SELECT QUANTITY:
ADD TO BASKET >
1=

Fig. 1.2. An example of detail page with embedded structured data record

Given a source S, such as a web page with embedded structured data, a
wrapper W extracts that data from the source S. Formally, W is a tuple (7w, Ew),
where Ty is a target schema, and Ey is structured data extraction program that
uses the format Fs to extract from each page a data instance conforming to 7y.
The target schema 7 need not be the same as the schema used on the page, since
we may want to give another name to the attributes or only extract a subset of
them (Doan et al. 2013). Please see the following two examples found in (Doan
et al. 2013) which illustrate the operation of wrappers.

As a first example, consider a wrapper ¥ that extracts all attributes from the
data records shown in Figure 1.1. The target schema Ty is the source schema 7's =
(image, title, price last, price_now). The extraction program £y may run in a way
that, when given a page P from the source, extracts the first image as product
image, the text below the image as a product title, then the string immediately
following “WAS” and formatted as strike-trough text as last price, and so on.

As a second example, consider a wrapper W that extracts only title and current
price, see Figure 1.1. Here the target schema T (fitle, current price) is a subset
of source schema Ts (image, title. price last, price now), and the extraction
program Ey extract only the title and current price.

So the wrapper construction problem is to quickly create the pair (7, Ew) by
inspecting the pages of the source S. We want to learn the source schema Ts as
well as a program Ejy that extracts data conforming to 7s. Thus, formally, the
wrapper to be constructed is shown in Formula 1.1 (Doan et al. 2013):

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 11

W = (Ts, Ew). (1.1)

In the need to extract multi-attribute data records a method automatically
constructs a wrapper W which could extract a target schema 7. The target schema
should contain all attributes found in the source schema 7s. Considering the three
data records (input) shown in Figure 1.1, the desired extraction results (output)
are shown in the Table 1.1.

Table 1.1. Desired extraction results

Imagel |GRIPFAST Men's Honey Boot [WAS £40.00 [NOW £35.00 |Compare

Umage2 [THE NORTH FACE Wreck 'WAS £130.00 NOW £85.00 (Compare
Image2 |HI TEC Raider Mid Waterproof [WAS £70.00 [NOW £60.00 |Compare

As seen in Table 1.1, the extracted text strings “WAS”, “NOW”, “£” and
“Compare” may be absent in the original product schema found in relational
database table, however, without semantic analysis and/or entity resolution a
wrapper cannot easily tell if those strings belong to the fixed HTML template or
product schema. Thus a wrapper usually aims to extract all found structured data
with all attributes and leave the data (schema) cleaning problem as a separate step.

1.1.3. HTML Document Object Model and XPath

The Document Object Model (DOM) is a “platform- and language-neutral
interface that allows programs and scripts to dynamically access and update the
content, structure and style of documents™!. The DOM is standardized as a W3C
recommendation’.

Following the DOM, a web page is represented as an ordered tree structure
which is a fundamental data structure in XML documents. See Figure 1.3 for an
example. Thus a very useful approach for extracting structured data from
Hypertext Markup Language (HTML) documents is to employ Extensible Markup
Language (XML) technologies to translate HTML to valid XML code. In this
approach, HTML documents are first normalized into Extensible HTML
(XHMTL) and then then processed by XML applications (Myllymaki, Jackson
2002).

XPath® is a language used to navigated XML tree structure. The primary
purpose of XPath is to access parts of an XML document. XPath is the result of

Lhttp://www.w3.org
2 http://www.w3.0rg/DOM
3 http://www.w3.org/TR/xpath20

12 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

an initiative to create a common syntax and semantics for functionality sharing
between XSL Transformations and XPointer. XPath operates on the abstract,
logical structure of an XML document, rather than its underlying syntax (source
code). XPath gets its name from its use of a path notation as in URLs for
navigating through the hierarchical structure of an XML document. XPath sees an
XML document as a tree of nodes (see Figure 1.3). The modelled HTML tree is
widely used in structured data extraction algorithms (Bohannon et al. 2012;
Chang, Kuo 2004; Chang 2001; Dalvi, Bohannon 2009; Etzioni et al. 2011;
Myllymaki, Jackson 2002), where very commonly dynamic programming is used
to find similar branches of the tree. Similarity is determined by comparing every
tree nodes with each another and if calculated similarity is higher than a
predetermined threshold, then two branches of the tree are similar.

<html>
<head> HTML

<title>Google</title>

<style>...</style>

</head> HEAD BODY
<body>
<div>...</div> TITLE STYLE DIV CENTER DIV
<center>...</center> \ \ | \ |
<div>...</div>
</body> Google <.> <.> <.> <.>

</html>

Fig. 1.3. HTML source code on left represented as a tree structure on right

A location path (XPath) is one of most important kind of expressions in XPath
language. An XPath locates and selects a set of nodes relative to the context node
(usually a root node of the tree). The result of evaluating an XPath is the node-set
containing the nodes selected by the XPath. Every XPath can be expressed using
a straightforward but rather verbose syntax. There are also a number of syntactic
abbreviations that allow common cases to be expressed concisely (Clark et al.
1999).

There are two kinds of XPath: relative location XPath and absolute location
XPath. A relative XPath consists of a sequence of one or more location steps
separated by /. The steps in a relative location path are composed together from
left to right. Each step in turn selects a set of nodes relative to a context node.
Relative XPath can improve the robustness of extraction wrapper (Dalvi,
Bohannon 2009). An absolute XPath consists of / optionally followed by a relative
location path. A / by itself selects the root node of the document containing the
context node. If it is followed by a relative location path, then the location path
selects the set of nodes that would be selected by the relative location path relative
to the root node of the document containing the context node (Clark et al. 1999).

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 13

For an example, consider the two kinds of XPath expressions in Figure 1.4. Both
evaluated on HTML tree presented in Figure 1.3 would return the same results:
text node with string “Google”.

Absolute XPath 2> /html/head/title
Relative XPath > //title

Fig. 1.4. An example of relative and absolute XPath expressions

1.1.4. Challenges Posed by Modern Web Pages

HTML originally was meant only to convey the logical structure of a
document and not its visual rendering. A web browser was free to visually display
the page uniquely to its own specifications, as long as the overall structure of the
HTML document was preserved. So it was more important to convey the content
rather than the form (Berners-Lee 2000; Thomsen 2013).

Web is evolving. Today, the focus is being placed on precise visual rendering,
rather than conveying the internal structure of the document. This change of
perspective means that just looking at the textual source code of a web page does
not necessarily reveal the structure of the document and hence the content
structure (Thomsen 2013).

Moreover, to enhance browsing experience modern web pages rely on a
number of sophisticated technologies, such as Cascading Style Sheets (CSS) to
separate presentation style of web pages from their content, Asynchronous
JavaScript Requests (AJAX) to dynamically load web page content, client side
scripting to modify the appearance of a web page solely on client side and etc.
Modern web browsers are complicated software that requires considerable amount
of computational power to visually render web pages. Looking from a user
perspective, all these technological advances of the Web enhance browsing
experience. However, on the other hand they hinder web data extraction.

Having the HTML document focus on form rather than content means that it
is non-trivial for computer programs to extract information from them (Thomsen
2013). To extract embedded structured data is not enough to simply download a
web page from a server and analyse its source code. Modern web pages are
sometimes loaded incrementally using AJAX requests. JavaScript can modify the
asynchronously received data according to some algorithms and only then display
it on a page. For example, some modern web sites use AJAX technique for
pagination: when user clicks “next page” link, a browser does not reload all page,
instead — only a required data is asynchronously retrieved from a web server and
displayed as a next page. Even more, each step of navigation inside a web site can

14 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

be controlled by cookies and referrers. All these and many other features of a
modern web site for data extraction means only one thing — each data extracting
tool should fully emulate a modern web browser. It is an incredibly hard task.

1.2. Structured Web Data Extraction Techniques

Structured web data extraction approaches can be classified according to the
main technique used by each approach to generate a wrapper. (Laender et al.
2002a) suggest using the following classification:

1. Languages for Wrapper Development.
HTML-aware Tools.
NLP-based Tools.
Wrapper Induction Tools.
Modelling-based Tools.
Ontology-based Tools.

Of course, while such taxonomy is useful for didactic purposes, it must not
be taken as the only possibility. In fact, there are cases where a same method could
fit in two or more of the identified groups. However, the proposed taxonomy is
helpful as a guide for properly understanding the existing approaches to web data
extraction (Laender et al. 2002a).

In what follows, a description is provided for the main characteristics of the
methods belonging to each group.

Languages for Wrapper Development are one of the first proposals for
addressing the problem of wrapper generation. Some of the best known tools that
employ this approach are Minerva (Califf, Mooney 1999), TSIMMIS (Hammer et
al. 1997), web-OQL (Arocena, Mendelzon 1998), FLORID (Laender et al. 2000),
and Jedi (Huck er al. 1998). These techniques encompass the development of
languages specially designed to assist users in constructing wrappers. Such
languages were proposed as alternatives to general purpose languages such as
Perl, Java, Python and etc., which were prevalent so far for wrapper coding task
(Laender et al. 2002a).

HTML-aware Tools rely on inherent structural features of HTML documents
for accomplishing data extraction and wrapper generation tasks. Some
representative tools based on such an approach are W4F (Sahuguet, Azavant
2001), XWRAP (Ling et al. 2000), RoadRunner (Crescenzi 2001), DEPTA (Zhai,
Liu 2006) and many other that are covered later in this section. The techniques
covered by this group typically work on HTML tree structure, i.e. a representation
that reflects its HTML tag hierarchy, and search for repeating patterns. Wrappers
are generated either semi-automatically or automatically (Laender ef al. 2002a).

kWD

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 15

NLP based Tools. Natural language processing (NLP) techniques typically
employ various natural language processing techniques, such as filtering, part-of-
speech tagging, and lexical semantic tagging to build relationship between phrases
and sentences elements, and finally extract facts from free text. A fact is
represented as a tuple consisting of entities (real world objects) and their
relationship (Laender ef al. 2002a). For instance, given the sentence, "McCain
fought hard against Obama, but finally lost the election,” a data extraction system
of this kind should extract two tuples, (McCain, fought against, Obama), and
(McCain, lost, the election) (Etzioni et al. 2011). This way millions of facts are
extracted from Web-scale text corpus and put into knowledge bases.
Representative tools based on such an approach are RAPIER (Califf, Mooney
1999), SRV (Freitag 2000), WHISK (Soderland 1999), (Etzioni et al. 2011;
Suchanek ez al. 2007).

Wrapper Induction Tools. The wrapper induction tools generate delimiter-
based extraction rules derived from a given set of training examples. They rely on
formatting features that implicitly delineate the structure of the pieces of data
found. This makes such tools more suitable for HTML documents than the
previous ones. Tools such as WIEN (Kushmerick 1997), SoftMealy (Britain ef al.
1998), STALKER (Muslea er al. 2001), IEPAD (Chang 2001), Lixto
(Baumgartner, Flesca 2001), are representative of this approach (Laender et al.
2002a).

Modelling-based Tools, given a target structure for objects of interest, try to
find in web pages portions of data that implicitly conform to that structure. The
structure is provided according to a set of modelling primitives (e.g., tuples, lists,
etc.) that conform to an underling data model. . Tools that adopt this approach are
NoDoSE (Adelberg 1998) and DEByE (Laender et al. 2002b). Following,
algorithms similar to those used by the wrapper induction tools, the Modelling-
based tools identify objects with the given structure in the target web pages
(Laender et al. 2002a).

Ontology-based Tools. All previously described approaches rely on the
structure of presentation features of the data within a web page to generate rules
or patterns to perform data extraction. However, extraction can be also
accomplished by relying directly on the data itself. Given a specific topic domain,
ontology can be used to identify constants present in the page and to construct
objects with them. (Laender et al. 2002a). The most prominent techniques
belonging to this category are tool developed by the Brigham Young University
Data Extraction Group (Embley et al. 1999), ODE (Su, Wang 2009), the system
DIADEM (Furche et al. 2012b) developed by Oxford university.

Another important aspect by which data extraction tools can be classified is
the level of required human input, such as labelling positive/negative example,
ontology preparation, and etc. So, according to (Bing 2012), all data extracting

16 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

techniques, depending on the level of automation, can be classified into these
three main categories:

1. Manual approaches.

2. Semi-automatic (supervised learning) approaches.

3. Fully Automatic (unsupervised) approaches.

In Manual approaches the human programmer, by analysing a web page and
its source code, identifies some patterns and then writes a program to extract the
target data. To simplify the process for programmers, several pattern specification
languages and user interfaces have been built. However, the manual wrapper
building approach is not scalable to a large number of sites (Bing 2012).

(Crescenzi et al. 2013) propose to leverage the power of the crowd to
overcome inherited scalability limitation in data extracting systems where
wrappers are generated from manually labelled examples. Crowd sourcing
platforms, such as Amazon Mechanical Turk®, present an opportunity to make the
manual annotation process more affordable, also at large scale. So Crescenzi et al.
introduce “a framework to support a wrapper inference system supervised by the
crowd”. Their framework aims at catching the opportunities of crowd sourcing,
i.e. reducing wrapper creation costs and scaling the overall work.

Similarly, Google runs experimental Fusion Tables project® which
encourages creating, improving and sharing data presented tables. This approach
too tries to exploit the power of the crowd in a way that many users collaboratively
collect and share data from many web sources (Gonzalez et al. 2010).

Supervised learning approaches usually build data extraction wrappers,
which, in other words, are programs or strictly defined logical rules used to extract
data from web pages. Supervised learning approaches need manually labelled
sample pages to learn its rules (Baumgartner, Flesca 2001; Britain et al. 1998;
Chang, Kuo 2004; Chang 2001; Kushmerick 1997; Laender et al. 2002b). The
main two disadvantages of supervised learning approaches are time consuming
manual labelling process and matching already inducted wrappers to constant
change of web sites (Gulhane ez al. 2011; Kushmerick 1997; Raposo et al. 2007).
Even one web site may have many different web page templates. To manually
label all of these templates a lot of human input is required. So the supervised
learning approaches are usually not applicable to Web-scale structured data
extraction and are used to extract data from several selected web sites of high
interest.

The obvious advantage of automatic data extraction techniques (Alvarez et
al. 2008; Crescenzi 2001; Hong et al. 2010; Jindal, Bing 2010; Kayed, Chang
2010; Liu 2005; Liu et al. 2003, 2010; Simon 2005; Su et al. 2011; Zhai, Liu 2006;

4 http://www.mturk.com
5 http://tables.googlelabs.com/

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 17

Zhao et al. 2005) is that they are able to extract structured data from different web
pages without human intervention.

It is important to note, that much of current research effort (Bohannon et al.
2012; Dalvi et al. 2011; Elmeleegy et al. 2011; Furche et al. 2012b; Gulhane et
al. 2011) is put into developing fully-automatic structured web data extraction
techniques that could be applicable to extract data at Web-scale. Thus, in what
follows, we in details review only automatic structured web data extraction
techniques, which we classify into three categories: pattern search based, visual
signals aided, ontology based. Readers more interested in manual or semi-
automatic approaches are guided to read some comprehensive surveys by (Chang
et al. 2006; Ferrara et al. 2012; Laender et al. 2002a; Lam, Gong 2005; Sleiman,
Corchuelo 2013).

1.2.1. Pattern Search Based Methods

The key step in structured data extraction is to find the encoding template
from a collection of encoded instances of the same type, i.e. we need to identify
the repeated HTML tag patterns which encode data records. String matching and
tree matching are obvious techniques for the task. Tree matching is useful because
HTML encoding strings also form nested structures due to their nested HTML
tags. Such nested structures, as we already know, can be modelled as trees,
commonly known as HTML DOM trees (Bing 2012).

String edit distance (also known as Levenshtein distance) is one of the most
widely used string matching/comparison technique (Bing 2012). String edit
distance or its variation as HTML tag sequences comparison technique is used in
MDR (Liu et al. 2003), ViPER (Simon 2005), PADE (Su, Wang 2009), VINTS
(Zhao et al. 2005), (Alvarez et al. 2008). The edit distance of two strings is defined
as the minimum number of character modifications required to change one string
into another. Allowed modifications of any single character include: change a
character, insert a character, and delete a character. Each modification has its own
cost. The normalized edit distance ND of two strings s; and s is defined as the
edit distance (d) divided by the mean length of the two strings (Bing 2012):

_ d(SLSZ)
ND(sq,s,) = —(|S1|+ [s2)/2 (1.2)

According to (Bing 2012), another option for the denominator is to use
max(|si],|s2|), i.e. the length of the longest string.

18 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

Another widely adopted technique to automatically detect and extract data
records is to search for repetitive patterns in HTML source code by calculating
the similarity of HTML trees.

Similarly like string edit distance, the tree edit distance between two trees A
and B (labelled ordered rooted trees) is the cost associated with the minimum set
of modifications needed to transform A into B. Typically the set of allowed
operations used to define tree edit distance includes: tree node removal, tree node
insertion, and tree node replacement. Here again, a cost is assigned to each
operation. Thus solving the tree edit distance problem is to find a minimum-cost
mapping between trees A and B. During the comparison each node should appear
no more than once in a mapping and the order among siblings and the hierarchical
relationships should be preserved (Bing 2012). Figure 1.5 shows a simple tree
mapping example.

Fig. 1.5. A general tree mapping example (Bing 2012)

In practice, a variation called simple tree matching (STM) algorithm (Yang
1991) is employed in various data extraction methods to find similar sub trees in
HTML document. It is a restricted tree mapping variation in which no node
replacement and no level crossing in hierarchical relationships are allowed. In
STM, the aim is to find the maximum matching between two trees and not the edit
distance. The normalized simple tree matching distance NSTM of the two trees 4
and B can be obtained by dividing the trees matching score STM by the mean
number of nodes() in the two trees (Bing 2012):

STM(A,B)
(nodes(A)+nodes(B))/2

NSTM (A4, B) (1.3)

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 19

Here again, the denominator can be replaced with max(nodes(4), nodes(B)),
where nodes(X) is the number of nodes in tree X (Bing 2012).

(Zhai, Liu 2006) were one of the first to exploit simple tree matching
algorithm for many automatic structured data extraction systems called DEPTA
(Zhai, Liu 2006), NET (Liu 2005), and G-STM (Jindal, Bing 2010). The latest
state-of-the-art G-STM system integrates the grammar based approach and tree
matching to produce a brand new algorithm, which is a more principled approach
to extract structured web data from a web page (Jindal, Bing 2010). G-STM
generalizes a tree matching algorithm (Zhang, Shasha 1989) and introduces
special grammar generation method so that it can identify and deal with lists inside
data records.

Some other automatic structured data extraction systems called FiVaTech
(Kayed, Chang 2010), CTVS (Su et al. 2011) (and its predecessor DelLa (Wang,
Lochovsky 2003)), WISH (Hong ef al. 2010) work very similarly to G-STM and
depend on the same tree matching technique (Yang 1991).

M. Alvarez et al. propose another structured data extraction method (Alvarez
et al. 2008) which is not based on simple tree matching like all above systems.
Instead of comparing nodes in HTML tree directly, the authors first convert them
to a string and then calculate string edit distance to determine the similarity. Their
method constitutes three main steps. First, the method begins by finding the
dominant data region in a web page. Then, it performs a clustering process to limit
the number of candidate record divisions in the dominant data region. Each
candidate record list will propose a particular division of the data region into
records. After that, their system chooses the one having highest similarity
according to string edit distance calculations. The similarity between records in a
data region is determined by comparing two sequences of consecutive sibling sub
trees in the HTML tree of a page in each of the record. Finally, a multiple string
alignment algorithm is used to extract the attribute values of each data record. This
means that after selecting an initial data record as a starting string, each
additionally selected data record is aligned to the so far obtained string, until all
data records are aligned to the string. The same data items alignment technique is
also used in DEPTA (Zhai, Liu 2006) system.

(Miao et al. 2009) introduce a tag paths clustering concept. Their method
focuses on how a distinct tag path appears repeatedly in the DOM tree of the web
page. Instead of comparing a pair of individual segments, it compares a pair of tag
path occurrence patterns (called visual signals) to estimate how likely these two
tag paths represent the same list of data records. However, the method does not
actually retrieve the rendered visual information about each tag path. The concept
of visual signals is based on one key assumption, that each tag path defines a
unique visual signal. Furthermore, the method just segments a web page region
into data records and does not extract information that is inside data records.

20 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

1.2.2. Visual Signals Aided Methods

Contrary to the above systems, which search for repeated patterns purely in
HTML code, VINTS (Zhao et al. 2005) system utilizes both visual content
features and HTML tree structure regularities of web page to detect structured
data. This system also employs a clustering technique: to identify the main data
region containing data records VINTS first identifies content line separators
(visual feature) and uses them to segment result page into visual block. See Figure
1.6 where an example of a data record (a), its block shape (b) and other possible
shapes (c) are present.

Finaneial Aid Fonnssesedess
httpffbingfa binghamton edufawvigation bar |
State residents) Click here to see the list of
hitp Sibingia binghamion.edu/forms.him

a) data record visual block b) block shape

10T

c) other possible block visual shapes

Fig. 1.6. An example of visual signals (block shapes) that are used in
VINTS system (Zhao et al. 2005)

Then the blocks that are consecutive and visually similar are clustered into
one group. The clustering is based on visual similarity, which means that two
blocks are visually similar if their type distance, shape distance and position
distance are all below certain hardcoded thresholds. After that, VINTS uses
heuristics to determine which of blocks contain data records.

A more recent automatic structured data extraction system VIDE (Liu et al.
2010) tries not to depend on HTML tree at all and instead uses purely visual
features of a web page. Using patented VIPS (Cai et al. 2003) algorithm it builds
a visual containment tree of a web page and uses it instead of pure HTML tree.
However if there are some unloaded images or missing style information in a web
page VIPS may fail to build correct visual containment tree which leads to data
extraction problems (Liu ef al. 2010).

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 21

Some authors (Furche ef al. 2011; Walther 2012) have also addressed the
problem of rendering modern web pages in a browser, accessing visual signals,
and only then extracting data. To render a web page they employ frameworks
originally used for web application testing (HTMLUnit®, Selenium’, FireWatir®,
and etc.). Such frameworks control modern web browsers, such as Mozilla
Firefox, Chrome, or Internet Explorer.

1.2.3. Ontology Based Methods

One of the most promising advances is DIADEM project’ at Oxford
University. The acronym stands for Domain-centric, Intelligent, and Automated
Data Extraction Methodology (Furche ef al. 2012b). The project is fundamentally
different from many previous approaches to automatically extract web data at
large scale. The integration of state-of-the-art technology with reasoning using
high-level expert knowledge at the scale envisaged by DIADEM team has not yet
been attempted and has a chance to become the leading example of next
generation web data extraction systems. Without human supervision the
DIADEM system locates, navigates, and analyses web sites of a specific domain
(such as cars, books, products, real estate, flights and etc.) and extracts all
contained structured data objects using highly efficient, scalable, automatically
generated wrappers. The web page analysis is parameterized using domain
knowledge that allows DIADEM to replace human annotators and to refine and
verify the generated wrappers. This approach works in contrast to other modern
web data extraction systems which require human annotators to manually mark
data on target web pages and to record web site navigation. However, there seems
to be two remaining challenges: simplifying the process of domain knowledge
creation and adding the support for other languages. Currently DIADEM works
only with web sites in English language. We see it as a limitation, since there may
be many customers interested in extracting data from non-English web sites.

(Bohannon et al. 2012) from Yahoo develop a system tuned for automatic
Web-scale information extraction. Like in DIADEM project the system is domain-
centric. This means that there is a human supervision at domain level, i.e. humans
should define some rules about the topic of interest. The authors present an
example that if we are interested in constructing a database of restaurants from the
Web, we can specify the set of attributes that we are interested in, e.g. “name”,
“address” and “reviews”, supply sample dictionaries or regular expressions or

& http://htmlunit.sourceforge.net
7 http://docs.seleniumhq.org

8 http://watir.com

° http://diadem.cs.ox.ac.uk/

22 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

language models for attributes, specify domain knowledge like “businesses
typically have a single phone number but multiple reviews”, and so on. Bohannon
et al. believe that solving the domain-centric extraction can provide a promising
stepping stone towards cracking the grand challenge of a general Web-scale
information extraction.

1.3. Web Page Clustering for Data Extraction
Techniques

Template-generated web pages contain most of structured data on the Web.
Clustering these pages according to their template structure is an important
problem in wrapper-based structured data extraction systems. These systems
extract structured data using wrappers that must be matched to only particular
template pages. Selecting single type of template from all crawled web pages is a
time consuming task. Conceptually, each cluster corresponds to the output of one
of the template generating scripts that created the site. Alternatively, if manual
work is done to select which pages to wrap, the benefit of unsupervised extraction
techniques is effectively lost, since non-trivial human effort requiring work must
still be done per site (Blanco ef al. 2011).

Thus in this Section we review web page structural clustering methods which
automatically can organize web pages into clusters according to their structural
similarity.

1.3.1. Cross-linkage Based Methods

The idea that linkage among web pages can reveal something about their
similarity is not new. For example, Small (Small 1973) claims that the relationship
between two documents can be calculated by analyzing how often they both are
cited in the same source. Dean et al. (Dean, Henzinger 1999) and Spertus (Spertus
1997) brings the same idea to the context of web pages. Both works present
methods to detect topically related pages without actually downloading and
analysing their content. Instead, proposed algorithms analyse web pages for co-
linkage and links placement. For example, densely placed links (Spertus 1997) or
links having many same parent nodes (Dean, Henzinger 1999) in HTML tree are
considered to be linking to topically similar web pages.

Crescenzi et al. (Crescenzi et al. 2005) further demonstrate that the analysis
of co-linkage and link placement holds true and for structural similarity of web
pages. They propose an algorithm that crawls given web site and incrementally
builds site model for it. Their work is closely related to focused-crawling
(Chakrabarti et al. 1999; Diligenti et al. 2000) research field where focused-

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 23

crawling systems are usually built to crawl topically related web pages, however,
Crescenzi et al. look for structural similarity. The structural similarity is also
determined by comparing the placements of link collections. In other words, two
pages are considered to be structurally similar if they both have groups of links
placed in the same locations. One of the main observations they present and
validate is that links sharing the same layout and presentation properties usually
point to pages that are structurally similar. Same idea is also employed by Lin et
al. (Lin et al. 2010) to hierarchically cluster web pages.

1.3.2. Text Content Based Methods

Other early works look for a way to identify duplicate web content. This is
very important problem in information retrieval field and more specifically to
search engines were it is crucial to return most relevant and unique content. Links
to duplicated content in most cases have no value for the user and search engines
do their best to avoid presenting duplicated content. To deal with this problem
(Broder et al. 1997) proposed to calculate resemblance and containment of two
web pages. The resemblance of two web pages is described as they are "roughly
the same". Similarly, the containment of two web pages indicates that one is
"roughly contained" within another. Each web page document D is viewed as a
sequence of words. This sequence is divided into tokens called shingles. Each
shingle can contain a chosen w amount of characters. Then sets of shingles from
two web page documents can be compared to determine their resemblance and
containment. Formally, given a document D we define its w-shingling S(D, w) as
the set of all unique shingles of size w contained in D. So for example, the 4-
shingling of text content (Broder ez al. 1997):

(a,rose,is,a,rose,is,a,rose), (1.4)
results into a shingle set:

{ (a,rose,is,a), (rose,is,a,rose), (is,a,rose,is) }. (1.5)

So for a given shingle size, the resemblance r of two documents D; and D; is
defined as:

_ 15@0ns@y)]

24 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

where [s(Dn)] is the size of a shingles set from document D,
The containment ¢ of document D; in D; is defined as:

S(D1)NS(D,)
c(Dy, D) = EEEE (1.7)

Hence the resemblance is a number between 0 and 1, and it is always true that
r(D, Dy = 1, ie. that a document resembles itself 100%. Similarly, the
containment is a number between 0 and 1 and if D; is fully contained in D; then
¢(Dy, D3) =1 (Broder ef al. 1997).

To scale up this approach and avoid computationally expensive shingle
generation and comparison (Broder ef al. 1997) proved that it suffices to keep for
each web page a sketch of a few hundred bytes. The sketches can be efficiently
computed (in time linear in the size of the documents) and, given two sketches,
the resemblance or the containment of the corresponding documents can be
computed in time linear in the size of the sketches.

To simplify and speed up structural comparison of web pages Buttler (Buttler
2004) proposed to adapt the shingles based content similarity detection technique
(Broder et al. 1997) to compare structural content of web pages. In this adapted
technique web pages are viewed as a set of sequence of branches, paths from the
HTML tree root node to a leaf node. In such way HTML tree can be encoded as a
list of these tokens. The proposed path similarity measure finds the similarity of
paths between two different web pages. Path similarity can be calculated in several
ways: binary, where a path is either equivalent or not; partial, where the number
of comparable nodes in each path are matched; or weighted, where the nodes are
weighted according to their distance from the root and longer paths have bigger
influence on similarity. Following the shingles approach and applying it to the
path structure, for each node in the tree representation of given web Page, Buttler
(Buttler 2004) computes the path from the root to that node. Then a hash is created
based on the list of tag names in that partial path. The derived sets of hashed values
are used to compare two web Pages. Furthermore, to speed up similarity
computation each page can get its fingerprint, i.e. a set of results from applying
hashing functions to each shingle. This way a document is “sketched” into a few
hundred bytes. The sketches can be efficiently computed (in time linear in the size
of the documents) and, given two sketches, the resemblance or the containment of
the corresponding documents can be computed in time linear in the size of the
sketches [15].

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 25

1.3.3. HTML Tree Based Methods

Another early research field, related to web document similarity detection,
concentrates on XML (Extensible Markup Language) document and their schema
comparison (Blanco er al. 2011). One widely adopted method, called tree edit
distance, measures the minimum number of node insertions, deletions, and
updates required to convert one XML document tree into another. This can be
converted into a similarity metric by normalizing the number of edit operations
with the number of nodes in the tree representing the larger document (Buttler
2004). However, the computational complexity of techniques involving tree edit
distance calculation (Demaine, Mozes 2007; Nierman, Jagadish 2002; Tai 1979;
Zhang, Shasha 1989) is at least quadratic. To overcome this limitation and reduce
required running time Augsten et al. (Augsten et al. 2005) propose approximating
tree edit distance calculation technique called pg-grams. This technique, a
reminiscent of web page shingling method (Broder ez al. 1997), splits XML tree
into smaller trees called pg-grams, where p and q describes the depth and width
of the smaller trees. This way two XML trees are similar if they share many
identical pg-grams. Augsten et al. (Augsten et al. 2010, 2005) claims that for two
trees of size n, the pg-gram distance can be computed in O(n log n) time and O(n)
space.

Tag similarity is another metric for determining structural similarity of two
XML documents. This approach measures how closely the set of tags match
between two documents. While these techniques are also applicable for structural
clustering HTML pages, HTML pages are more difficult to cluster than XML
documents because they are noisier, do not validate to simple/clean schemas, and
are very homogeneous because of the fixed set of tags used in HTML (Blanco et
al. 2011).

Joshi et al. (Joshi et al. 2003) proposed an alternative scheme for representing
the structural information of web documents based on the paths contained in the
corresponding HTML tree model. Since proposed model includes partial
information about parents, children and siblings, it allows to derive meaningful
and at the same time computationally simple structural similarity measure. The
model has two variants. In the first one a bag of unique HTML tree tag paths
without sibling information is used. In the second — a bag of all XPaths is used.
The latter incorporates not only parent/child relationships but also sibling
relationships in HTML tree. This way bag of XPaths model is more robust.

Later Chakrabarti et al. (Chakrabarti, Mehta 2010) proved that in most cases
it is not necessary to compare all XPaths of two documents to determine their
structural similarity. Instead, they observed that each template style in a web site
has unique and important sections. For example, product page template can have
product title displayed on same particular location in instance of that template.
This way some HTML tree locations are more important than other and can aid in

26 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

discerning one template from another. Authors name these important locations in
HTML tree as “key” paths. The web pages on the web site are then clustered using
these “key” paths. To automatically identify these “key” paths authors suggested
using search engine logs: proposed algorithm requires information on search
queries, and the web pages clicked in response to them. Then search query text is
matched to clicked web page text and “key” paths are identified. Jaccard sets
similarity function is employed to compare web documents and later to cluster
them.

1.3.4. URL Pattern Search Based Methods

All above proposed web page structural similarity measures are purely based
on web page content analysis and comparison. However, most efficient and
scalable web page clustering techniques depend on meta-data about pages, such
as those based on web page URL analysis and pattern search (Blanco ez al. 2011;
Hernandez et al. 2012). Our own proposed method belongs to this category.
However, instead of comparing URLs we compare XPaths address of inbound-
link in originating web document.

A good example from the latter category is the work done by Blanco et al.
(Blanco et al. 2011). They show that, using only the URLs of web pages and
simple content features, it is possible to cluster web pages effectively and
efficiently. The proposed technique looks at URLs holistically and tries to detect
repeated patterns in a set of URLs. This approach lets avoid pairwise comparison
of URLs. Furthermore, to boost the clustering efficiency content features of web
documents are incorporated. To be more specific, proposed method tries to
identify template-related text occurrences in web pages, e.g. “Address:” and
“Opening hours:” and some terms that are related to the data itself. Each term is
saved with its XPath location in the HTML tree. This part of the method is indeed
similar to “key” paths technique proposed by Chakrabarti et al. (Chakrabarti,
Mehta 2010).

1.4. Web Data Extraction Systems in Enterprise
Environment

The aim of this section is to review commercially available state-or-the-art
web data extraction systems in context of online business intelligence. First of all,
to remove any ambiguity from the term online business intelligence and to be
more specific, we list concrete business scenarios and applications where online
business intelligence is or can be practically employed. Then we review

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 27

commercially available state-of-the-art web data extraction tools that can be used
for online business intelligence.

The main objective of online business intelligence is to collect valuable
information from many web sources to support decision making and thus gain
competitive advantage. However, the online business intelligence presents non-
trivial challenges to web data extraction systems that must deal with
technologically sophisticated modern web pages where traditional manual
programming approaches often fail.

The web is full of data. Never before have we witnessed such constantly
increasing and at first glance easily accessible repository of data about everything.
The size of the indexable web, i.e. the web sites which are considered for indexing
by the major search engines, is thought to be at least 11.5 billion pages as of the
end of January 2005 (Pisa et al. 2005). Even more, 400 to 550 times larger amount
of information resides in Deep web (Bergman 2001). The term Deep web refers to
content hidden behind web forms. In order to retrieve such content a user has to
interact with forms and perform a meaningful submission. The prime examples of
Deep web are car advertising listings, real estate listings, statistical department
databases and etc. Accessing information published on web sites (or Deep web)
has been a long standing challenge in the data extraction community (Bohannon
et al. 2012; Cafarella et al. 2011; Elmeleegy et al. 2011; Furche et al. 2012b;
Madhavan, Halevy 2009).

Today’s competitiveness dictates the need for business organizations to
constantly seek timely and accurate information to support decision making and
action. Such information seeking process is usually defined as business
intelligence (Fleisher, Bensoussan 2003) and web is almost a perfect source for it.
More specifically, the term business intelligence can be referred to as (Lonnqvist,
Pirttiméki 2006):

1) Relevant information and knowledge describing the business
environment, the organization itself, and its situation to its markets,
customers, competitors, and economic issues

2) An organized and systematic process by which organizations
acquire, analyse, and disseminate information from both internal and
external information sources significant for their business activities
and for decision making

Some other related terms include competitive intelligence, market
intelligence, customer intelligence, competitor intelligence, strategic intelligence,
and technical intelligence (Lonnqvist, Pirttimédki 2006). Business intelligence
provides valuable information to companies in a timely and easily consumed way
and enhances the ability to reason and understand the meaning of it through, for
example, discovery, analysis, and ad hoc querying (Lonnqvist, Pirttimaki 2006).

28 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

When dealing with data coming from online sources, i.e. the Web, the term online
business intelligence is used.

Even though there is enormous amount of data on the Web, researchers are
studying the data extraction field for decades, businesses are striving for valuable
data and are more than ready to pay for it, there is still no universal and easily
deployable solution to fully leverage the data on the Web. Business intelligence
systems seeking to collect valuable data from the Web must overcome many great
challenges posed by the Web itself, such as finding appropriate data sources,
determining their credibility, navigating technologically sophisticated web sites,
submitting meaningful web form queries to retrieve Deep web content, extracting,
cleansing, understanding and integrating data, and constantly dealing with
heterogeneity in every step (Baumgartner et al. 2009b; Cafarella et al. 2011, 2008;
Madhavan et al. 2007).

1.4.1. Applications for Web Data Extraction Systems

Given that most information on pricing, product availability, store locations,
and so on, is available on the Web, online market intelligence is becoming the
most important form of business intelligence (Baumgartner ef al. 2009b). Market
intelligence is the ability to understand, analyze and assess the environment of a
firm with customers, competitors and markets, and industries, that conduces
strategic planning and help decision making (Juntarung, Ussahawanitchakit
2008). Currently, almost every large retail company has online market intelligence
needs for marketing and pricing (Baumgartner et al. 2009b). Here we list typical
real world examples when businesses employ online business intelligence to
monitor their market environment.

Background Check

Background screening is a profession that absolutely demands precision and
timeliness. Erroneous background checks could result in stiff penalties as well as
loss of business (Connotate 2012). By background checking companies are
verifying the background of a customer or business partner. For example,
background checking process may involve accessing courts’ web sites in hundreds
of jurisdictions: an automated data extracting program must query each Deep web
court database to check if particular person or a company has any ongoing legal
battles, or if it does have any active legal restrictions and etc. In addition to online
court records, many professional associations post information on the Web.
Online business intelligence can allow companies to aggregate the data from
multiple sources to perform comparisons and verify the validity of credentials
(Connotate 2012), such as certificates, honours and etc.

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 29

Competitive & Pricing Intelligence

A company’s success hinges on identifying and responding to today’s hyper
competitive environment, especially in online settings. Company’s challenge is to
gather accurate competitive intelligence, analyse it and act as quickly as possible
(Connotate 2012). Consider for examples the three scenarios presented by
(Baumgartner et al. 2009b):

“An electronics retailer would like to get a comprehensive overview of the
market in the form of a dashboard displaying daily information on price
developments including shipping costs, pricing trends, and product mix changes
by segment, product, geographical region, or competitor.”

“A supermarket chain wishes to be continually informed about their
competitors’ product prices. Moreover, they want to be immediately informed in
case a competing supermarket chain issues a special offer or promotion. They
need to react very quickly to price changes or new special discounts in order to
maintain their competitive position. They also want to be informed as soon as new
products show up on the market.”

“An online travel agency offering a best price guarantee needs to know at
which prices the packages they offer are sold over the Web by competing travel
agencies. Moreover, they wish to be informed about the average market price of
each travel product they feature.”

Compliance & Risk Management

Companies may want to be informed of updates on sanctions lists and
regulations at the international, federal and state levels. Automated online
business intelligence makes it easier to ensure compliance with laws regulating
rogue nations or organizations financing, ascertain the legal integrity of potential
business partner, and reduce exposure to financial fraud and identity theft
(Connotate 2012). For example, a company working in car or car-parts trading
business may want to check automatically if a particular vehicle or its part is not
included in stolen property registers around the globe. Cost-effective management
of compliance and risk is a complicated challenge, because precise source
monitoring and Deep Web querying must be executed on-the-fly: all the
automatically accessed data should be immediately extracted, cleaned, integrated
and presented.

Customer Sentiment Analysis

Today many customers are buying online and publicly sharing their user
experience, opinions and buying preferences. In most cases users express their
opinion as comments, forum or social media post, tweets and etc. Analysing

30 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

customer sentiment is fundamental to maintaining a competitive edge in the
delivery of goods and services (Connotate 2012). Online business intelligence
solutions should be able to access Facebook, Twitter, or any other social media
web site, automatically identify posts about particular product, extract text,
execute natural language processing and understand the sentiment. The same data
extraction process can also be applied to hundreds of other sources, such as blogs,
online forums, product review sites, YouTube and etc.

News & Content Aggregation

Media monitoring companies aggregate news articles and comments from
many online web sites. It is not a trivial problem to monitor hundreds of online
sources, which are usually heterogeneous in style, news format, and navigation.
Furthermore, industry leading media monitoring companies should be able to
automatically classify collected news articles by their topic and group articles
describing the same event. Brand name mentioning monitoring is also an
important task, which should be executed on thousands of news articles. A proper
online business intelligence solution should offer scalable, automated technology
to crawl and extract data from hundreds of thousands of news sites, archives and
corporate web sites.

Financial Data Aggregation

According to (Connotate 2012) “every moment of every day, political events,
financial filings, corporate actions and many other market-moving events are
posted on the Web. Detecting and communicating these events to the financial
community in near real-time is essential to building and maintaining market share
in the world of financial data. Speed and accuracy are paramount”. New or
updated financial data appears every day in a big variety of online sources, such
as government data portals, news articles, companies’ news feeds, even on social
media. For example, hedge funds involved in algorithmic trading monitor
thousands of sources in real-time to immediately detect breaking news and swiftly
sell or buy particular stocks. Even such trivial data as weather temperature is
monitored across the globe and in event of unexpected drop in temperature the
stocks of oil, gasoline, electricity or heaters manufacturing companies can be
bought in a matter of seconds. With the increasing wealth of information and
content available on the Web, the opportunity to use it for timely notification,
analysis and enhanced decision making is unprecedented (Connotate 2012).

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 31

1.4.2. A Typical Commercially Available Web Data Extraction

System

(Baumgartner et al. 2009a) define web data extraction system as “a software
system that automatically and repeatedly extracts data from web pages with
changing content and delivers the extracted data to a database or some other
application”. They further divide web data extraction tasks to five functions
(Baumgartner et al. 2009a):

1.

2.

Web site interaction, which includes mainly the navigation to usually
pre-determined target web pages containing the desired data.
Support for wrapper generation and execution, where a wrapper is a
program that identifies the desired data on target pages, extracts the
data and transforms it into a structured format.

Scheduling, which allows repeating data extracting tasks by
constantly revisiting target web pages.

Data transformation, which includes filtering, transforming,
refining, and integrating data extracted from one or more sources and
structuring the result according to a desired output format (usually
XML or relational database tables).

Data provision, which is delivering the extracted structured data to
external applications such as databases, data warehouses, business
intelligence systems, decision support systems and etc.

See Figure 1.7 where the architecture of a typical state-of-the-art web data
extraction system is presented.

Wrapper generator User

Visual interface

4
y

Program generator

= Example
= Web pages

Production - :
= Web pages rapper .
.'-.] executor Wrapper repository

!

Data transformation
and integration unit

Central control
and scheduling unit

3

s Target .
b

Data
delivery unit

Fig. 1.7. The architecture of a typical state-of-the-art commercial web data
extraction system (Baumgartner et al. 2009a)

32 1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

In the system the wrapper generator helps the user to build data extraction
rules. It usually has a visual interface displaying rendered target web pages and
the user is asked to visually mark which data in a web page should be extracted.
The subunit that automatically generates the wrapper (data extraction rules)
referred to as the program generator. This module interprets the user actions on
the example web pages and successively generates the wrapper. The navigation
or a Deep web form submission in a target web site can be recorded and later
automatically reproduced. The wrapper runs previously generated wrappers,
which are stored in wrapper repository. The data transformation and integration
unit cleans, combines, transforms and integrates extracted data. The data delivery
unit delivers data via appropriate channels such as FTP, HTTP, E-mail and etc.

Although scientific literature is full of different approaches and proposed
systems (Crescenzi 2001; Zhai, Liu 2006; Zhao et al. 2005) (see also a survey by
(Ferrara et al. 2012)) to extract data from web pages only a few of those techniques
are built into commercially available products. One of the most prominent
examples of such systems coming from an academic research field is Lixto
(Baumgartner et al. 2009b). With the Lixto Visual Developer software, wrappers
are created in an entirely visual and interactive fashion. See Figure 1.8 where a
screenshot of Lixto Visual Developer user interface is presented. In the middle
there is a fully functional Mozilla web browser with loaded target web page. On
the left navigation steps are recorded. These steps may include submitting a form,
clicking on menu items, following page navigation and etc. In the bottom there
are options to configure extraction rules

Navigation } % Mozilla Web
Steps | = Browser
g
4nig
from $
8w i Extraction
| EE, Configuration

Fig. 1.8. The visual interface of the commercially available Lixto web data
extraction system (Kannan 2010)

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 33

1.5. Research on Data Extraction in Lithuania

Data extraction in general and other closely related research fields, such as
information extraction from free text, knowledge extraction, and etc., has received
attention from Lithuanian scientists and business entities.

For instance, (Krilavicius et al. 2012) proposed a method to automatically
monitor and classify Lithuanian news media articles by identifying and extracting
main topics and facts, such as locations, names, citations and etc. They
demonstrated that a combination of information retrieval and natural language
processing tools with appropriate changes can be successfully applied to
Lithuanian media texts. A similar technique with an additional machine learning
module has been also applied to create a system that extracts information from the
texts of police event summaries (Kausas et al. 2010) .

(Normantas, Vasilecas 2012) proposed a method for extracting business rules
from existing enterprise software systems. Their approach facilitates software
comprehension by enabling traceability of implementation of business rules and
business scenarios in the software system. The same authors have also reviewed
(Normantas, Vasilecas 2013) many methods for business knowledge extraction
from existing software systems.

The problem of extracting information from business systems and processes
is also addressed by (Skersys et al. 2013) where they propose an approach for
extracting business vocabularies from business process models. Similar problem
is studied by (Paradauskas, Laurikaitis 2006) were they analysed the process of
enterprise knowledge extraction from relational database and source code of
legacy information systems.

(Laukaitis, Vasilecas 2008) presented a system that leverages extracted
information from an online linguistic resource (Wordnet'’) to induce syntactic and
semantic transformation rules. These rules are then used to improve machine
learning based language translation.

(Damasevicius 2009) researched a way to automatically construct ontology.
They proposed a method to leverage extracted information from web search
results for learning and generating domain concept hierarchies. Their method is
based on generating derivative features from web search data and applying the
machine learning techniques.

Daudaravicius participated in a common work with (Henriksson et al. 2006)
and demonstrated how synonyms of medical terms can be extracted automatically
from a large corpus of clinical text using distributional semantics.

10 http://wordnet.princeton.edu/

34

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS

Aside from purely academic works, a private Lithuanian company called
TokenMill'! is applying information extraction, natural language processing, text
analytics and machine learning techniques in order to solve real life big data and
text analysis problems.

1.6. Conclusions of Chapter 1 and Formulating Tasks
for the Dissertation

1.

The literature review revealed that a typical contemporary web site stores
data in an underlying relational database. Upon a web page request, the
data is retrieved from the database and embedded into the requested page
using some fixed template. Such web pages are known as template-
generated, and the embedded data is called structured data. Data
extraction may be viewed simply as a reverse engineering task. That is,
given the HTML mark-up encoded data (i.e., web pages), the extraction
process should identify the original data model and extract the data from
the HTML source code.

Visual and structural regularity is found among web pages coming from
same web site where pages are template-generated. This regularity is very
important feature for structured data extraction systems, since it provides
clues how the original data from a database is encoded into HTML code.
Thus the key tasks for structured data extraction from template-generated
web pages become:

a) Detecting visual and structural regularity within a web page;

b) Identifying embedded structured data;

c) Constructing data extracting wrapper;

d) Reusing the same wrapper on structurally similar web pages.
Extracting structured data from many different web sources is typically a
process requiring human effort that brings considerable costs to the
organizations. It is also assumed that it is infeasible that any manual
human work requiring structured data extracting approach could be
successfully applied to extract data at Web-scale. So, much of current
research is directed into developing fully-automatic structured web data
extraction techniques that could be applicable to extract data at Web-
scale.

Taking into consideration what is said, the following issues should be
pursued:

1 http://www.tokenmill.lt/

1. STRUCTURED WEB DATA EXTRACTION, METHODS AND APPLICATIONS 35

1.

A proposal is needed for a new automatic structured web data
extraction method that would be capable of extracting data from
visually and structurally heterogeneous and technologically
sophisticated modern template-generated web pages.

The said method should exploit both visual and structural regularities
of template-generated web pages and be aimed to extract data from
list pages, i.e. those data rich web pages where more than one
embedded data record is present.

The said method should generate a wrapper that could be later reused
to extract data from same template pages.

A proposal is also needed for an efficient method to cluster
structurally similar template-generated web pages.

Publicly available benchmark datasets should be identified to test the
said methods. In case public dataset are not available, an appropriate
datasets should be created.

The said methods should be tested and compared to other state-of-
the-art techniques.

The said two methods should have a potential to be integrated into
Web-scale structured data extraction systems.

A Method for Extracting Structured
Data from Template-Generated Web
Pages

In this Chapter we introduce a novel method for extracting structured data
records from template-generated web pages. The proposed method is called
ClustVX (derived from Clustering Visually similar XPaths). The method is based
on clustering visually similar web page elements. It first renders given web page
in a contemporary web browser, then clusters visually and structurally similar
repeating web page elements to identify the underlying pattern of embedded
structured data records.

The results presented in this Chapter are published in (Grigalis, Cenys
2014a), (Grigalis 2013), (Grigalis et al. 2012b).

2.1. Data Extraction from Web Pages

The presence of vast structurally and visually heterogeneous web sources
pose key challenge to web search today (Madhavan et al. 2007). Web pages with
structured data are easily understandable by humans, but automatically extracting

37

38 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

the same data by computers at Web-scale is a very difficult task (Baumgartner,
Flesca 2001; Cafarella, Halevy 2009; Cai et al. 2003).

Many solutions are proposed to extract structured web data. They typically
search for repeating patterns in a web page by calculating the similarity between
HTML tag tree nodes (Alvarez et al 2008; Jindal, Bing 2010; Kayed, Chang 2010;
Suetal. 2011; Zhai 2005). However, such methods do not show consistent results
on different benchmark datasets and are prone to errors when dealing with
contemporary WEB 2.0 pages. That happens, because modern web browsers have
very high tolerance for an invalid HTML code and thus a lot of web pages do not
obey the W3C HTML specifications. Incorrect HTML code leads to error in
constructing HTML tree, which, in turn, hinders structured data extraction
process.

Moreover, HTML tree was initially introduced for more readable HTML
presentation in the browser rather than description of the semantic data structures
in the web pages (Cai et al. 2003). Widespread invalid HTML code especially
hinder web data extraction from sophisticated WEB 2.0 pages, where HTML tree
is often dynamically modified by various JavaScript codes, new data is added by
asynchronous requests to web server and elements are positioned with Cascading
Style Sheets (CSS). The underlying structure of most modern web pages is
complicated more than ever before and has very weak ties to their visually
rendered versions displayed on modern web browsers (Liu et al. 2010). It is
becoming very difficult to successfully extract structured data from web pages by
just analysing raw HTML code which is retrieved directly from a web server.
Although there are already some works (Liu ef al. 2010; Nie, Wen 2007; Zhai,
Liu 2006; Zhao et al. 2005) that utilize the visual features of web pages to extract
data, but these methods often lack proper experimental evaluation on publicly
available benchmark datasets or have some limitations which we address in details
in related work Section.

In this Chapter we introduce a conceptually different approach, called
ClustVX (Clustering Visually similar XPaths). ClustVX is based on two
fundamental observations.

First, vast amount of information on the Web is presented using fixed
templates and filled with data retrieved from underlying databases (Cafarella et
al. 2011). For example, Figure 2.1(a) shows three data records with structured
data describing three digital cameras in an online store. The three data records are
listed according to some unknown to us visual style and the data comes from an
underlying database. All three data records are structurally similar and are placed
in one region of a web page (data region) (Zhai, Liu 2006). Since all these data
records are placed in one place, each of them has almost the same XPath, i.e. the
tag path from the root node in HTML tree to the particular web page element.

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 39

Second, web page designers optimize visual presentation of structured data
records for the human reader. So although the templates and underlying data differ
from site to site, humans understand them easily by analysing repeating visual
patterns on a given web page (Miao et al. 2009). The data that has the same
semantic meaning is often visualized using the same style (Liu er al. 2010).
Therefore humans, viewing a web page, are able to comprehend its unique
structure quickly and effortlessly and distinguish each data record and its unique
attributes, such as photos, titles, prices and etc. For example, in Figure 2.1(a)
prices brown red and bold, title is green and bold, text "Online Price" is grey and
in normal text.

=
E

Samsung ES80 Fujifilm FinePix T300 Vivitar ViviCam F529
$84.95 Online Price $174.95 Online Price %$84.95 Online Price

a) an example of three digital cameras (data records) in a web page

Xstring: htmlbodydivdivdivfonta-Verdana, brown-red; 400

$84.95 /html/body/div(3] /div[l] /div/font/a
$174.95 | /html/body/div(3] /div(2] Jdiv/font/a
$84.95 /html /body/div[3] /div[3] /div/font/a

b) a cluster with visually similar price elements

Image 1 | Samsung ES80 $84.95 Online Price
Image 2 | Fujifilm FinePix T300 $174.95 Online Price
Image 3 | Vivitar ViviCam F529 $84.95 Online Price

¢) desired extraction results

Fig. 2.1. An example of structured web data extraction with ClustVX
method

ClustVX exploits both observations by representing each web page element
with a combination of its XPath and rendered visual features such as font size,

40 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

font colour and etc. Getting visual features of web page elements is not a trivial
task. It is not enough to simply extract style or class attributes from HTML code.
The information describing the visual style of a web page element can be stored
in many different locations, such as in Cascading Style Sheet (CSS) files, in
attributes, in parent elements and etc. Furthermore visual appearance of an
element can be modified on-the-fly by JavaScript code. Correct web page visual
rendering can be only achieved by modern web browsers and their complex
rendering engines. ClustVX method employs a modern Mozilla Firefox web
browser to visually render web pages and to retrieve resulting rendered visual
features of web page elements. For each visible web page element we encode
XPath and visual data into a string called Xstring. Clustering Xstrings allows us
to identify visually similar elements, which are located in the same region of a
web page and in turn have same semantic meaning. See Figure 2.1(b) where price
elements are clustered together according to their Xstring. Subsequent data
extraction leads to a machine readable structured data Figure 2.1(c).

Structured data extraction process with ClustVX method is also based on two
structural observations about data record representation in a web page. First, a
group of data records are usually rendered in a contiguous region of a web page
(Zhai, Liu 2006) and are visually similar. Second, a group of data records are
formed by some child sub trees and at some level have same parent node (Zhai,
Liu 2006). Thus, by calculating longest common prefix of XPaths from each
cluster of visually similar web page elements, we can find the exact locations of
data records groups (data regions) in a page. For a simple example, consider the
Figure 2.1(b), where XPaths of clustered price elements are located. First, we find
the longest common prefix (“htmi/body/div[3]) of these clustered XPaths. The
prefix leads us to the particular region of a web page, where data records are
located. Then, the longest common suffix (/div/font/a) is data items' path in the
data record. The XPath substring between prefix and suffix (/div/*]) is used to
segment data region into data records. All clusters that have the same longest
common XPath prefix present one particular data region. If there are many data
regions in one page, ClustVX locates them all.

2.2. The Proposed Method

In this Section we in detail explain the process of structured web data
extraction with the proposed ClustVX method. We begin by reviewing structural
and visual features of web pages that are used in structured data extraction process.
The process itself consists of many separate steps. First of all HTML of web pages
is pre-processed to enclose unenclosed text tokens and to embed visual
information to each HTML element. Then each visually visible text element of a

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 41

web page is clustered to clusters according to its visual similarity and XPath
strings. By manipulating XPaths in clusters ClustVX locates data regions,
segments data records. A visual weight for each data region is then calculated to
determine its importance in a page. And only then data records are extracted. The
final steps of structured web data extraction process according to the proposed
ClustVX method are wrapper induction and data items extraction.

2.2.1. The Architecture

Rendered HTML
with embedded
visual features

Web page

\/\

Web browser

)

Web page
rendering

ClustVX
(structured data
extractor and wrapper
generator)

JAVASCRIPT

Fig. 2.2. The architecture of the proposed method implemented as a system

The general architecture of proposed ClustVX method is presented in Figure
2.2. In the context of a typical commercially available web data extraction system,
as defined by (Baumgartner er al. 2009a) and seen in Figure 1.7, the prototype
system should be generally considered a wrapper generator and a wrapper
executor.

In the system, a Web browser is used to download HTML code from a web
server and fully render web page in a browser window (in current implementation
of ClustVX method we use Mozilla Firefox web browser). Web browser
downloads all required additional data, such as cascading style sheets (CSS),
JavaScript code and etc. In the browser all retrieved JavaScript code is executed,
CSS is used to visually style web page elements. All this process visually renders
web page and prepares it for browsing. After web page is rendered at browser
level we artificially execute additional JavaScript code to retrieve visual features

42 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

and only then pass resulting HTML code to ClustVX method. Please see Figure
2.3 where detailed activity diagram is presented.

2.1. Enbbed
. s 1. Web page 2. Web page A 2.2. Enclose
renderer > preprocessing > wsual_rvi'iwaﬁa to > lost text nodes
URL HTML HTML \L
5. Data rogions 4 Clustoring B g B ormeting
identification €—— Xstrings | - generation | tags
\L 7. Data items ‘L
6. Data records 5 Idetification HTML tree with embedded visual data

identification

wrappers
generation

9. Data J
extraction

Xpath wrapper
(H Extracted structured data Epnath

Fig. 2.3. Activity diagram of structured data extraction with ClustVX

As we further see from Figure 2.3, after rendering web page we proceed to
web page pre-processing stage where a JavaScript code is injected into the web
page to select rendered visual features, such as font size, font style, font colour
and etc. The extracted visual features of each HTML element node are then
embedded into the element node as attributes. Unenclosed text nodes are put under
artificially created elements. In this stage we also remove all HTML text
formatting elements, such as , <bold>, <italic> and etc. The HTML tree with
embedded visual data, enclosed text tags and removed text formatting element
nodes is passed to Xstrings generation stage. Xstrings are modified XPath location
strings with added visual data.

Clustering stage clusters Xstrings into separate clusters. Data records
extractor uses from clustering stage inherited information and identifies data
regions available on the web page. Each data region gets rules (XPaths) to extract
data records, which are inside data region. Then data items extractor extracts and
aligns all data items within each data record.

The results of the data extraction process are visualized in a HTML table.
During the data records extraction and data items alignment phases XPath wrapper
is automatically induced. XPath wrapper can be later reused to directly extract
structured data from the web page without a need to repeat all the stages. Detailed
explanation of each extraction step is available in the following Sections of this
Chapter.

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 43

2.2.2. Exploiting Structural and Visual Features of Web Pages

It is becoming very difficult to access and extract structured data from web
2.0 pages, where many parts of page content are generated dynamically with
JavaScript code. This leads to a necessity to first of all render a web page in a
contemporary web browser which executes all embedded JavaScript codes,
applies cascading style sheets and etc. Only then we can leverage visual features
of a web page, such as font colour and font size for structured web data extraction.
In this Section the main visual and structural features of a web page are presented.
We exploit these features to extract structured web data.

As we know, an HTML document can be represented as tree data structure.
The modelled HTML tree is widely used in structured data extraction algorithms
(Bohannon et al. 2012; Chang, Kuo 2004; Chang 2001; Dalvi, Bohannon 2009;
Myllymaki, Jackson 2002), where usually dynamic programming is employed to
find similar branches of the tree. Typically, the similarity between two web pages
is determined using variations of tree or string edit distance algorithms. Contrary
to these approaches based on comparison, ClustVX employs clustering of location
paths (XPaths) which in are also enhanced with visual features of web page
elements.

There are two kinds of XPath: relative location XPath and absolute location
XPath. A relative XPath consists of a sequence of one or more location steps
separated by /. The steps in a relative location path are composed together from
left to right. Each step in turn selects a set of nodes relative to a context node.
Relative XPath can improve the robustness of extraction wrapper (Dalvi,
Bohannon 2009). However, relative XPath is not used in ClustVX algorithm.
Instead we exploit the absolute XPath, which lets us better to compare HTML
elements and find similar ones. An absolute XPath consists of / optionally
followed by a relative location path. A / by itself selects the root node of the
document containing the context node. If it is followed by a relative location path,
then the location path selects the set of nodes that would be selected by the relative
location path relative to the root node of the document containing the context node
(Clark et al. 1999).

XML documents operated on by XPath conform to the XML Namespaces
Recommendation'?. The document tree contains nodes. There are 7 types of
nodes, according to the Recommendation:

1. Root nodes.
2. Element nodes.
3. Text nodes.
4. Attribute nodes.

2 http://www.w3.org/TR/REC-xml-names/

44 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

5. Namespace nodes.
6. Processing instruction nodes.
7. Comment nodes.

In data extraction process ClustVX uses four kinds of nodes: root nodes,
element nodes, text nodes and attribute nodes. Root node is regarded as the
topmost location of the HTML tree and is accessed every time we start evaluating
and XPath expression. Element nodes are the main nodes, which contains data
items. There is an element node for every element in the document. The task of
structured data extraction is to find data regions containing similar sets of data
items (element nodes) group them into the sets (data records) and extract. Each
element node has an associated set of attribute nodes, where the element is the
parent of each attribute node. However, an attribute node is not a child of its parent
element (Clark ez al. 1999). In the web page pre-processing stage we gather many
visual clues about each element in the page and embed that information to the
attribute nodes of each particular element.

HTML code together with images and visual style information is rendered in
a web browser. The whole rendering process consists of computation of style data,
frames construction, constant reflowing to represent changes or adding newly
downloaded information. The result is a web page as we see it in a web browser
window. It has been demonstrated that computed visual information can improve
data extraction process (Liu et al. 2010). In this Section we describe the two main
visual features of a fully rendered web page, which helps ClustV X to extract data:
web page layout and web page element font features.

Each web page element, such as let it be an image, a text string, or a white
space, after web page rendering is placed to some location. The whole web page
can be seen as a coordinate system where x axis describes horizontal position and
y axis describes vertical position. The most left top corner of a web page is a
starting point, where x and y are equal to zero. The more an element is down in
the page the bigger y value it has. And similarly, the more an element is to the
right in the page the bigger x value it has. According to W3 specification (Kesteren
2011), each web page element is bounded by a rectangular box which is called
bounding rectangle. The left top corner of a bounding rectangle is positioned at an
exact coordinate (x, y) in a web page. So the left, top, right and bottom properties
are describing the bounding rectangle, in pixels, with the top-left relative to the
top-left of the page view. Combined view of all rectangles makes a web page view.
The ClustVX method exploits these visual attributes to determine visual position
and size of each element.

Each rectangle box, according to W3 specifications (Kesteren 2011), has the
following attributes:

1. Float top.
2. Float right.

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 45

Float bottom.

Float left.

Float width.
6. Float height.

So the left, top, right and bottom properties are describing the bounding
rectangle, in pixels, with the top-left relative to the top-left of the page view.
Combined view of all rectangles makes a web page view. The ClustVX method
makes use of these visual attributes to determine visual positions and sizes of web
page elements.

wn AW

border

Fig. 2.4. Visual box model (Beach 2013)

In a rendered web page each visible HTML element has a rectangular
bounding box (see Figure 2.4). This box determines the spatial relations among
web page elements. In clustering process of ClustVX method we exploit the
attributes of rectangular bounding box to determine the visibility of web page
elements. This is important, because we are only interested in visible web page
elements.

A text element in a web page can be styled in many different ways (Table
2.1). For example, it is possible to set individual size, colour, weight, strikethrough
for each text string. The change of any of the font features, such as size, face,
colour, strikethrough, weight, italic, underline, modifies the visual presentation
style of the text element. Visual font features are often used to differentiate one
semantic type of text from another. These features help ClustVX method to
efficiently group semantically similar text elements to same clusters.

46 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

Table 2.1. An example of visual font features

Attribute name Attribute example Rendered Text
example

size I5pt text

face Courier New text

color red text

strikethrough boolean: true text

weight strong text

italic boolean: true text

underline boolean: true text

2.2.3. Web Page Pre-processing

After a web page has been rendered in a Mozilla Firefox browser, but just
before the extraction process is started, the web page is modified to enhance web
data extraction and to speed up whole process. The modification includes: a)
embedding visually significant data to the attributes of each web page element; b)
enhancing HTML tree structure by enclosing hanging text nodes within new
parent node; c¢) removing any text formatting. Those steps are described in the
following Sections.

<span

left="631.5"

top="1477.5"

width="195"

height="17"
fontdata="Arial,Verdana, Helvetica, sans-serif;rgb (0, O,
0) ;10px;normal;400;none" class="artbox lcol finance">

Fig. 2.5. An example of visual data embedded into elements’ attributes

The technique embedding visual data into HTML code is employed to enable
processing web page source code without constant API calls to a browser and, at
the same time, retaining accessibility to all visually important information. It is
done in this way: while a web page in rendered in a browser window all important
visual information is extracted using browsers API calls and JavaScript code. The
extracted information is then embedded into each corresponding HTML element
as an additional attribute. These attributes has no effects on visual appearance of
a web page. Figure 2.5 shows source code of HTML element with embedded
visual information to “left”, “top”, “width”, “height”, and “fontdata” tags. These

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 47

visual features are later used in structured data extraction stage of ClustVX
method. Visual appearance features, such as font type, font size, font colour and
visual position features of rectangle boxes, such as left, top, width, height, are
embedded into HTML code.

Some web pages have text strings (text nodes), which has no individual
HTML element as a parent. Those nodes are often put under the same parent
together with other HTML elements and other text strings. Because ClustVX
method identifies the exact position of each HTML element by using XPath, each
text string must have its own HTML element and no other sibling under the same
XPath should exist. So in web page pre-processing stage we search for each
unenclosed (hanging) text strings in HTML tree and enclose them with
tag. Figure 2.6 demonstrates an example of text strings in HTML tree, which do
not have individual enclosing tag and will be put under the element. The
unenclosed text nodes are showed in bold on left. On right side of Figure 2.6 we
see the resulting HTML source code after the enclosure process. The process
added additional enclosing tags shown in red colour.

<p> <p>

Some unenclosed text Some unenclosed text

E-Mail Address: E-Mail Address:
<a
href="mailto:Ké6@hm.com"> <i> Ké@hm.com </i>
<i> Ké6@hm.com </i>

 Contact By: E-Mail
Contact By: E-Mail

 Ad Number: 101205
Ad Number: 101205
 </p>
</p>

Fig. 2.6. An example of enclosed hanging text nodes

HTML elements that are used to visually style text, such as to
emphasize, <u> to underline and etc. often do not help to identify structural nature
of encoded text data. Contrary, we have observed that sometimes formatted text
nodes can impede data extraction process. Often text formatting nodes divide
semantically contiguous text into two or more text nodes in HTML tree. As seen
in Figure 2.7, formatting element node (- bold) divides a description of a
book into three text nodes. It is semantically contiguous text and should not be
divided. This kind of division impedes the data extraction process, so we simple
remove those formatting element nodes and form a new contiguous text node.

48 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

1. African Gifts at Wholesale Prices

African Sculptures, African Figurines and African Heritage Items at
Wholesale Prices ... Home Page African American African ltems Angels
Animals ... This Page African ltems Shipping Cost

hitp 2 fenwwe onesfopeonnection. com/Sfmeanitems. iml

I NN NN EIE I IDE IS EEE BN EEE B .
1.
+| *a href="http:/ /www.onestopconnection.com/africanitems. . html">
“kbrs>
African
Sculptures,

hfrican
Figurines and
hirican
Heritage Items =2t Wholeszle Prices ... Homs Page
<brAfrican</,/b>
American
African
Items Zngels Bnim=ls ... This Page
African
Items Shipping Cost

+ “smalls

Fig. 2.7. An example of semantically contiguous text divided by text
formatting tags

2.2.4. Generating XPath Strings With Visual Data (Xstrings)

In this stage ClustVX algorithm iterates each HTML element. For each
visible web page element we generate an absolute location path (XPath).
Furthermore, we extract all embedded visual data, which is stored in the attributes
of that element: font size, font style, font colour, font weight, font strikethrough.
For example, let’s say we have obtained font data and XPath of the element. The
next step is to remove from XPath the indexes, separation slashes and leave only
tag names. Then we join tag names into a string together with font data. We call
resulting string an Xstring. We will use the Xstrings in the next clustering stage
of the ClustVX algorithm. See Table 2.2 for an example with Xstring formation.

2.2.5. Clustering Visually Similar Web Page Elements

To ease the understanding of structured data presented in a web page, web
page template designers often arrange the data records and the data items with
visual regularity to meet the reading habits of human beings. Data items of the
same semantic in different data records are similar on layout and font (Liu et al.
2010). By exploiting this observation the clustering stage of ClustVX web data
extraction method puts visually similar web page elements into the same clusters.

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 49

The similarity of elements is computed by comparing tag paths and font data,
i.e. the Xstrings. To cluster according to similarly, as in VIDE (Liu et al. 2010), a
single one pass clustering algorithm is employed: we take any first HTML element
from a HTML tree and look at its visual appearance data (Xstring). If there is no
cluster representing such Xstring we simple create a new cluster and put the
element there. If element has the same visual properties as elements from other
cluster, we put that element there. In other words, if two elements have same
Xstring string, they are put into the single cluster. The same thing is done with all
remaining elements from HTML tree.

Table 2.2. An example of Xstring formation

XPath: /html[1]/body[1]/div[2])/div[1]/div[1]/div [5]/p[2)/a[1]

Font Data: Arial,Verdana,Helvetica,sans-serif; rgb(0, 0, 0); 10px;
normal; 400; none

XSTRING as a | htmlbodydivdivdivdivpa-Arial,Verdana,Helvetica,sans-
result: serif;rgb(0, 0, 0);10px;normal;400;none

2.2.6. Data Records Identification and Extraction

The objective of structured web data extraction is to extract all data records
from a given web page. We assume that the web page is dynamically generated
and hence an underlying template exists. Data items are usually located in data
records, which all together make a data region. According to (Liu ez al. 2010), an
ideal structured data extractor should achieve the following: 1) all data records in
the data region are extracted and 2) for each extracted data record, no data item is
missed and no incorrect data item is included.

Data record extraction with ClustVX method is based on two observations
about data records presentation in web pages: 1) A group of data records are
usually rendered in a contiguous region of a web page (Zhai, Liu 2006) and are
visually similar; 2) A group of data records are formed by some child sub trees
and at some level have same parent node (Zhai, Liu 2006).

There exist two ways of embedding data records into HTML tree. For
example consider that a single data record in a web page consists of three node
tags <4>, <DIV> and . <A> is the first node in a data record and
 is a last. Figure 2.8 demonstrates two ways, how a list of mentioned data
records can be presented in a web page:

1. Each data record belongs to only one parent node (<DIV>,;, <DIV>,
and <DIV>3).

50 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

2. A set of nodes forms a data record and they all are placed under the
same parent. Here only one
 tag node separates the three data
records.

While these two types of data records visually may be rendered the same, but
as we see in Figure 2.8, the parent and children relationships in the HTML tree
are totally different.

HTML
I
BODY
— T
DIV CENTER DIV
I | I
<.> DIV <>
I
DIV, DIV, DIV3

— T — T — T
A DIV SPAN; A, DIV SPAN; A; DIV SPANs

a) each data record has its own unique parent node

HTML

|
BODY

— T
DIV CENTER DIV

| | I
<> DIV <>

| e
A DIV SPAN; BR A: DIV SPAN; BR A; DIV SPAN;

N N S

b) all data records have the same parent node

Fig. 2.8. Two types of data records structural representation in HTML tree

This difference has an profound implication for data records identification
and separation: a) if there exist one parent for each data record, then we identify
the boundary of data record just by looking at the boundary of the parent; b) if
data record consists of a set of nodes, and all nodes of all data records in particular
data region are under the same parent node, we first need to find the boundary of
each data record and combine all nodes which belong to that data record into the
same group. The detailed explanation of the process is described in following
Section.

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 51

"a_cluster": [
"/html([1]/body([1]/div[1]/div([2] /div[1l] /pl21/all1",
"/html[1]/body[1]/div[1]/div[2] /div[2] /pl2]/all]",
"/html[1]/body[1]/div[1]/div[2] /div[3] /pl2]/all]",
[1] [1] [1] pl2]]

\”/n:,ml /body /div /div 2} /div[4] ‘/ /all]" ,

Path to data region Data Data item
that contains all record path in
Data records s Paths each
record
You are looking at Showing 1 — 30 of 12824 results for gomputer science
Textbooks Sortby: Best Selling View: | 30 v View as: E
In Textbooks a
2us\ne;s .& Finance ~ ABSULUTE
ocial Sciences BEGINNER'S
Engineering PYTH N GUIDE p
& esiabeeis =R e <y
, Architecture ‘ JOHN ZELLE Fll r s
Photography .‘.““ O Basics g
E‘c;r(v::ler Science .M“AIEORHNMS &NNL ﬁ
Law £

Introduction to Discrete Python Absolute Beginner's
Algorithms and Its... Guide to...

Themas H. Cormen Kenneth Rosen John M. Zelle Michael Miller
widrky whhd oy

Hardcover $65.13 Hardcover $166.83 Paperback $38.88 Paperback $13.01
NOOK Study $134.58

Medicine

Media, Communications &
Journalism

Music
Philosaphy

Fig. 2.9. Using cluster to find data region, data records and data items

2.2.7. Finding Data Regions, Data Records and Data Items

Each clustered HTML element has a unique XPath string, which points to the
exact location of the element in the HTML tree. Using this information it is very
easy to find data region, data records and data items in a web page. Just by
calculating longest common tag path prefix of all elements in particular cluster,
we find the tag path of a data region.

Depending on the type of data record, the two heuristics (for a visualization
see Figure 2.10) are used to segment data records: 1) If data records are of a type
A as seen in Figure 2.8(a), that is — each data record in a data region is under its
own parent, then data records tag path will be the first tag path whose number
differs in each clustered data item. Sometimes data record tag path can consist of
two or more tag names. 2) If data records are of type B as seen in Figure 2.8(b),
that is — each data record consists of a set of nodes and all data records and their

52 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

sets of nodes are under the same parent, then a different approach is used, which
we call HTML tree hopping technique.

The tree hopping technique works in this way: ClustVX identifies the first
(visually) data item in the first record of data region. In Figure 2.11(a) the first
data item is “1: Amarillo Globe-News: Headlines”. Then all other data items,
which are visually located between the identified visually first one and the second,
forms a data record. In Figure 2.11(a) the start of a second data record is “2: On
The Edge Of Common Sense”. So these three data items “1: Amarillo Globe-
News: Headlines”, “http://www.amarillonet.com/1/index.html”, and “(Score 84,
Size 18K, Last modified Nov-07-03)” belong to the data record 1. As we see, in
the corresponding HTML source code in Figure 2.11(b), each data record is
separated by “

> separator and all data records are under the same
parent node.

i 18 Clus.tef. > Clusters Find visually
. S visually similar L ! topmost data
Wleb pagte item from
elements
Does each data topr:;%s(;trgata
L record has unique
\L HTML parent node T
2. For each L
cluster, find
longest [i
common XPath b':?:v:rﬁgt
visually similar
Yes data item (tree
s hopping)
Find data "
record parents SRRy G ach \L
\ parent as -
separator Separator is
y just above
each next Data
Record

(@
Fig. 2.10. The diagram depicting data records segmentation activity

Thus by manipulating and combining tag paths of the HTML elements in
clusters we find tag paths of all data regions, data records and data items. See
Figure 2.9 for a simple example.

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 53

2.2.8. Finding Visual Weights of Data Regions

Since there can be many data regions in a web page, it is handy to somehow
rank these regions according to their importance. One straightforward way to do
it is to calculate the visually occupying place of each data region (visual weight)
in a rendered web page. We presume, that the more visual place the data region
occupies in a rendered web page, the more important it is. Furthermore, the
amount of data records and data items in that region also contributes to its visual
weight.

During the visual weight calculation we square the number of data items to
significantly improve their importance. Sometimes data regions contain only a
few data records which are spread very widely on a page. Such data regions
contain small amount of data and typically can be ignored. An example of widely
spread data records is pagination numbers which are located above and below
paginated data. In that case, even though the total occupying visual area is
significantly big, but it is very widely spread and contains a small amount of
textual data.

To decrease the visual weight of widely spread data regions and to increase
the visual weight of regular data records with many data items we square the latter
number. So with ClustVX method we use the following formula to calculate visual
weight of particular data region, where VW is visual weight, DR, is the area in
pixels of data region, |Dataltems| is number of data items per data record:

VW = DR, * |Dataltems|? . 2.1

2.2.9. Extracting Data Records

Data record extraction process is very straightforward: since we already know
the tag paths of each data region in a web page and the tag paths of data records,
the only thing we need to do is to traverse the HTML tree and collect relevant
information.

As described in previous Section on this Chapter, by analysing tag paths in
every cluster of visually similar web page elements we derive tag paths of data
regions, data records and data items.

54 2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

Search found 25 documents that match your criteria:

1: Amarillo Globe-News: Headlines
http://www.amarillonet.com/1/index.html
(Score 84, Size 18K, Last modified Nov-07-03)

2: On The Edge Of Common Sense
http://www.amarillonet.com/2.index.html
(Score 82, Size 31K, Last modified Nov-07-03)

(a) rendered view in a browser

1: Amarillo Globe-News: Headlines

Data
record 1

http://www.amarillonet.com/1/index.html

<i>(Score 84, Size 18K, Last modified Nov-07-
03)</1i>

Separator |

2: On The Edge Of Common Sense
Data
record 2

http://www.amarillonet.com/2.index.html

<i>(Score 82, Size 31K, Last modified Nov-07-
03)</1i>

(b) HTML source code

Fig. 2.11. Example of data records that are under the same parent and are
separated by
 tag

To extract data items we first need to locate data region and to find each data
record. Inside each data record we extract data items. All these steps are done
using tag paths. This is very convenient way of extracting data from web pages,

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE... 55

since in HTML tree, which represents the structure of HTML code, each tag path
leads to a particular location.

The tag paths of data items in data records are also used in alignment process.
We presume that data items in each data records have the same tag paths. During
the extraction process data items are aligned according to their tag paths in a data
record.

2.2.10. Wrapper Generation

Wrapper induction step automatically derives extraction rules, which can be
later reused to extract structured data from the same template web page. Usually,
these extraction rules are saved as XPath sets per data region. In case of type B
data region (as seen in Figure 2.8b), we also save the XPath of visually first data
record item. Figure 2.12 has an example of a data extracting wrapper. The first
XPath is the address of data region, second XPath is the relative XPath of each
data record and the last three XPaths are data items, which can be found in each
data record.

"/html[1]/body[1l]/form[1l]/table[1l]/tbody[1l]/tr[2]/td[1l]/div[1]"
HE
"/divi*]" o: [
"/div[1]/div[2]/div[2]/span[2]",
"/div[1l]/div[4]/p[1l]/span[l]/a[l]/span[2]",
"/div[1l]/div[2]/div[1l]/span[l]",

Fig. 2.12. An example of XPath wrapper

2.3. Conclusions of Chapter 2

1. A novel method for extracting structured web data was proposed in
this Chapter. The method is called ClustVX and it is based on
clustering visually similar web pages elements. It is also automatic
and does not require any a priori information, such as domain
ontology, data models, a set of regular expressions and etc.

2. Visual and structural features of technologically sophisticated
modern web pages can be accessed by loading the pages into a
modern web browser and then using browser’s API to retrieve the
features. During a web page loading process a web browser also
executes all JavaScript code, runs any necessary asynchronous
requests (AJAX), retrieves additional data, such as style sheet files

56

2. AMETHOD FOR EXTRACTING STRUCTURED DATA FROM TEMPLATE...

(CSS), and finally presents a rendered version of the web page. The
final rendered version of a web page is then used in the structured
data extraction process.

Since web designers optimize web sites for humans, semantically
similar information, such as products’ prices, titles, model numbers
and etc., is presented using same style. By clustering visible web page
elements according to their structural and visual similarity it is
possible to detect repeating visual and structural patterns of
embedded structured data records. Resulting clusters contains
visually and structurally similar web pages elements that are also
semantically similar. This way ClustVX exploits both visual and
structural features of web pages to identify underlying repeating
patterns of embedded structured data.

Clusters of visually and structurally similar web pages elements also
contain XPath location of each element. These XPaths can be
employed to generate data extracting wrapper.

The XPath language is suitable for generating data extracting
wrappers. The final wrappers are made of a set of XPath expressions,
which, when executed in a right order, can extract structured data
records from HTML documents.

Successful implementation of the proposed method revealed that it is
possible to host it on a remote server and make it accessible from
internet. The method could be presented as a service with an
application programming interface where input could be an URL and
output — XPath wrapper and structured data in machine readable
format. Furthermore, generated XPath wrappers can be reused by
many data extracting methods, since the XPath language is an open
standard and is widely used. Thus the proposed method can be easily
integrated into other systems that extract structured data from web

pages.

A Method for Structurally Clustering
Template-Generated Web Pages

In this Chapter we propose a novel scalable method to cluster template-
generated web pages according to their structural similarity. The scalability of
duplicate content detection algorithms motivated us to come up with a method
capable of structurally clustering template-generated web pages without the need
of constant pair-wise comparison of their content. Although there are highly
efficient approaches (Blanco ef al. 2011; Hernandez et al. 2012) to this problem,
they usually rely on URL pattern recognition and are prone to unusual and
unexpected formats of URLs. Contrary to them, we employ exact locations
(XPaths) of inbound inner-site links to cluster same template-generated web
pages. We call our method UXClust (derived from URL XPath Clustering). The
proposed UXClust method exploits the observation that each unique XPath
location containing a link usually points to same template-generated web pages.

The results presented in this Chapter are published in (Grigalis, Cenys
2014b).

57

58 3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED...

3.1. Structural Clustering of Web Pages

Template-generated web site has a limited number of templates which are
used to automatically generate new instances of web pages. Upon a web page
request web server queries a database, retrieves particular data record, and embeds
that information into a template, which in turn is returned to web browser. So each
time browsing the same template a structurally similar web page is returned. The
structural similarity of template-generated web pages is an important feature for
data extraction. It is possible to write simple data extraction rules, also known as
wrappers, for each kind of template, and later reuse these rules on all other web
pages of the same template. This empowers extracting data from many template-
generated pages using same wrapper. Consider, for example, such sites as
imdb.com or ebay.com that contains thousands or even millions of web pages
generated using one of their templates. By writing only one wrapper for each
individual template it is possible to extract structured data from thousands of web
pages (Bohannon ef al. 2012).

Wrapper systems for data extraction are commercially popular and are the
subject of extensive research over the last two decades (Blanco ef al. 2011).
Wrapper generating techniques can be broadly divided into manual and automatic
approaches. Manual techniques require human annotator who given a set of
example web pages marks important parts to be extracted and in such way
constructs a wrapper. Automatic wrapper generating systems automatically
recognize and extract structured data from a set of web pages. In both cases a set
of structurally identical web pages must be present, i.e. same template-generated
web pages. However, since much effort is now directed to extracting data at Web-
scale (Bohannon et al. 2012; Cafarella ef al. 2008; Elmeleegy et al. 2011; Gulhane
et al. 2011), manually selecting or labelling same template-generated web pages
becomes infeasible. The reason is simple — the Web is incredibly enormous
repository of data embedded into billions of web pages. Only highly efficient and
unsupervised approaches seem to be feasible to extract structured web data at
Web-scale.

An equally important, but less recognized outcome of the new problem
definition of Web-scale data extraction is the need to automatically organize pages
of the same site into clusters, such that each cluster contains structurally similar
template-generated web pages (Blanco ef al. 2011). Then using unsupervised
wrapper generating technique a high quality wrapper can be inferred for each
cluster of web pages. Here again, only unsupervised and efficient method can be
used to automatically identify and cluster web pages. Alternatively, if any of these
two steps, i.e. wrapper generation or structural web page clustering require some
human effort, then we cannot claim capability to extract data at Web-scale. Even
though, as noted in (Blanco ef al. 2011), there exist structured data extracting

3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED... 59

techniques (Liu et al. 2010; Zhai, Liu 2006), that explicitly do not require such
web page clustering, the latter can definitely help in organizing and synthesizing
extracted data (Nguyen et al. 2011). Furthermore, unsupervised structural
clustering of web pages can substantially improve the accuracy and recall of data
extraction techniques.

As we see, unsupervised clustering of web pages is equally important
problem as wrapper induction and is studied in (Blanco et al. 2011; Chakrabarti,
Mehta 2010; Crescenzi et al. 2005; Joshi et al. 2003). However, most state-of-the-
art structural web page clustering techniques are purely content based and in most
cases have at least quadratic running time complexity. The high dependency on
web page content analysis creates a fundamental issue: these techniques do not
scale to large web sites (Blanco et al. 2011). Database generated web sites can
have millions of web pages and there could be thousands of those web sites that
we are interested in clustering in a reasonable amount of time. Even though state-
of-the-art system in XML clustering, the Xproj (Aggarwal et al. 2007), has a linear
complexity, it still requires an estimated time of more than 20 hours to cluster a
site with million pages (Blanco ef al. 2011). There is a need of less content-
dependent techniques to cluster large amount of web pages.

3.2. Running Example

We now take an example to demonstrate the overall working of the proposed
method. Each web page is actually a source code visually rendered by a web
browser. In Figure 3.1 a set of three screenshots of visually rendered web pages
from argos.co.uk is shown. Although all these three pages contain information
about totally different products, i.e. sunglass, bed, and a digital camera, they all
share almost identical visual appearance. This is because all three pages share
common layout structure and have very similar web page source code.

The most common language in which web pages source code is written is
called Hypertext Markup Language, abbreviating HTML. To better understand,
modify and analyse web pages, HTML source code can be represented as a tree
structure. Visually similar rendered web pages have structurally similar
underlying HTML tree structure. In other words, all three pages share the same
structural template and are template-generated. In this particular case, the only
significant main differences between structurally similar web pages are the
different text fragments describing product, such as product title, product price,
product description, etc. This text usually comes from an underlying database.
Sometimes there is a need to access exact parts of a web page. For example, one
can be interested in extracting a particular link or text. In such cases XPath
expressions are used access specified places of a given web page. XPath is a query

60 3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED...

language for selecting specific tree nodes from a document represented as a tree
structure (remember, that each web page can be seen as a tree).

& e sonia o

[—— Fdt [ovce oo R

Technology ~ Home & Garden Baby & Nursery Toys ~ Sporis & Leisure | Health & Beawty Clothing | Jewellery & Watches | Gilts

Clothing » Men's clothing = Mer's sccsssones = Sunglasses » lcon Eyewssr Metsl Wrap Austor Sunglasses - Blue
[onine axciusiv
Icon Eyewear Metal Wrap Aviator £9.99
Sunglasses - Blue. 1osisa o ethery

Up 10 56 days to pay
. ien you buy wilh Ihe Arg0s Card Repiesentalive 29 9% APR varianle Full e detsds
How can | get It?

Technology | Home & Garden | Baby & Nursery Tays | Sports & Leisure | Hoalth & Beauty | Clothing | Jowallory & Watches | Gifts

y Double Bed Frame - Black

Hygena Hemingway Double Bed £199.99
Frame - Black. samtaze Was 26090
ot Prce

¢

Nothing to Pay for & Months of 36 Months at£7.27, APR 19.9%
WhEN you Bur with he Argos Card, Repre: 29.9% APR vantasle Full crugi datalls

How can | get t?

o Hom

X Connotbe

Tochnology | Home & Garden | Baby & Wursery Toys | Sports & Leisure Health & Beauty | Clothing | Jewellery & Watches | Gifts

rology » Cameras and cameorders > Cameras » Compact diglal cameras » Sony WK100 18MP Compaet Digital Camera - Whil

Sony WX 100 18MP Compact Digital £129.99-
. Camera - White. + ssorrss was £1999
) Save 7000
HAER @ Reiews)
&

Nothing to Pay for § Menths
when you bur with the Argos Cara. Repre sartatve 2995 APR variatie Eull o

How can | get It?

Option 1: Buy or Reserve multiple items |
ouansty [T 3]
Buy or Reserve

Fig. 3.1. Screenshot example of three same template-generate web pages
taken from argos.co.uk

Another essential feature of hypertext documents (web pages) is that every
page is linked to another. Returning to our example, every web page in
Argos.co.uk web site has links to other pages in the same site. We consider only
inner-site links, i.e. links that point to pages in the same domain. For example, in
each of screenshots in Figure 3.1 at the top there is a menu link zone, where every
link points to a particular category. Each link has its unique address (XPath
expression) in a web page tree structure, for example
/html/body/center/div[2]/ul/li[4]. If we take the XPath address of a link and the

3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED... 61

URL of the link, let’s say Attp.//www.argos.co.uk/static/Browse/ID72, then every
link from a web page can be represented as a tuple consisting of URL and its
XPath address: (/htmi/body/center/div[2]/ul/li[4], http://www.argos.co.uk/static/
Browse/ID72). This observation indicates that links extracted from pages of the
same template will have the same XPath. This way, we can later cluster links
according to their XPath address.

Disney Safia the first. Subject to availabilty.

1]z 3| Next> | | Showa 2 | e Show All
[z 2 4fmem> | sn L — [z e (]2 3| ned>| | swowan

i e ey (162)
A iriy () Bush AEBFS Built-In Single
Chad Valley Pony Parade Doll - Electric Oven - Stainless Steel

Chariotie £149.99 Silver Toshibs C350 15.6 Inch 32068
: \ £33.324\: 22005 ZEi

£a.8 \ * 4 special offers Save Overfes.00 /7 £249.99 y=: o700

[Compare \ [Compare

Save £30.00
™ Gompfre +§ special offers
[T compare

sy (185)

Bush Arden Wooden DAB Radio - o fririrdy (30

Fig. 3.2. Links on the same location points to same template-generated web
pages

For another example, consider Figure 3.2 where each highlighted link lead to
product page. Although all the products are different, nevertheless these links
point to same template-generated web pages, i.e. product pages. Furthermore,
each link has the same XPath address and they are located in the same location in
each page.

Of course, the Argos.co.uk web site contains many templates, for example,
each for product categories pages, category homepages, comment pages, etc. The
goal of our method is to group all those pages into clusters, such that each cluster
contains only structurally similar pages that share the same template. To achieve
this goal we exploit the available information about each link and its exact XPath
location in a web page.

Web page designers optimize visual appearance of web pages for humans.
There is visual style common to all templates of the same web site. Thus humans
are quickly used to particular template style and can concentrate on reading the
main information. This observation suggests that there are a limited number of

62 3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED...

different templates in a same web site and there are a limited number of places in
a template where inner-site links are displayed. The regularity of template style
and its optimization for humans makes each unique location of link to point to the
same template web page. If it was otherwise and there were no regularities, then
humans would find it difficult to navigate such web site.

To sum up, our method is based on the following observations:

1. There is a limited number of different style templates in one
particular template-generated web site.

2. There is a limited number of inner-site link locations in all templates
of the same site.

3. Each individual location in a web page containing a link usually
points to structurally similar web pages.

As a result we can determine to which template each of XPath containing a
link points to. We calculate structural similarity of web pages by comparing their
tree structure and binding each template to particular link location.
Computationally intensive task of finding clusters of structural similar web pages
is done only once per unique web link location in HTML tree. If we later encounter
a link from the same location in a web page tree, we know that it points to already
determined cluster. There may be thousands of unique web pages that are linked
from the same location. For example, Argo.co.uk product pages have pagination
links, i.e. a list of products from particular category is divided among many pages.
Each such page has a limited number of places for products and each such link
points to a product page. Each product page, as we know from earlier discussion
and from Figure 3.1, is generated using the same template and, belongs to the
same cluster of structurally similar pages. Each cluster has a set of link locations
that point to it. We exploit this data to cluster web pages without analysing their
content. Later we merge clusters containing structurally similar web pages by
analysing only a small fraction of pages from each cluster.

3.3. Structural Similarity of Template-Generated Web
Pages

Structural similarity of web pages describes how similar is their HTML
source code. Since we are only interested in structural similarity of template-
generated web pages the actual text that does not belong to HTML markup code
is not taken into account when calculating similarity. In other words, the textual
content that is visible to ordinary web site browser is the object of more
importance to a related research field, i.e. duplicate or near duplicate web pages
detection (Broder ef al. 1997). So in this Section we are going to describe a few
similarity measures that are used to compare structural similarity of web pages

3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED... 63

and not their textual content. These methods and measures often rely on HTML
tree and XPaths.

For notation purposes we assume P; and P> to be two HTML web pages, T;
to be a ordered tree structure of corresponding HTML code, and N; to be a set of
HTML tree nodes of which L; are leaf nodes, and i={1,2}. Leaf nodes of HTML
tree are those nodes that themselves do not have any children nodes.

As noted in the previous Section of this Chapter, each web page can be
viewed as an ordered tree structure. So the most straightforward technique to
calculate similarity of two web pages is to calculate the cost of transforming one
tree structure into another. For this purpose basic operations like inserting,
deleting, replacing or moving individual tree nodes or entire sub-trees in the tree
structure are associated with certain costs to perform these operations. In case of
structural trees created from HTML markup code, the problem is usually a bit
more simple, since the root node is known, the sibling nodes are ordered and as
the sub-trees (especially when documents are same template-generated) are hardly
ever changing their distance to the root node (Gottron 2008). This can be used as
a similarity metric by normalizing the number of edit operations with the number
of nodes in the tree representing the larger web page (Buttler 2004). If, as noted
before, P; and P, are two web pages to be compared, editDistance() is a function
that calculates basic web page tree operations (like inserting, deleting, replacing)
required to transform P; to P, and max() is a function returning the biggest number,
then tree edit distance (TED) can be formalized into the following formula at (1):

editDistance(Py,P;)
max(|Ny|,INz|)

TED(Pl,Pz) =

3.1)

However, basic tree edit distance algorithms (Demaine, Mozes 2007
Nierman, Jagadish 2002; Tai 1979; Zhang, Shasha 1989) have a big drawback —
they do not scale well, because they have at least a linear dependence on the size
of each HTML tree and quadratic dependence on the combined size of the two
trees. A faster method to compare web pages is to use the pg-gram distance
(Augsten et al. 2005), which approximately match ordered labeled trees. The pq-
grams of a tree are all its sub trees of a particular shape. Intuitively, two trees are
close to each other if they have many pg-grams in common. For a pair of trees the
pg-gram distance can be computed in O(z log n) time and O(n) space, where n is
the number of tree nodes (Augsten et al. 2010). For p > 0 and q > 0, the pq-gram
distance, pqGDist(T1,T2), between two trees T and T, having corresponding sets
of pg-grams PP9(T;) and P*9(T»),is defined as follows (Augsten et al. 2005):

64 3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED...

_I(PPA(TY) 0 PPI(TY))|
|(PPHA(Ty) U PPA(T,)|

pqGDist(T,,T,) =1 — 2 (3.2)

Another way to measure structural similarity between two web pages is to
compare tag paths of each leaf node (Joshi et al. 2003). Leaf nodes are those nodes
in HTML tree that do not have any children. Tag path of such node is concatenated
string of tags name leading from root node to the particular leaf node. Such
concatenated string can be acquired by calculating absolute XPaths of particular
leaf node. See Figure 3.3, where a bag of such strings is shown.

/html/body/div/div/a
/html/body/div/center/table/tbody/tr/td/div/a
/html/body/div/p/div/ul/1li
/html/body/div/div/p/div/ul/1li
/html/body/footer/div/p

Fig. 3.3. A sample set of XPaths from a web page

So in a such way each web page P; can be represented as a bag of XPath
strings, formally by set xp(P;) of strings. A common paths distance (CPD) measure
can be calculated via intersection of two XPath sets xp(P1) and xp(P») generated
from two web pages P; and P,. See the following formula (Gottron 2008):

1 _ |xp(P1)Nxp(P2)|
CPD(Py, P2) =1 max(Jxp (Pl lxp(P)]) (3:3)

3.4. The Proposed Method

In this Section of the Chapter we in detail discuss our proposed approach to
cluster structurally similar web pages. See Figure 3.4 where the process flow is
presented of the proposed method implemented as a system. The overall working
process consists of five main steps: web site crawling, link extraction, URL and
XPath tuple generation, first stage approximate clustering, and final clusters
refinement stage. In the following sub-sections we describe each of these steps
with more details.

3.4.1. Crawling and Extracting XPath of Inner-site Links

Web site crawling step is used to collect web pages from given web sites. The
process begins with providing to the method a seed URL from which it begins

3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED... 65

crawling process. We utilize breadth-first crawling strategy, where the algorithm
recursively follows collected hyperlinks. The priority to follow and download is
given to first seen URLs, in other words, first-in-first-out method is used. The
main result of this web site crawling step is downloaded documents that are now
ready to be processed.

es | Set of tuples <URL, XPath, dociD>

|

3. Tuples
generation

&_J

4. First stage

Found
unseen
URL?

1. Web site 2. Links
crawling extraction
. S

URL HTML HTM

clustering
O : 5. Clusters \L
_

refiniment hS Unrefned clusters

L% Refined clusters .

Fig. 3.4. The activity diagram of the proposed UXClust method
implemented as a prototype system

Each downloaded web page is processed to create a HTML tree from the
source code. This is done to simplify link extraction: we execute XPath
expressions to select URLs. Of course, a more straightforward approach would be
to utilize regular expressions to extract links; however, we are interested in
obtaining not only URLSs, but also and their location in the document tree.

3.4.2. URL and XPath Tuples Generation

Each unseen URL is forwarded to web site crawling process and saved into a
tuple set consisting of extracted URL, XPath location of URL in originating
document, and ID of downloaded page. For an example, see Figure 3.5(a) where
a snippet of rendered web page from argos.co.uk is shown. This snippet contains
a list of menu links pointing to different categories of the site, such as
“Technology”, “Home & Garden®, etc. Link collection process extracts these links
together with additional data describing the link: its XPath and the URL itself.
Each tuple also gets and DocID which later lets identify downloaded page and

find corresponding tuple.

66 3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED...

& Hetio (ign in Join)

Argos

Q Search by word or catalogue number Find it Clearance Offers
(Bt sieseisd M

(a) a snippet of rendered web page with highlighted links

LINK URL XPATH DOCID
TEXT

Technology http://www.argos.co.uk/...33006169.htm /html/body/div/div[4]/div/ul/li[1]/a 1
Home & http://www.argos.co.uk/...33005908 . htm /html/body/div/div[4]/div/ul/li[2]/a 2
Garden

Baby & http://www.argos.co.uk/...33005732 htm /html/body/div/div[4]/div/ul/li[3]/a 3
Nursery

Toys http://www.argos.co.uk/...33006252 .htm /html/body/div/div[4]/div/ul/li[4]/a 4
Sports & http://www.argos.co.uk/...33006346.htm /html/body/div/div[4]/div/ul/li[5]/a 5
Leisure

Health & http://www.argos.co.uk/...33005814 htm /html/body/div/div[4]/div/ul/li[6]/a 6
Beauty

Clothing http://www.argos.co.uk/...33006249.htm /html/body/div/div[4]/div/ul/li[7]/a 7
Jewellery & http://www.argos.co.uk/...33005868.htm /html/body/div/div[4]/div/ul/li[8]/a 8
Watches

Gifts http://www.argos.co.uk/...33005782.htm /html/body/div/div[4]/div/ul/li[9]/a 9

(b) a sample list of generated tuples

Fig. 3.5. An example of tuple generation results

It’s worth noting that during the web site crawling process we download only
unseen unique links. In case a page contains several XPath locations with the same
link (URL) we extract only the first one, i.e. the one located in the topmost part of
the web page tree compared to the other locations. Only unique URLs are
downloaded and later forwarded to the clustering process.

3.4.3. Approximate Clustering

The main task of clustering in this first stage (marked number 3 in Figure 3.4)
is to group downloaded pages in a way that each group contains only pages who’s
URL originate in the same XPath location in HTML tree. In this stage we do not
analyse the content of downloaded pages. Only associated tuples are used to
cluster those pages. To be more precise, we simply group pages according to their
inbound link XPath address. For example, if we have three XPaths
[/html/body/div[2]/a, /html/body/div[2]/a, /html/body/p[2]/center/a] then we will
have two resulting clusters. One would contain [/Atmi/body/div[2]/a,
/html/body/div[2]/a] and the other [/html/body/p[2]/center/a]. So any resulting
cluster contains only links with identical XPaths, i.e. links extracted from the same

3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED... 67

location. Figure 3.6 portrays a situation where three clusters are formed. Notice,
that there are three unique XPath locations that are shared between many links.
All these links (and pages) are clustered according to the unique XPaths and thus
there are three resulting clusters.

URL XPATH

argos.co.uk/...33product.htm /html/.../td[1l]/a
argos.co.uk/...34product.htm /html/.../td[1l]/a e
argos.co.uk/...35product.htm /html/.../td[1l]/a

CLUSTER 1la

argos.co.uk/...45cat.htm /html/.../1i[2]/a CLUSTER 2a
argos.co.uk/...46cat.htm /html/.../1i[2]/a >
argos.co.uk/...46cat.htm /html/.../1i[2]/a
argos.co.uk/...51list.htm /html/.../div[2] /a

CLUSTER 3a
argos.co.uk/...521list.htm /html/.../div[2]/a |——>
argos.co.uk/...531list.htm /html/.../div[2]/a

Fig. 3.6. Links clustering according to their XPaths

As it is discussed before, template-generated web pages have visual and
structural regularity. Links in same template-generated web pages appear on the
same locations and have same XPaths. Furthermore, each template based and
database backed web site has only a limited number of different templates. This
way, only a limited number of unique locations in HTML tree containing links
exist. So grouping web pages by XPaths of originating URL location is enough to
approximately cluster them according to their structural similarity. Another
important outcome is that the computational complexity of this clustering
technique is very low compared to two other baseline methods (see Chapter 4).

3.4.4. Clusters Refinement

The previous clustering process clusters web pages according to their
inbound-links XPaths. Depending on the design of a web site template there could
be from tens to a few hundred different XPaths with links, and web pages are
grouped into the same amount of clusters. We call these clusters as unrefined
clusters, because the clustering process takes into account only XPaths of inbound
links and do not compare the structural similarity of web pages. It means that web
pages belonging to separate clusters, indeed, can be structurally identical.
Consider for example the list of links and their XPath locations in Figure 3.5.
Although all those links have different XPath address, they all point to structurally

68 3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED...

identical web pages. These web pages are same template-generated and display
list of subcategories in any of main categories, such as Toys, Technology, Gifts,
etc.

— MERGED BIG
CLUSTER 3b CLUSTER
CLUSTER
CLUSTER 2b MERGED BIG
CLUSTER 1b CLUSTER
CLUSTER 1c
CLUSTER 3a
CLUSTER 3c CLUSTER 2c MERGED BIG
CLUSTER

Fig. 3.7. Clusters refinement process

The basic goal of this stage is to merge any two or more unrefined clusters if
they are structurally similar. For an example first consider Figure 3.6. In the first
figure we see that web pages are approximately clustered according to their XPath
location. We get three unrefined clusters: “CLUSTER 1a”, “CLUSTER 1b”,
“CLUSTER 1¢”. During a web site crawling we typically generate many clusters
that may share the structural similarity (see Figure 3.5 where links with different
XPaths point to same template pages). So we need to merge these clusters as
portrayed in Figure 3.7.

Depending on web site template design there could be from a few hundreds
to a few thousands unrefined clusters. During pilot experiments we observed that
many unrefined clusters contain only a small amount of URLs. These URLs may
often be found in other unrefined clusters, where thousands of unique URLSs are
located. These minor unrefined clusters may point to a top ten products page, news
pages, policy pages, “about us” pages, etc. As it is obvious, these kinds of pages
usually do not contain important structured data or that the data is redundant like
in top ten products page example. So we decided to introduce CUT-OFF threshold
(we use value of 100) to remove some unrefined clusters. This threshold is a limit
of minimum unique URLSs per cluster. If any cluster contains less than a cut-off
threshold amount of links, it is removed. This way only high quality, many URL
containing unrefined clusters are pushed to the next final stage.

The final refinement stage of the proposed method takes a predefined (we use
value of 5) amount of sample pages from each of unrefined clusters. The content

3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED... 69

of sampled web pages is analysed to generate a common template fingerprint of
that particular cluster. The idea to use web page fingerprints instead of direct
HTML tree comparison comes from closely related research field addressing
duplicate content detection on the Web. The main idea there is to detect identical
or near duplicate web pages by analysing their structure and content. These works
(Broder et al. 1997; Manku et al. 2007) are motivated by the fact that web contains
many web pages on different domains with identical or near identical content. A
user searching the Web is only interested in unique content on each web page from
search results list and duplicated content is no use for him. So search engines try
hard to remove similar web pages from occurring in a search results. Since web
pages come from thousands of domains and there could be literally millions of
web pages to compare each against another a scalable technique was developed to
be able to cope with such big amount of comparisons. However, we do not directly
utilize web page shingling (Broder ef al. 1997) and min-hashing (Manku ef al.
2007) techniques to generate the fingerprints. Although they are very scalable but,
on the other hand, they also are very approximating, i.e. inner-site template
differences can be ignored and whole site can be seen as one template. So instead
shingling and min-hashing to generate a fingerprint we employ bag of paths
method (Joshi et al. 2003). For each sampled web page from a cluster we extract
all HTML tree paths that do not contain text. Then paths occurring only above
threshold value of 0.3 are taken to be included into a fingerprint. So our version
of web page fingerprint is a set of selected tag paths.

Generated fingerprints for each template of clustered web pages are used to
detect similarities among clusters. As discussed above, two or more clusters may
actually contain same template-generated web pages. If such similarity among two
clusters is detected and it is greater than predefined (we use value of 0.8) threshold
value, the refinement process merges those two clusters and forms a new one. The
process is repeated until no new clusters can be formed. Here basically we employ
the union-find algorithm.

3.5. Conclusions of Chapter 3

1. In this Chapter a novel unsupervised method for structurally
clustering template-generated web pages was proposed. The method
is called UXClust and it leverages XPath locations of inbound inner-
site links to speed up clustering time.

2. Some important observations have been made about template-
generated web sites. Each template-generated web site typically has
a limited number of different style templates. There are also a limited
number of inner-site link locations in all templates of the same site.

70

3. AMETHOD FOR STRUCTURALLY CLUSTERING TEMPLATE-GENERATED...

Furthermore, each individual location with a link in template-
generated web page typically points to structurally similar web pages.
By extracting the XPaths of inner-site links it is possible to exploit
this this meta-data about linked web pages to approximately cluster
them without analysing their HTML content. Computationally
intensive task of generating clusters with structural similar web pages
can be done only once per unique web link location in HTML tree.
Traditional web page structural distance calculation methods, such as
Jaccard similarity coefficient of XPath sets between two web pages
can be used to refine approximately clustered web pages. Although
this technique is computationally expensive, however, it is possible
to take only a small sample of web pages from each approximate
cluster and use the calculated similarity coefficient to merge them.
The proposed method can be easily integrated into many data
extraction systems, since any totally basic web site crawling
technique can be used to download web pages for clustering. It is not
important in what order or with what method web pages are
download. The only requirement is to additionally to URLSs also save
the XPath locations of these inner-site links.

Experimental Evaluation of the
Proposed Methods

This Chapter is dedicated to experimentally evaluating the two proposed
methods. The UXClust for structurally clustering template-generated web pages
and the ClustVX for extracting structured data from template-generated web
pages. 5
. Parts of this Chapter are published in (Grigalis, Cenys 2014a), (Grigalis,
Cenys 2014b), (Grigalis 2013), (Grigalis ef al. 2012b).

4.1. Evaluating the Method for Structurally Clustering
Template-Generated Web Pages

In this Section of the Chapter we experimentally evaluate the proposed
approach to structurally cluster template-generated web pages. We also compare
our proposed approach to two baseline methods: common XPaths (Joshi ef al.
2003) and pg-grams (Augsten et al. 2005). Since, to the best of our knowledge,
there is no benchmark dataset suitable for our system, we need to create it. Most
of datasets containing crawled web pages at best contain saved web pages and
their URLs. However, our proposed approach utilizes XPath addresses of inbound

71

72 4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

inner-site links. So in addition to physically saved web pages we also need to have
those XPath addresses. And as noted before, no dataset can provide that necessary
meta-data about saved web pages. Experiments were conducted on laptop
computer with Ubuntu 12.04 operating system, Intel® Core™ i7-2670QM CPU
@ 2.20GHz, 8 GB RAM, 7200 RPM hard drive.

4.1.1. The Dataset

To create a dataset consisting of web pages with required additional
information about inner-linkage we programmed a basic web site crawler. The
crawler is implemented in Python programming language. We utilize a breadth-
first crawling approach where all neighbouring web pages are crawled first. This
is contrary to a depth-first crawling which prioritizes exploring web site as far as
possible along each linking branch before backtracking. It is demonstrated
(Najork, Wiener 2001) that traversing the Web graph in breadth-first search order
is a good crawling strategy, as it tends to discover high-quality pages early in the
crawl. Implemented crawler does not uses cookies and is single-threaded, thus it
is suitable to download one page from one site at a time. However, during the
crawling process we ran multiple instances of the crawler — each for different web
site. The crawling algorithm encompasses a URL cleaning procedure, which
removes forced session id tokens, such as phpsessid, cfid, aspsessionid, and etc.

We chose 14 web sites containing structured data in template-generated web
pages. In Table 4.1 data about each web site is presented. The data include web
site address, total amount of downloaded pages, total size of web pages in
gigabytes, average size of downloaded web page in kilobytes, total amount of
unique XPath locations containing inner-site links, and total amount of unique
XPath locations with cut-off threshold applied, i.e. XPath locations containing
more than 100 unique inner-site links. The last row contains aggregated data
among all web sites. As we can see from the table, more than one million web
pages where downloaded totalling in size of 119 gigabytes on disk. Average size
of single web page among all web sites is 99 kilobytes. A more complicated design
of a web site results in more XPath locations where inner-site links can be found.
Some sites, such as argos.co.uk and bigbox.It, have such sophisticated design that
there are round five thousands XPath locations. Each such XPath corresponds to
one unrefined cluster. To simplify similarity calculation among such big amount
of clusters and to reduce running time, we introduced a cut-off threshold. The cut-
off threshold lets us to disregard all clusters that have less than predefined
threshold limit of unique pages. In our experiments the threshold was equal to
100. In the last column of the table a number of filtered clusters are listed.

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS 73

Table 4.1. Basic data about each web site used in experimental evaluation

Nr. | Web site Pages Total Average | URL URL
size in | Size in | XPaths | XPaths
GB KB (cut-off)
1. argos.co.uk 111142 7.33 69.20 4472 224
2. | azon.lt 102313 18.28 187.32 306 86
3. | bigbox.It 120557 27.03 235.12 5055 145
4. | citylights.com 13698 0.34 26.29 553 19
5. currys.co.uk 9993 0.67 70.42 1078 9
6. | elshop.lt 90001 2.27 26.44 246 36
7. | ikea.com 122686 10.16 86.83 1754 117
8. | ilterzogirone.it 66404 3.64 57.55 1317 109
9. | imk.It 74295 14.46 204.14 1864 116
10. | iristorante.it 116410 5.35 48.21 1196 119
11. | kompiutera.lt 21623 1.08 52.24 368 35
12. | smartbuy.lt 15638 0.41 27.62 441 29
13. | tesco.com 88773 15.64 184.76 3618 192
14. | varle.lt 117514 12.44 110.96 875
61
Average: 76503 8.51 99.08 1653 92
Total: | 1071047 119.1 -

All data about each downloaded web page is stored in a relational MySQL
database. One table is dedicated to store all data: URL, XPath, DocID, and web
site ID. Downloaded web pages are stored in file folders. There is one folder for
each web site. The file names of stored web pages are identical to DocIDs, which
are stored in a database table. Running time for structural clustering of saved web
pages includes database queries to retrieve and save data.

4.1.2. Ground Truth and Measurements

For each web site we identified one kind of template with most interest to us.
In many cases these are template-generated pages containing product data, such
as title, price, picture, description, etc. Then we manually analyse URLs of these
pages to identify repeating patterns, such as keywords or URL structure. A regular

74 4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

expression is written for each web site to match those URLs with high interest to
us. This way we generate a ground truth (golden data) that is used to calculate
precision, recall, of our proposed clustering method. The precision of a given
cluster is the fraction of web pages in its computed cluster that are also found in
the corresponding ground truth cluster. The recall of a given cluster is the fraction
of web pages from the corresponding ground truth cluster that were grouped into
the same computed cluster. To calculate these measures, that are taken from
information retrieval research field, we first need to describe all possible outcomes
of clustering process. Our main goal is to assign two or more web pages to the
same cluster if and only if they are similar. A true positive (TP) decision assigns
two structurally similar web pages to the same cluster; a true negative (TN)
decision assigns two structurally dissimilar web pages to different clusters. There
are two types of errors that can occur. A false positive (FP) decision assigns two
structurally dissimilar web pages to the same cluster. A false negative (FN)
decision assigns two structurally similar web pages to different clusters. Then the
Precision and Recall is calculated as follows:

Precision = — s “4.1)
TP+FP

Recall = —2— | (4.2)
TP+FN

4.1.3. Selecting Parameters for Two Baseline Algorithms

Since pg-Grams and Common Paths (CP) methods are very computationally
expensive and result in a long running time (for detailed comparison of running
times please see Table 4.3), we decided to take a much smaller amount of web
pages from each web site to benchmark them. First, we test the two baseline
algorithms with the first web site from the dataset, namely with argos.co.uk. We
check if the different number of selected web pages has any significant impact on
precision and recall. As seen in Figure 4.1 and Figure 4.2, there is no significant
difference on precision and recall with both algorithms if we select a different
number of web pages. However, there is a significant difference in terms of
running time: the more pages are selected to cluster, the longer the running time.
Actually, the running time increases almost exponentially with both algorithms.

Thus for pg-Grams we take only 100 web pages from each web site and use
p=2 and g=3 values as suggested in original paper (Augsten et al. 2005). Similarly,
for a faster Common Paths method we take 1000 web pages. The amount of taken

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS 75

web pages is also indicated in parentheses next to the algorithm name in Table 4.2
and Table 4.3. For our UXClust method we take all web pages as seen in Table 1.
This way, of course, the size of ground truth clusters differs among three
benchmarked methods. The G7-P columns under each method in Table 4.2
indicate the number of ground truth pages for each web site. For each of three

tested methods we use the same 0.8 web page similarity threshold value.

- = =Precision

100 500 1000 1500 2000
Number of pages

Recall

eessee Running time

_ 10 1~ _ommm__ 346
© .

8 0,8 - Shase
~ 0)6 T o q?
c /\——'—/?\ 173 £
© 04 - E
3 86

9 02 1 Lot

& 00 Leeeett 00

Fig. 4.1. The effect on recall, precision and running time by selecting
different numbers of pages for Common Paths algorithm

= = =Precision

Number of pages

Recall

XX xx Runnlng tlme

_ 10— =~ _ea_ = 432

T 0,8 . [346

& 0,6 259 &

T 04 173 E
X -

202 86

'S 0,0 ettt 00

w ’

o (,)Q '\90 '\(/,)0 ’\90 q‘,”Q

Fig. 4.2. The effect on recall, precision and running time by selecting
different numbers of pages for pg-Grams algorithm

76 4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

4.1.4. Results

Table 4.2. The results of using the proposed and two baseline algorithms to cluster
structurally similar web pages

Nr. | Web site UXClust pg-Grams (100) | CP (1000)
GT-P | P R GT- | P R GT- | P R
P P

1. | argos.co.uk 30460 | 0.92 | 0.72 | 40 1]0.15| 332|094 | 0.49
2. | azon.lt 36643 1 1] 34 11032 370 110.87
3. | bigbox.It 10282 | 0.68 | 094 | 13 [0.88 | 054 | 176 | 0.8 | 0.96
4. | citylights.com | 2026 11064 | 22033]0.36]| 190 11]0.56
5. currys.co.uk 2009 1081 56 1| 03] 627 11045
6. | elshop.lt 22019 1 1] 22 11055 244 11]0.76
7. ikea.com 4909 1 1 9 11056 99 1 1
8. | ilterzogirone.it | 2866 1 1 10 1] 07| 49 11098
9. | imk.It 10173 | 0.96 1 16 | 0.82 | 0.56 | 191 | 0.95 | 0.93
10. | iristorante.it 967 1| 09 4 1 1 35 11]0.74
11. | kompiutera.lt | 11440 | 0.54 1| 41044 1] 528 |0.53 1
12. | smartbuy.lt 3632 1 1] 36 11025 3% 110.99
13. | tesco.com 13066 | 0.97 | 096 | 30| 0.81|0.83 | 274 | 0.79 | 0.15
14. | varle.lt 59450 1 1| 48 11073 | 483 | 0.98 | 0.98

Average: | 14996 | 0.93 | 093 | 27 | 0.88 | 0.56 | 285 | 0.93 | 0.78

Table 4.2 lists the precision (P) and recall (R) of applying our proposed
(UXClust) and two baseline (pg-Grams and Common Paths) clustering algorithms
on each web site. As seen in the table, our proposed UXClust method achieves
0.93 average precision and recall and outperforms two other baseline methods.
The pg-Grams algorithm performs worst. We believe it is possible to tune up this
algorithm to achieve better results with structurally sophisticated web pages,
however, it is beyond the reach of this thesis. Common Paths and our UXClust
approaches achieve the same precision as in both of them the same Jaccard
similarity measure over the XPaths of web pages is used to determine structurally
similar templates. However the use of XPath clustering in UXClust significantly
increases recall from 0.78 to 0.93.

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS 77

Table 4.3. Running time comparison between proposed and two baseline methods

Nr. | Web site UXClust pg-Grams (100) | CP (1000)

Time GT- Time GT- Time GT-P/s
(s) P/s (s) P/s (s)

1. argos.co.uk 31 982 49 0.82 61 5.44
2. azon.lt 12 | 3053 66 0.52 71 5.21
3. bigbox.It 35 293 123 0.11 190 0.93
4. citylights.com 1 2026 21 1.05 26 7.31
5. currys.co.uk 1 2009 61 0.92 67 9.36
6. elshop.It 5 4403 16 1.38 37 6.59
7. ikea.com 18 272 65 0.14 89 1.11
8. ilterzogirone.it 12 238 70 0.14 38 1.29
9. imk.It 25 406 108 0.15 153 1.25
10. | iristorante.it 13 74 50 0.08 46 0.76
11. | kompiutera.lt 5 2288 54 0.76 100 5.28
12. | smartbuy.lt 2 1816 21 1.71 31 12.77
13. | tesco.com 56 233 165 0.18 229 1.20
14. | varle.lt 17 | 3497 83 0.58 132 3.66
Total: 235 - 950 - 1271 -
Average: - 893 - 0.40 - 3.14

As we further look to the results of proposed UXClust approach we see that
on almost all web sites it achieves very high recall, except for the site number 4
(citylights.com). Here the recall result is just 0.64. A closer look relieved, that this
happens due to unexpected behaviour of citylights.com template engine. Each
time a requested URL resource does not contain corresponding entry in underlying
database, the Web server returns a “sorry” message (as a small inclusion) and
displays a regular web page with list of books. The template of this page is
different from the one that should be returned if book data would be found. The
only way to be sure of returned template is to verify each response. However,
parsing each downloaded page takes a lot of time, and our proposed method tries
to avoid it. That way, the clustering recall of the citylights.com web pages cannot
be further improved using our proposed method. We consider this site to be an
exception.

78 4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

The precision of UXClust drops when web pages from different templates are
clustered together. This happens on 6 out of all 14 web sites. The main difficulty
here is to determine the similarity of two web pages. Our experiments revealed
that the bag of XPaths approach (Common Paths), which we use in our algorithm,
is not always working on modern web pages. In some sites, there are very small
differences between different templates. Furthermore, a template of a product
page may differ a little depending on the product type. In those cases only a human
viewer could tell if those two pages are similar and the similarity may be more
semantic one, than a visually structural.

In Table 4.3 we compare the running time of our proposed and two baseline
methods. Recall that each method in run with different amount of web pages. Thus
we calculate two scores: the whole running time in seconds and normalized
measure of ground truth pages clustering speed per second (GT-P/s). The latter
reveals how quickly ground truth cluster is formed. As we see in Table 4.3, our
proposed method outperforms two other approaches by order of magnitude:
UXClust is able to cluster 893 ground truth pages per second, while Common
Paths method clusters just 3.14 ground truth pages per second and pg-Grams —
just 0.40. Proposed UXClust approach is able to structurally cluster more than a
million web pages in just 235 seconds.

1,0
, / i -— e

‘=3 0,8 - _- - =
g --
X 06 -
c 7’
204 7
§ V4
a 0,2 -

00 —m————————————————

00010203040506070809 10
Similarity threshold value
— = =Precision Recall

Fig. 4.3. Similarity threshold parameter effect on average precision and
recall

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS 79

Thresholds Impact on Overall Precision, Recall and Running
Time

We also investigate the trade-offs between precision, recall and running time.
To do that we vary values of all four thresholds used in proposed UXClust method,
i.e. the web page similarity threshold, XPath occurrence threshold, XPath
sampling threshold and CUT-OFF threshold (for a detailed explanation of each
threshold please refer to the Chapter 3). We show the running time curve only
with those thresholds that have considerable effect on running time.

In Figure 4.3 we see what happens to average precision and recall on all web
sites when web page similarity threshold increases from 0 to 1. As we see,
precision starts from around 0.3 and reaches its maximum at around 0.9, while
recall starts from 1 and drops to 0.8. The precision and recall intersects when
similarity threshold is around 0.8. This is the exactly same value of web page
similarity threshold that is used in our proposed algorithms.

1,0
- > ~ -~ -— - o

— =-T=- = ~ -y
3 0,8
«
206
s
s 04
(%]
g
a 0,2 -

0,0 : T T . T T . . —

01 02 03 04 05 06 07 08 09
XPath occurence threshold value
= = =Precision Recall

Fig. 4.4. XPath occurrence threshold parameter effect on average precision
and recall

While conducting experiments we also noticed that precision and recall for
each web site may differ a few percent on each new run of our algorithms. This
happens because web page sampling algorithm uses random function to select a
few samples of web pages to calculate their fingerprint. Depending on sampled
web pages the resulting fingerprint may differ a bit. This leads to different
similarity calculation results in clusters refinement stage. However, those

80 4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

differences on precision and recall are no more than a few percent. More over the
similarity threshold has no effect on running time.

As shown in Figure 4.4 the best results in terms of precision and recall are
achieved when setting the XPath occurrence threshold between 0.2 and 0.3.

Varying XPath occurrence threshold value has small effect on precision and
recall. These results mean that in clusters fingerprint generation process there is a
small difference between selecting all found unique XPaths from sampled web
pages or including just most common ones. This threshold also does not have any
effect on running time, thus we do not include running time axis.

As seen in Figure 4.5 the more web pages are taken into sampling (higher
threshold value) the longer UXClust method runs. Actually, we can see
exponential growth in running time as XPath sampling threshold parameter
increases. While selecting appropriate value for the threshold the results of recall
and precision must be taken into considerations. Here we see the best fit at 3 where
running time is still low and precision and recall are above 0.9.

1,0 - - 2500
‘=3 0,8 - . - 2000
& : .
< 06 ST 1500 -
5 3 £
2 04 - : - 1000 =
(%] o
o .
£02 - - 500

00 Lt 1o

1 3 5 7 10 20 50
XPath sampling threshold value
— = =Precision Recall «e+eeee Running time

Fig. 4.5. XPath sampling threshold parameter effect on precision, recall and
running time

CUT-OFF threshold value determines the smallest size of XPath clusters that
are taken into web page structural clustering process. Naturally, as seen in Figure
4.6, the bigger the threshold, the less XPath clusters are compared to be merged,
the less the running time. However, if we would select enormously high value of
this threshold — depending on the web site, there could be no clusters left to merge
and thus large part of web pages would be discarded from clustering. Our

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS 81

observation demonstrates that CUT-OFF threshold value of 100 lets to achieve
good results.

1,0 - - 2000
_—— S--
308 - 1500
& “
< 06 - ., o
c . - 1000 ¢
=} .- =
:Z 0’4 7] % -
3 .
£02 - - 500
0,0 . . : : : ; ; 0
5 10 20 50 100 150 200
CUT-OFF threshold value
— = =Precision Recall seeceee Running time

Fig. 4.6. CUT-OFF threshold parameter effect on precision, recall and
running time

4.2. Evaluating the Method for Extracting Structured
Data from Template-Generated Web Pages

This Section describes the extensive experimental evaluation of our proposed
ClustVX method with four benchmark datasets containing more than seven
thousand structured data records embedded into template-generated web pages.
Given a web page from a dataset we process it with data extraction system and
measure the extraction results.

4.2.1. The Datasets

Here are the four benchmark datasets that we use to evaluate structured web
data extraction systems:
1. ClustVX.
2. ViNTs-2 (Zhao et al. 2005).
3. Alvarez (Alvarez et al. 2008).
4. TBDW Ver. 1.02 (Yamada, Craswell 2004).

82 4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

These datasets contain search results of the Deep web, that is, pages generated
using templates filled with data coming from databases. Usually these databases
are accessed when user submits a web form (for example, to find all books that in
title contain word ,,data*), and web server retrieves requested data and generates
a web page. See Table 4.4 for detailed characteristics of these datasets. The total
number of data records is calculated by analysing only one page per web site. In
case there are many web pages per site in a dataset, we take only the first one from
alphabetic. If first page contains no data records, then the second page is taken.

Table 4.4. Benchmark datasets containing template-generated web pages

Dataset: | ClustVX | ViNTs-2 Alvarez | TBDW
Sites 10 102 200 51
Pages per site 3 11 1 5
Average records per page 22 24 18 21
Total records (1st page per site) | 218 2489 3557 1052

The experimental results are compared with state-of-the-art automatic
structured data extraction systems called G-STM (Jindal, Bing 2010), DEPTA
(Zhai, Liu 2006), FiVaTech (Kayed, Chang 2010), MDR (Liu ef al. 2003), ViNTs
(Zhao et al. 2005), CTVS (Su et al. 2011), Del.a (Wang, Lochovsky 2003), and
the method proposed in (Alvarez ef al. 2008). Some of these systems are not
publicly available to download. In such case we use the reported evaluation results
from the original publications.

Since some of the web pages have malformed HTML source codes, as it was
done in RoadRunner (Crescenzi 2001) and DEPTA (Zhai, Liu 2006) experiments,
we use the Tidy program (Paehl 2012) to clean the source code of malformed

pages.

4.2.2. Evaluation Metrics

We use the precision, recall and f-score measures (which are widely used to
evaluate information retrieval system) to evaluate the effectiveness of our system
for extracting structured web data. For web data extraction, the recall and
precision are computed based on the total number of correctly extracted data
records (DRcorreciy), number of extracted data records (DRexiracied) and number of
actual data records (DRucura) present in a given web pages. The F-score is based
on both precision and recall. See the following formulas for calculating precision,
recall and f-score:

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS 83

|DRcorrectly N DRextracted|

Precision = , 4.3)
|DRextracted|
Recall — |DRextracted nDRactual| (4 4)
|DRactual| ’)
2 % Precison * Recall
F — score = . 4.5)

Precision+Recall

As in FIVATECH (Kayed, Chang 2010) experimentation, we consider data
record to be successfully extracted if more that 60% of its data items are extracted
correctly and each of data records in a data region is correctly segmented.

4.2.3. Results with ClustVX Dataset

The first ClustVX dataset is compiled by us (see Table 4.5 for details). We
chose ten technologically sophisticated modern web sites, where much of content
is dynamically modified with JavaScript code and style is set by Cascading Style
Sheets (CSS). Since many automatic web data extraction systems take as an input
a raw HTML file they would fail to get the final HTML of a modern web page
where the execution of JavaScript code and live HTML modifications are done
while rendering a web page in a browser. In contrast to raw HTML handling the
proposed ClustVX systems uses a modern web browser to fully render a HTML
file and take the final version of the source code. To conduct a proper comparison
between those systems that do not render HTML files and the proposed ClustVX
system we decided to: a) fully render in the browser each web site from the dataset;
b) save the resulting rendered version of the HTML source code; c) provide the
rendered version of the HTML code as an input for automatic structured data
extraction systems.

We compare the effectiveness of our proposed ClustVX system to three
publically available to download or access automatic web data extraction systems
called MDR (Liu ef al. 2003), ViNTs (Zhao et al. 2005), and FiVaTech (Kayed,
Chang 2010). The results in terms of absolute numbers are available in Table 4.5.
We list the total number of data records available to extract in each web page. The
total numbers of actually extracted Data records by each system are marked as
“total”. Next to it we also list the True Positive (TP) extraction results, i.e. the
number of correctly extracted data records by each system. The Table 4.6 lists the
results on the same dataset presented in precision, recall and f-score.

The results on this dataset reveal that out proposed ClustVX system achieves
perfect precision and nearly perfect recall, 100.0% and 99.5% respectively. These

84 4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

results are better than those achieved with other methods. The lowest results in
terms of f-score are achieved by MDR systems. We believe it is because the MDR
system is the oldest system of the all tested. During the creation of MDR the web
pages were technologically simpler and the system seems to be unable to cope
effectively with modern web pages.

Table 4.5. Experimental results on ClustVX dataset in absolute numbers

VINTs FiVaTech | MDR ClustVX
-
Sl - 3 3
Nr._| Website Zel S |e| S a8l 88
1. currys.co.uk 20 19 19 20 20 0 [0 |20 20
2. google.com 10 0 0 7 7 0 [0 |10 10
3. argos.co.uk 50 50 |50 3 3 1 [0 |50 50
4, bestbuy.com 15 0 0 15 15 0 |0 |15 15
clothingattesco
5. .com 20 3 0 20 20 0 [0 |20 20
6. samsung.com 15 9 0 3 3 0 |0 |15 15
7. adidas.com 24 24 | 24 24 24 0 |0 |24 24
8. amazon.com 24 0 0 24 24 0 |0 |24 24
barnesandnoble
9. .com 30 30 |30 0 0 8 |0 |29 29
10. | bing.com 10 8 0 13 10 1110 | 10 10
Total: | 218 143 | 123 | 129 | 126 |20 | 10 | 217 | 217

Table 4.6. Experimental results on ClustVX dataset in precision, recall and f-score

System /

Measure ViNTs FivaTech | MDR | ClustVX
Precision 86.0% 97.7% 50.0% | 100.0%
Recall 65.6% 59.2% 9.2% 99.5%
F-score 74.4% 73.7% 15.5% | 99.8%

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS 85

4.2.4. Results with ViNTs-2 Dataset

The structured data records extraction results on VINTS-2 dataset reveal, as
we see in Table 4.7, that ClustVX system again achieves very high precision and
recall, 98.6 % and 98.5% respectively. These results are better than those reported
with G-STM (Jindal, Bing 2010) and DEPTA (Zhai, Liu 2006) systems. The main
difficulties which hindered data extraction for ClustVX system are related to
malformed HTML source code, which cannot be fixed even with Tidy program.
Another difficulty was structurally complex lists of data records. Errors mainly
occur when ClustVX system cannot correctly segment data records. Incorrect
segmentation leads to extraction problems, such as when not all data items per
data record are extracted, or data items belonging to the same data record are
assigned into many different data records.

Table 4.7. Experimental Results on VINTS-2 dataset

System / Measure ClustVX | G-STM | DEPTA
Reported actual records 2489 N/A N/A
Extracted records 2452 N/A N/A
Correctly extracted records | 2417 N/A N/A
Precision 98.6% 98.5% 95.1%
Recall 98.5% 96.7% 83.9%
F-score 98.5% 97.6% 89.1%

4.2.5. Results with Alvarez Dataset

Here, in Table 4.8, are the results with (Alvarez ef al. 2008) dataset. This
dataset in terms of data records number and different style web sites is the biggest
of all three. The extraction results of ClustVX system are compared to the reported
results of the system proposed by Alvarez et al. in (Alvarez er al. 2008). Same
problems as we encountered with VINTS-2 dataset are present here also.
Particularly, the incorrect segmentation of structured data records leads to
extraction errors. However, even with these problems our ClustVX system
achieves better results than the method proposed by M. Alvarez et al. We achieve
98.2% precision and 99.7% recall, while (Alvarez et al. 2008) achieve 97.9% and
98.3% respectively. 4.2.6. Results with TBDW Dataset

Here we compare effectiveness of our proposed ClustVX system to other
state-of-the-art structured extraction systems called G-STM (Jindal, Bing 2010),
DEPTA (Zhai, Liu 2006), FiVaTech (Kayed, Chang 2010), CTVS (Su et al.

86 4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

2011), DeLa (Wang, Lochovsky 2003). With due respect to previous works and
their authors, some inaccuracies have been observed in the reported results of
other techniques. For example, some authors report smaller number of records in
same publically available TBDW benchmark data set. For this reason we have
included reported numbers where they were available. As we see in Table 4.9, the
authors of FiVaTech, CTVS and DelLa report almost twice smaller number of
available (actual) records in TDBW data set. This is very strange, because our
thorough calculation reveals that there are 1052 records. To calculate the total
amount of actual records we take first page from each of 51 sites in TBDW data
set. If there are no records available in the first page (this occurred on first pages
of 7th and 11th sites from TBDW), we take the second one. The same calculation
method reportedly is used and in the papers of FiVaTech, CTVS and DelLa.

Table 4.8. Experimental Results on Alvarez (Alvarez ef al. 2008) dataset

System: ClustVX | Alvarez et al.
Reported actual records 3557 3557
Extracted records 3546 3570
Correctly extracted records 3482 3496
Precision 98.2% 97.9%

Recall 99.7% 98.3%
F-Score 98.9% 98.1%

Table 4.9. Experimental Results on TBDW data set

System: ClustVX | G-STM | DEPTA | FivaTech | CTVS | DeLa
Reported 1052 N/A N/A 693 693 693
actual

records

Extracted 1047 N/A N/A 690 688 655
records

Correctly 1045 N/A N/A 672 680 616
extracted

records

Precision 99.8% 99.8% 99.5% 97.0% 98.8% | 88.8%
Recall 99.5% 96.6% 85.3% 97.4% 98.1% | 94.0%

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS 87

The results on TBDW dataset reveal that out proposed ClustVX system
achieves nearly perfect precision and recall, 99.8% and 99.5% respectively. These
results are better than those achieved with other author’s methods. The precision
of ClustVX and G-STM systems is the same, however our approach has much
better recall and this leads to better F-score. ClustVX system could not correctly
extract just one page from this data set. The main problems with precision are
there were table headers of structured data records list is included as valid record.

4.3. Conclusions of Chapter 4

1.

In this Chapter we have experimentally evaluated the both proposed
methods: ClustVX and UXClust. The results revealed that the proposed
methods consistently outperform many other state-of-the-art techniques
on two tasks: structured web data extraction and web page structural
clustering. For example, using the UXClust method more than one million
of web pages can be clustered in less than 4 minutes. In addition to speed
efficiency, the proposed method achieves higher than 90% precision and
recall on all tested web sites and outperforms by a high margin two other
baseline techniques. Furthermore, the proposed second method ClustVX
successfully was applied to extracting structured data from many web
sites containing more than seven thousand structured data records
embedded into template-generated web pages. Here again, our proposed
method consistently outperformed other state-of-the-art approaches in
terms of precision and recall.

While preparing for the experimental evaluation we ran into the problem
of obtaining a representative dataset. In the case of evaluating UXClust
for structural clustering of web pages no dataset have been found. Similar
situation was encountered and evaluating ClustVX method for extracting
structured data: only a few outdated datasets have been identified. For the
both experiments we have manually compiled additional benchmark
datasets.

Although there are many approaches for extracting structured data and
structural clustering of web pages, not all of them are implemented as
working prototypes and available freely to download. In majority of the
case the absence of freely available prototypes it was difficult to compare
our proposed methods to other state-of-the-art techniques. In some of the
cases we have used the reported results from original publications and
could not re-evaluated those approaches with our own benchmark
datasets.

88

4. EXPERIMENTAL EVALUATION OF THE PROPOSED METHODS

There were also difficulties with other structured data extraction state-of-
the-art approaches while reusing their reported evaluation results on
TBDW public benchmark dataset. We found that many authors report a
smaller amount of actually available data records to extract. We think that
some kind of miscalculations occurred in the corresponding publications.
Thus more publicly available and up-to-date datasets with detailed
specifications are needed to further compare many approaches one against
another.

The majority of cases in which ClustVX method incorrectly extracted
data occurred while dealing with malformed HTML source code, extreme
similarity (visual and structural) between data records and non-records,
and incorrect segmentation of data regions. Further research is needed to
better understand the issues and improve the recall and precision of the
ClustVX method.

Returning to the UXClust method and the task of structural clustering of
web pages a few open challenges also remain to be solved:

a. Web page similarity measurement is a bottleneck of precision and
recall in our algorithms. Experimental evaluation of our proposed
algorithms revealed that current web page structural similarity
measures find it difficult dealing with contemporary web pages,
which size, in fact, can reach >200 KB of HTML code. And the
real differences between two same site templates can be traced to
just a few lines of code. We stipulate that there is need to include
semantic analysis step to better understand the purpose of each
template in a site. This could help to identify key locations or text
strings that discern one template from another. Only then it will
be possible to further increase precision and recall of structural
clustering process.

b. Since our approach employs XPath locations of URLs, there is
need to extend current web crawlers to save this kind of additional
information about downloaded web pages. We could not identify
any publicly available web crawler with such functionality.

c. There is a need to come up with methods dealing with unexpected
web server behaviour. For example, we ran into a problem when
some products are somehow “turned off” or not found in a
database but their URL remains valid. Then web server quietly
redirects request to web pages of different template, such as
category list. So some kind of procedures detecting those
unexpected behaviours should be employed.

General Conclusions

The literature review revealed that human effort requiring structured
web data extraction methods bring considerable costs to
organizations and are not suitable for extracting data at Web-Scale,
i.e. from thousands of websites that are visually and structurally
different. State-of-the-art automatic data extraction methods
typically search for repeating patterns in template-generated web
pages and exploit them to detect and extract embedded structured
data. However, fully automatic Web-Scale structured web data
extraction, at the level of precision and recall high enough to power
real applications, is still a long sought goal in the data extraction
community.

Template-generated web pages display structural and visual
regularity. The proposed clustering technique can be used to detect
repeating patterns of embedded structured data records in these
pages. The technique is based on clustering visually and structurally
similar web page elements. The resulting clusters with XPaths of web
page elements can be leveraged to automatically generate data
extracting wrappers.

It is demonstrated, that the proposed method for extracting structured
data records from template-generated web page is more effective in

89

90

GENERAL CONCLUSIONS

terms of precision and recall than all other state-of-the-art techniques
used in experimental evaluation. With all four benchmark data sets
the proposed method achieves higher than 98% precision and recall.
The method can also process technologically sophisticated modern
web pages, since web pages rendering occurs in a modern web
browser.

XPaths of inbound inner-site links can be leveraged to significantly
speed up structural clustering process of template-generated web
pages. Furthermore, during the clustering process a traditional web
page similarity measures such as Jaccard similarity coefficient
between finite sets of XPaths can be used.

The proposed method for structural web page -clustering is
computationally superior to other state-of-the-art approaches used in
experimental evaluation. It can cluster more than 1 million web pages
in less than 4 minutes and in turn achieving higher than 90%
precision and recall. The proposed method is more than 200 times
faster than the two other traditional web page clustering methods.
Both proposed methods for structured web data extraction and
structural clustering of template-generated web pages are completely
unsupervised, automatic and domain-independent and thus they can
be integrated into Web-scale data extraction systems.

References

Adelberg, B. 1998. Nodose: A tool for Semi-Automatically Extracting Structured and
Semistructured Data from Text Documents, SIGMOD Records 27(2): 283-294.

Aggarwal, C., Ta, N., Wang, J. 2007. Xproj: A Framework for Projected Structural
Clustering of Xml Documents, In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 46-55.

Alvarez, M., Pan, A., Raposo, J., Bellas, F., Cacheda, F. 2008. Extracting Lists of Data
Records from Semi-Structured Web Pages, Data & Knowledge Engineering 64(2): 491—
509.

Arocena, G.O., Mendelzon, A.O. 1998. Weboql: Restructuring Documents, Databases,
and Webs, In Proceedings of the Fourteenth International Conference on Data
Engineering. Washington: IEEE Computer Society, 24-33.

Augsten, N., Bohlen, M., Gamper, J. 2005. Approximate Matching of Hierarchical Data
Using Pq-Grams, In Proceedings of the 3 1st International Conference on Very Large Data
Bases. San Francisco: Morgan Kaufmann Publishers inc., 301-312.

Augsten, N., Bohlen, M., Gamper, J. 2010. the Pq-Gram Distance Between Ordered
Labeled Trees, ACM Transactions on Database Systems 31(1): 1-35.

Baumgartner, R., Flesca, S. 2001. Visual Web Information Extraction with Lixto, Very
Large Databases 1: 119—128.

91

92 REFERENCES

Baumgartner, R., Gatterbauer, W., Gottlob, G. 2009a. Web Data Extraction System,
Encyclopedia of Database Systems. New York: Springer, 3465-3471. ISBN
9780387355443,

Baumgartner, R., Gottlob, G., Herzog, M. 2009b. Scalable Web Data Extraction for online
Market intelligence, Proceedings of the VLDB Endowment 2(1): 1512—1523.

Beach, T. 2013. the CSS Box Model. [Online]. [Cited 11 March 2014]. Available from
Internet: <Http://Www.Unm.Edu/~Tbeach/IT145/Week08/Index.HtmI>.

Bergman, M.K. 2001. the Deep Web: Surfacing Hidden Value, Journal of Electronic
Publishing 7(1): 1-17.

Berners-Lee, T. 2000. Weaving the Web : the Original Design and Ultimate Destiny of
the World Wide Web By Its inventor. New York: Harper Business, ISBN 0062515861.

Bing, L. 2012. Web Data Mining. New York: Springer, ISBN 9783642194597.

Blanco, L., Dalvi, N., Machanavajjhala, A. 2011. Highly Efficient Algorithms for
Structural Clustering of Large Websites, In Proceedings of the World Wide Web
Conference. New York: ACM Press, 437-466.

Bohannon, P., Dalvi, N., Filmus, Y. 2012. Automatic Web-Scale Information Extraction,
In Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data. New York: ACM Press, 609-612.

Britain, G., Hsu, C., Dungs, M., Science, 1., Science, C. 1998. Generating Finite-State
Transducers for Semi-Structured Data Extraction from the Web, Information Systems
23(8): 521-538.

Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G. 1997. Syntactic Clustering of the
Web, Computer Networks and ISDN Systems 29(8-13): 1157-1166.

Buttler, D. 2004. A Short Survey of Document Structure Similarity Algorithms, /n
Proceedings of the 5th International Conference on Internet Computing. New York: ACM
Press, 3-9.

Cafarella, M.J., Halevy, A. 2009. Data integration for the Relational Web, Proceedings of
the VLDB Endowment 2(1): 1090—-1101.

Cafarella, M.J., Halevy, A., Madhavan, J. 2011. Structured Data on the Web,
Communications of the ACM 54(2): 72-79.

Cafarella, M.J., Halevy, A., Wang, Z.D., Wu, E. 2008. Webtables : Exploring the Power
of Tables on the Web, In Proceedings of the International Conference on Very Large Data
Bases (VLDB). San Francisco: Morgan Kaufmann Publishers inc., 538—549.

Cai, D., Yu, S., Wen, J. 2003. VIPS: A Vision-Based Page Segmentation Algorithm,
Technical Report, Microsoft MSR-TR-200.

Califf, E., Mooney, J. 1999. Relational Learning of Pattern - Match Rules for Information
Extraction, In Proceedings of the Sixteenth National Conference on Artificial intelligence.
Cambridge: MIT Press, 328-334.

REFERENCES 93

Chakrabarti, D., Mehta, R. 2010. the Paths More Taken: Matching DOM Trees to Search
Logs for Accurate Webpage Clustering, In Proceedings of the World Wide Web
Conference. New York: ACM Press, 211-220.

Chakrabarti, S., Van Den Berg, M., Dom, B. 1999. Focused Crawling: A New Approach
to topic-Specific Web Resource Discovery, Computer Networks 31(11-16): 1623—1640.

Chang, C. 2001. IEPAD: Information Extraction Based on Pattern Discovery, In
Proceedings of the World Wide Web Conference. New York: ACM Press, 681-688.

Chang, C., Kayed, M., Girgis, R. 2006. A Survey of Web Information Extraction Systems,
IEEE Transactions on Knowledge and Data Engineering 18(10): 1411-1428.

Chang, C., Kuo, S.-C. 2004. OLERA : Semisupervised Web-Data Extraction, /EEE
intelligent Systems 19(6): 56—64.

Clark, J., Derose, S., Corp, I. 1999. XML Path Language (Xpath). [Online]. [Cited 11
March 2014]. Available from Internet: <Http://Www.W3.0rg/TR/Xpath/>.

Connotate. 2012. Web Data Collection & Monitoring Solutions. [Online]. [Cited 11
March 2014]. Available from Internet: <http://www.Connotate.com/Solutions>.

Crescenzi, V. 2001. Roadrunner: towards Automatic Data Extraction from Large Web
Sites, In Proceedings of the International Conference on Very Large Data Bases (VLDB).
San Francisco: Morgan Kaufmann Publishers inc., 109—118.

Crescenzi, V., Merialdo, P., Missier, P. 2005. Clustering Web Pages Based on Their
Structure, Data & Knowledge Engineering 54(3): 279-299.

Crescenzi, V., Merialdo, P., Qiu, D., Ingegneria, D., Roma, S. 2013. A Framework for
Learning Web Wrappers from the Crowd, In Proceedings of the World Wide Web
Conference. New York: ACM Press, 261-271.

Dalvi, N., Bohannon, P. 2009. Robust Web Extraction: An Approach Based on A
Probabilistic Tree-Edit Model, In ACM SIGMOD International Conference on
Management of Data. 335-348.

Dalvi, N., Kumar, R., Pang, B., Ramakrishnan, R., tomkins, A., Bohannon, P., Keerthi, S.,
Merugu, S. 2009. A Web of Concepts, /n Proceedings of the Twenty-Eighth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York:
ACM Press, 1-12.

Dalvi, N., Kumar, R., Soliman, M. 2011. Automatic Wrappers for Large Scale Web
Extraction, In Proceedings of the VLDB Endowment. VLDB Endowment, 219-230.

Dalvi, N., Machanavajjhala, A., Pang, B. 2012. An Analysis of Structured Data on the
Web, Proceedings of the VLDB Endowment 5(7): 680—691.

Damasevicius, R. 2009. Automatic Generation of Concept Taxonomies from Web Search
Data Using Support Vector Machine, In Proc. of the 5th International Conference on Web
Information Systems and Technologies WEBIST 2009. New York: Springer, 673—680.

Dean, J., Henzinger, M. 1999. Finding Related Pages in the World Wide Web, Computer
Networks 11(31): 1467-1479.

94 REFERENCES

Demaine, E., Mozes, S. 2007. An Optimal Decomposition Algorithm for Tree Edit
Distance, In Automata, Languages and Programming : 146—157.

Diligenti, M., Coetzee, F.M., Lawrence, S., Giles, C.L., Gori, M. 2000. Focused Crawling
Using Context Graphs, In Proceedings of the VLDB. San Francisco: Morgan Kaufmann
Publishers inc., 527-534.

Doan, A., Halevy, A., Zachary, 1. 2013. Principles of Data integration. Amsterdam:
Morgan Kaufmann, ISBN 9780124160446.

Elmeleegy, H., Madhavan, J., Halevy, A. 2011. Harvesting Relational Tables from Lists
on the Web, the VLDB Journal 20(2): 209-226.

Embley, D., Campbell, D., Jiang, Y. 1999. Conceptual-Model-Based Data Extraction from
Multiple-Record Web Pages, Data & Knowledge Engineering 31(3): 227-251.

Etzioni, O., Fader, A., Christensen, J. 2011. Open Information Extraction: the Second
Generation, /n Proceedings of the International Joint Conference on Artificial intelligence
(1JCAI). San Francisco: AAAI Press, 3—10.

Ferrara, E., Meo, P.D.E., Fiumara, G., Baumgartner, R. 2012. Web Data Extraction,
Applications and Techniques : A Survey, Arxiv 1207(0246): 1-48.

Fleisher, C.S., Bensoussan, B.E. 2003. Strategic and Competitive Analysis: Methods and
Techniques for Analyzing Business Competition. ISBN 9780130888525.

Freitag, D. 2000. Machine Learning for Information Extraction in Informal Domains,
Machine Learning 39(2-3): 169-202.

Furche, T., Gottlob, G., Grasso, G. 2012a. AMBER: Automatic Supervision for Multi-
Attribute Extraction, Arxiv Preprint 1210(5984): 1-22.

Furche, T., Gottlob, G., Grasso, G., Gunes, O., Guo, X., Kravchenko, A., Orsi, G.,
Schallhart, C., Sellers, A., Wang, C. 2012b. DIADEM : Domain-Centric , Intelligent ,
Automated Data Extraction Methodology Categories and Subject Descriptors, In
Proceedings of the World Wide Web Conference. New York: ACM Press, 267-270.

Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A., Foy, C. 2011. Oxpath : A
Language for Scalable , Memory-Efficient Data Extraction from Web Applications By
Scenario : History Books on Seattle to Extract History Books on Seattle Currently Offered
on Amazon ., Proceedings of the VLDB Endowment 4(7): 1016—1027.

Gonzalez, H., Halevy, A., Jensen, C. 2010. Google Fusion Tables: Web-Centered Data
Management and Collaboration, /n Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data. New York: ACM Press, 1061-1066.

Gottron, T. 2008. Clustering Template Based Web Documents, Advances in Information
Retrieval : 40-51.

Gulhane, P., Madaan, A., Mehta, R., Ramamirtham, J., Rastogi, R., Satpal, S., Sengamedu,
S., Tengli, A., Tiwari, C. 2011. Web-Scale Information Extraction with Vertex, /n ICDE.
1209-1220.

REFERENCES 95

Hammer, J., Mchugh, J., Garcia-Molin, H. 1997. Semistructured Data: the TSIMMIS
Experience, In Proceedings of the First East-European Conference on Advances in
Databases and Information Systems. Swinton: British Computer Society, 1-22.

Henriksson, A., Moen, H., Skeppstedt, M., Eklund, A., Daudaravi®, V., Hassel, M. 2006.
Synonym Extraction of Medical Terms from Clinical Text Using Combinations of Word
Space Models, In Proceedings of the International Symposium on Semantic Mining in
Biomedicine. London: Biomed Central, 10-17.

Hernandez, 1., Rivero, C.R., Ruiz, D., Corchuelo, R. 2012. A Statistical Approach to URL-
Based Web Page Clustering, In Proceedings of the World Wide Web Conference. New
York: ACM Press, 525-526.

Hong, J.L., Siew, E.-G., Egerton, S. 2010. Information Extraction for Search Engines
Using Fast Heuristic Techniques, Data & Knowledge Engineering 69(2): 169—196.

Huck, G., Fankhauser, P., Aberer, K., Neuhold, E.J. 1998. Jedi: Extracting and
Synthesizing Information from the Web, In Proceedings of the 3rd IFCIS International
Conference on Cooperative Information Systems. Washington: IEEE Computer Society,
32-43.

Yamada, Y., Craswell, N. 2004. Testbed for Information Extraction from Deep Web, In
Proceedings of the World Wide Web Conference. New York: ACM Press, 346-347.

Yang, W.U.U. 1991. Identifying Syntactic Differences Between Two Programs, Sofiware
- Practise and Experience 21(JULY): 739-755.

Jindal, N., Bing, L. 2010. A Generalized Tree Matching Algorithm Considering Nested
Lists for Web Data Extraction, In Proceedings of the SIAM International Conference on
Data Mining. Philadelphia: SIAM, 930-941.

Joshi, S., Agrawal, N., Krishnapuram, R., Negi, S. 2003. A Bag of Paths Model for
Measuring Structural Similarity in Web Documents, /n Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. New
York: ACM Press, 577-582.

Juntarung, N., Ussahawanitchakit, P. 2008. Knowledge Management Capability, Market
intelligence, and Performance: An Empirical investigation of Electronic Businesses in
Thailand, International Journal of Business Research 8(3): 69—80.

Kayed, M., Chang, C. 2010. Fivatech : Page-Level Web Data Extraction from Template
Pages, IEEE Transactions on Knowledge and Data Engineering 22(2): 249-263.

Kannan, N. 2010. online Price intelligence for Companies with Real-Time Changes!!
[Online]. [Cited 11 March 2014]. Available from Internet:
<http://www.ebizq.net/Blogs/Nari/2010/05/Online_Price Intelligence For.Php>.

Kausas, V., Zuokas, D., Medelis, Z., Krilavi¢ius, T. 2010. Application of Bootstrap
Techniques for Police Summaries Retrieval, /n 3rd National Young Scientists Conference
of the Lithuanian OR Society.

Kesteren, A. Van. 2011. CSSOM View Module. [Online]. [Cited 11 March 2014].
Available from Internet: <http://www.W3.0rg/TR/Cssom-View/>.

96 REFERENCES

Krilavi¢ius, T., Medelis, Z., Kapogitté-Dzikiené, J., Zalandauskas, T. 2012. News Media
Analysis Using Focused Crawl and Natural Language Processing, In Proceedings of the
19th International Conference on Information and Sofiware Technologies. New Y ork:
Springer, 48-61.

Kushmerick, N. 1997. Wrapper induction for Information Extraction (Doctoral
Dissertation). [Online]. [Cited 11 March 2014]. Available from Internet:

<http://www.Icst.Pku.Edu.Cn/Course/Mining/11-12spring/2 % iik/10-01 ~ Wrapper
Induction for Information Extraction.Pdf>.

Laender, A., Ribeiro-Neto, B., Da Silva, A., Silva, E. 2000. Representing Web Data As
Complex Objects, Electronic Commerce and Web Technologies : 216-228.

Laender, A., Ribeiro-Neto, B., Silva, A. Da. 2002a. A Brief Survey of Web Data
Extraction tools, In Proceedings of the ACM SIGMOD International Conference on
Management of Data. New York: ACM Press, 84-93.

Laender, A., Ribeiro-Neto, B., Silva, A. Da. 2002b. Debye—Data Extraction By Example,
Data & Knowledge Engineering 40(2): 121-154.

Lam, M.I., Gong, Z. 2005. Web Information Extraction, /n Proceedings of the IEEE
International Conference on Information Acquisition. New York: IEEE Computer
Society, 1-6.

Laukaitis, A., Vasilecas, O. 2008. Multi-Alignment Templates Induction, Informatica
19(4): 535-554.

Lin, C, Yu, Y., Han, J., Liu, B. 2010. Hierarchical Web-Page Clustering Via in-Page and
Cross-Page Link Structures, Advances in Knowledge Discovery and Data Mining : 222—
229.

Ling, L., Pu, C., Han, W. 2000. XWRAP: An XML-Enabled Wrapper Construction
System for Web Information Sources, /n Proceedings of the 16th International
Conference on Data Engineering. Washington: IEEE Computer Society, 611-621.

Liu, B. 2005. NET — A System for Extracting Web Data from Flat and Nested Data
Records, In Proceedings of the International Conference on Web Information System
Engineering. New York: Springer, 487—495.

Liu, B., Grossman, R., Zhai, Y. 2003. Mining Data Records in Web Pages, In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. New York: ACM Press, 601-606.

Liu, W., Meng, X., Meng, W. 2010. Vide : A Vision-Based Approach for Deep Web Data
Extraction, /EEE Transactions on Knowledge and Data Engineering 22(3): 447-460.

Lonngvist, A., Pirttimiki, V. 2006. the Measurement of Business intelligence, Information
Systems Management 23(1): 32—40.

Madhavan, J., Halevy, A. 2009. Harnessing the Deep Web : Present and Future, Arxiv
Preprint 0909(1785): 1-6.

REFERENCES 97

Madhavan, J., Jeffery, S.R., Cohen, S., Dong, X.L., Ko, D., Yu, C., Halevy, A.2007. Web-
Scale Data integration : You Can only Afford to Pay As You Go, In Proceedings of the
Biennial Conference on innovative Data Systems Research (CIDR). New York: SIGMOD,
342-350.

Manku, G.S., Jain, A., Das Sarma, A. 2007. Detecting Near-Duplicates for Web Crawling,
In Proceedings of the World Wide Web Conference. New York: ACM Press, 141-150.

Miao, G., Tatemura, J., Hsiung, W. 2009. Extracting Data Records from the Web Using
Tag Path Clustering, In Proceedings of the World Wide Web Conference. New York: ACM
Press, 981-990.

Myllymaki, J., Jackson, J. 2002. IBM Research Report Robust Web Data Extraction with
XML Path Expressions, Technical Report, IBM.

Muslea, 1., Minton, S., Knoblock, C.A. 2001. Hierarchical Wrapper Induction for
Semistructured Information Sources, Autonomous Agents and Multi-Agent Systems 4(1-
2): 93-114.

Najork, M., Wiener, J. 2001. Breadth-First Crawling Yields High-Quality Pages, In
Proceedings of the World Wide Web Conference. New York: ACM Press, 114—118.

Nguyen, H., Fuxman, A., Paparizos, S. 2011. Synthesizing Products for online Catalogs,
Proceedings of the VLDB Endowment 4(7): 409—418.

Nie, Z., Wen, J. 2007. Object-Level Vertical Search, In Proceedings of the Biennial
Conference on innovative Data Systems Research (CIDR). New York: SIGMOD, 235—
246.

Nierman, A., Jagadish, H. 2002. Evaluating Structural Similarity in XML Documents,
Webdb 2: 61-66.

Normantas, K., Vasilecas, O. 2012. Extracting Business Rules from Existing Enterprise
Software System, /n Proceedings of the 18th International Conference on Information and
Sofiware Technologies. New York: Springer, 482—496.

Normantas, K., Vasilecas, O. 2013. Normantas, Kestutis Vasilecas, Olegas, Baltic Journal
of Modern Computing (BJMC) 1(1-2): 29-51.

Paehl, D. 2012. HTML Tidy Library Project Table of Contents. [Online]. [Cited 11 March
2014]. Available from Internet: <http://tidy.sourceforge.net/>.

Paradauskas, B., Laurikaitis, A. 2006. Business Knowledge Extraction from Legacy
Information Systems, INFORMATION TECHNOLOGY and CONTROL 35(3): 214-221.

Pisa, U., Informatica, D., Signorini, A. 2005. the indexable Web Is More Than 11.5 Billion
Pages, In in Proceedings of World Wide Web Conference. 902—903.

Raposo, J., Pan, A., Alvarez, M., Hidalgo, J. 2007. Automatically Maintaining Wrappers
for Semi-Structured Web Sources, Data & Knowledge Engineering 61(2): 331-358.

Sahuguet, A., Azavant, F. 2001. Building intelligent Web Applications Using Lightweight
Wrappers, Data & Knowledge Engineering 36(3): 283-316.

98 REFERENCES

Simon, K. 2005. Viper: Augmenting Automatic Information Extraction with Visual
Perceptions, In Proceedings of the ACM International Conference on Information and
Knowledge Management (CIKM). New York: ACM Press, 381-388.

Skersys, T., Butleris, R., Kapocius, K., Vileiniskis, T. 2013. An Approach for Extracting
Business Vocabularies from Business Process Models, INFORMATION TECHNOLOGY
and CONTROL 42(2): 178-190.

Sleiman, H. A., Corchuelo, R. 2013. A Survey on Region Extractors from Web
Documents, /EEE Transactions on Knowledge and Data Engineering 25(9): 1960—1981.

Small, H. 1973. Co-Citation in the Scientific Literature- A New Measure of the
Relationship Between Two Documents.Pdf, Journal of the American Society for
Information Science 4(24): 28-31.

Soderland, S. 1999. Learning Information Extraction Rules for Semi-Structured and Free
Text, Machine Learning Learn. 34(1-3): 233-272.

Spertus, E. 1997. Parasite: Mining Structural Information on the Web, Computer Networks
and ISDN Systems 29(8): 587-595.

Su, W., Wang, J. 2009. ODE: ontology-Assisted Data Extraction, ACM Transactions on
Database Systems 34(2): 1-12.

Su, W., Wang, J., Lochovsky, F.H., Liu, Y. 2011. Combining Tag and Value Similarity
for Data Extraction and Alignment, /EEE Transactions on Knowledge and Data
Engineering 24(7): 1186—1200.

Suchanek, F., Kasneci, G., Weikum, G. 2007. Yago: A Core of Semantic Knowledge, /n
in Proceedings of World Wide Web Conference. 697-706.

Tai, K. 1979. the Tree-To-Tree Correction Problem, Journal of the ACM (JACM) 26(3):
422433,

Thomsen, J.G. 2013. Consistency in the World Wide Web : Specification, Verification,
and Evaluation (Doctoral Dissertation). [Online]. [Cited 11 March 2014]. Available from
Internet: <http://Pure. Au.Dk/Portal/En/Publications/Consistency-In-The-World-Wide-
Web(42e089cf-078f-438d-A027-Aeeef742aad9).html>.

Walther, M. 2012. Unsupervised Extraction of Product Information from Semi-Structured
Sources, In Proceedings of the IEEE [3th International Symposium on Computational
intelligence and Informatics. New York: IEEE Computer Society, 257-262.

Wang, J., Lochovsky, F.H. 2003. Data Extraction and Label Assignment for Web
Databases, In Proceedings of the World Wide Web Conference. New York: ACM Press,
187-196.

Weikum, G., Theobald, M. 2010. from Information to Knowledge: Harvesting Entities
and Relationships from Web Sources, In Proceedings of the Twenty-Ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York:
ACM Press, 65-76.

REFERENCES 99

Zhai, Y. 2005. Web data extraction based on partial tree alignment, /n Proceedings of the
World Wide Web Conference. New York: ACM Press, 76-85.

Zhai, Y., Liu, B. 2006. Structured Data Extraction from the Web Based on Partial Tree
Alignment, /EEE Transactions on Knowledge and Data Engineering 18(12): 1614—1628.

Zhang, K., Shasha, D. 1989. Simple Fast Algorithms for the Editing Distance between
Trees and Related Problems, SIAM Journal on Computing 18(6): 1245-1262.

Zhao, H., Meng, W., Wu, Z., Raghavan, V. 2005. Fully Automatic Wrapper Generation
for Search Engines, In Proceedings of the World Wide Web Conference. New York: ACM
Press, 66-75.

A List of Publications by the Author
on the Topic of the Dissertation

Papers in the Reviewed Scientific Journals

Grigalis, T.; Cenys, A. 2014a. Unsupervised Structured Data Extraction from Template-
generated Web Pages, Journal of Universal Computer Science 20(2): 169-192. ISSN
0948-6968. (THOMSON JCR 2012: 0.762)

Grigalis, T.; Cenys, A. 2014b. Using XPaths of Inbound Links to Cluster Template-
Generated Web Pages, Computer Science and Information Systems 11(1): 111-131. ISSN
1820-0214. (THOMSON JCR 2012: 0.549)

Grigalis, T.; Cenys, A. 2013. State-of-the-art Web Data Extraction Systems for Online
Business Intelligence, Information sciences 64: 145—155. ISSN 1392-0561.

Grigalis, T.; Marozas, L.; Radvilavicius, L. 2012a. Analysis of Automated Modern Web
Crawling and Testing Tools and Their Possible Employment for Information Extraction,
Science — future of Lithuania 4(1): 31-34. ISSN 2029-2341.

Other Papers

Grigalis, T. 2013. Towards Web-scale Structured Web Data Extraction, in Proceedings of
the 6th ACM International Conference on Web Search and Data Mining, Rome, Italy. New
York: ACM, 753-758.

101

102 ALIST OF PUBLICATIONS BY THE AUTHOR ON THE TOPIC OF THE DISSERTATION

Grigalis, T.; Cenys, A. 2012. Generating XPath Expressions for Structured Web Data
Record Segmentation, in Proceedings of the 18th International Conference on
Information and software technologies, Kaunas, Lithuania. Communications in Computer
and Information Science, vol. 319. New York: Springer, 38—47. (ISI Proceedings)
Grigalis, T., Radvilavi¢ius, L., Cenys, A., Gordevi¢ius, J. 2012b. Clustering Visually
Similar Web Page Elements for Structured Web Data Extraction, in Proceedings of the
12th International Conference on Web Engineering, Berlin, Germany. Lecture Notes in
Computer Science, vol. 7387. New York: Springer, 435-438.

Grigalis, T. 2012. Towards Automatic Structured Web Data Extraction System, in
Proceedings of the 10th International Baltic Conference on Databases and Information
Systems, Vilnius, Lithuania. Vilnius: Zara, 197-201.

Summary in Lithuanian

Jvadas

Problemos formulavimas

Strukttrizuoti duomenys internete = daZzniausiai randami tinklalapiuose
sugeneruotuose pagal $ablonus (Cafarella er al. 2011). Paprastai, narSant tokio tipo
tinklalapius, kiekvienos uzklausos metu yra kreipiamasi j duomeny bazg ir i§ jos i§renkami
atitinkami strukttrizuoti duomenys. Naudojant i§ anksto paruostus Sablonus, S$ie
duomenys automati$kai integruojami j nar§oma tinklalapj ir atvaizduojami internetinés
svetainés narsytojui.

Internete yra tiikstanciai skirtingos struktiiros ir dizaino tinklalapiy. Siekis
automatiSkai atpazinti i§ anksto nezinomos struktiiros tinklalapius ir igauti juose esancius
struktiirizuotus duomenis yra itin sudétinga ir daug laiko reikalaujanti problema, kuri
tradiciSkai yra sprendziama informacijos gavybos srityje (Bohannon et al. 2012; Dalvi et
al. 2011; Furche et al. 2012b). Tradicinés informacijos rinkimo i§ tinklalapiy priemonés
aprasomos duomeny baziy ir duomeny gavybos tyrimy bendruomenése yra dazniausiai
gristos rankiniu zmogaus darbu, kuomet rankiniu biidu yra raSomos duomenis
iSrenkancios taisyklés i§ konkre¢iy internetiniy $altiniy (Bohannon ef al. 2012). Ir nors yra
sitilymy i$gauti §iuos duomenis automatiskai (Crescenzi 2001; Liu ef al. 2010; Zhai, Liu
2006; Zhao et al. 2005), tadiau, deja, dauguma pazangiausiy metody nepasiekia tokio
tikslumo, kad bty galima juos jtraukti i verslo aplinkoje naudojamas programas

103

104 SUMMARY IN LITHUANIAN

(Bohannon et al. 2012). Tad struktiirizuoty duomeny gavyba interneto mastu islieka iki
Siol realiai neiSspresta problema (Blanco ef al. 2011).

Sioje disertacijoje yra moksliskai tyringjamas struktiirizuoty duomeny i$gavimas i3
tinklalapiy, sugeneruoty pagal $ablonus. Yra sitlomi du nauji metodai, kurie turi
potencialo biti panaudoti kuriant automatines duomeny gavybos sistemas interneto mastu.

Darbo aktualumas

Internete gausu informacijos jvairiausia tematika. Gebéjimas kuo didesne dalj
informacijos surasti, i§rinkti ir tarpusavyje suintegruoti biity labai vertingas (Madhavan et
al. 2007). Isties, tai galéty stipriai technologiSkai pastiiméti pirmyn paieSkos internete
sistemas, kuomet joms paprastas tekstas i§ paprasty zodziy igyty didesng semantine
prasme (Dalvi et al. 2009). Dabar dauguma Siuolaikiniy paieSkos internete sistemy
tinklalapius mato kaip tarpusavyje susijusius Zodziy kratinius. Vartotojai ieSkodami
dominanc¢ios informacijos internete suveda i paieSkos sistemas raktazodzius ir kaip
atsakyma gauna eile nuorody i tinklalapius, kuriuose tie Zodziai buvo paminéti. Todél,
norédami gauti atsakyma j mus dominantj klausima, turime atverti gautas internetines
nuorodas ir patys ieSkoti atsakymo tinklalapiy turinyje, kur ir yra tikroji informaciné verté
(Dalvi et al. 2009). Jei paieskos sistemos gebéty isrinkti tinklalapiuose esancia informacija
ir ja semantiSkai apdoroti, tai mes, kaip paieskos sistemy vartotojai, galétume vietoj
nuorody iskart gauti konkre€ia informacija, kaip kad produktu, skrydziy ar knygy sarasus
su kainomis, filmus ir jy jvertinimus, ir pan. (Weikum, Theobald 2010). Taip pat, interneto
masto duomeny iSgavimas galéty pagreitinti duomeny i§ daugybés skirtingy Saltiniy
integracija. Tai leisty daug sparciau kurti visaapimancias Ziniy bazes. Ilgai siekiamas
paieskos sistemy tikslas — grazinti konkrecia informacija kaip atsakyma, o ne tik nuorodas
i tinklalapius — biity daug lengviau igyvendinamas (Cafarella et al 2011). Taigi
automatinis duomeny iSgavimas viso interneto mastu galéty stipriai patobulinti
Siandienine paieska ir patj nar§yma internete.

Automatinis duomeny i$gavimas yra, be abejo, aktualus ir verslo organizacijoms.
Siuolaikinés verslo organizacijos sekmé priklauso nuo sugebéjimo atitinkamai reaguoti i
nuolat besikei¢ian¢ia konkurencine aplinka (Connotate 2012). Daug kompanijy renka
informacija i§ tinklalapiy ir tokia veikla priskiriama internetinei verslo analitikai
(Baumgartner et al. 2009b). Pagrindinis internete veikian¢ios verslo analitikos sistemos
tikslas yra rinkti vertinga informacija i§ daugybés skirtingy internetiniy Saltiniy ir tokiu
biidu padéti verslo organizacijai priimti tinkamus sprendimus ir jgyti konkurencinj
pranaSuma. Taciau informacijos rinkimas i§ daugybés internetiniy $altiniy yra ne tik
sudétinga problema, kuomet informacija renkancios sistemos turi gerai veikti su itin
technologiskai sudétingais tinklalapiais, bet ir daug rankinio darbo reikalaujanti veikla.
Kaip zinome, internetinés svetainés yra skirtingo dizaino, t. y. struktiriskai ir vizualiai
skirtingos. Jeigu organizacija siekia surinkti informacija i§ daugybés skirtingy Saltiniy, $i
uzduotis tampa sunkiai jgyvendinama dél itin dideliy rankinio programavimo kasty. Net
ir dalinis duomeny rinkimo automatizavimas galéty padéti organizacijoms taupyti kastus
(Ferrara et al. 2012), o pilnai automatizuoti duomeny surinkimo sprendimai padéty
igyvendinti itin ambicingus siekius rinkti informacija i§ Simty ar tGkstanciy skirtingy
tinklalapiy. Taciau automatiniai internetiniy duomeny rinkimo sprendimai yra vis dar

SUMMARY IN LITHUANIAN 105

aktyviai tyrinéjami ir triiksta realiai veikianciy sistemy. Tokios automatinés sistemos
galéty biti integruotos ir i jau esamas duomeny rinkimo sistemas, ir automatiskai taisyti
zmogaus rankiniu biidu raSytas duomeny iSrinkimo taisykles jei pasikeiCia Saltinio
struktiira (Dalvi, Bohannon 2009).

Taigi, kaip matoma, automatinis struktirizuoty duomeny iSgavimas stipriai
patobulinty Siuolaikines paieskos internete sistemas, padéty kompanijoms sumazinti
duomeny rinkimo kastus ir padidinti savo konkurencinj pranasuma.

Tyrimy objektas

Disertacijos tyrimy objektas — struktiirizuoty duomeny iSgavimas i§ tinklalapiy
sugeneruoty pagal Sablonus.

Darbo tikslas

Mokslinio darbo tikslas — pasifilyti nauja efektyvesni metoda, skirta iSgauti
struktiirizuotus duomenis i§ tinklalapiy, sugeneruoty pagal Sablonus.

Darbo uzdaviniai

Darbo tikslui pasiekti ir mokslinei problemai spresti darbe buvo iskelti Sie uzdaviniai:

1. I8analizuoti Siuolaikinius duomeny i§gavimo metodus.

2. I8analizuoti technologiskai pazangius $iuolaikinius tinklalapius, kuriuose
yra randama strukttirizuoty duomeny.

3. Pasitlyti metoda, skirta iSgauti struktiirizuotus duomenis i§ $iuolaikiniy
tinklalapiu, sugeneruoty pagal $ablonus.

4. Pasidlyti metoda, skirta klasterizuoti struktiiriSkai panaSius tinklalapius,
sugeneruotus pagal Sablonus.

5. Eksperimentiskai iStirti pasitilytus metodus ir juos kiekybiskai palyginti su
kity autoriy metodais.

Tyrimy metodika

Darbe taikyti §ie tyrimy metodai:

1. Pazintinio tyrimo metodas, naudotas siekiant jsigilinti ir iSanalizuoti
mokslinio tyrimo objekta ir siekiant atlikti literatiiros analize.

2. Konstruktyvinis tyrimo metodas, naudotas konstruojant ir eksperimentiskai
iSbandant Sioje disertacijoje silomus naujus duomeny iSgavimo ir
tinklalapiy klasterizavimo metodus. Pasitilyti du nauji metodai buvo
realizuoti kaip prototipai naudojant Perl, Python ir JavaScript
programavimo kalbas.

Darbo mokslinis naujumas

Darbo mokslinis naujumas pagristas §iais rezultatais:

106 SUMMARY IN LITHUANIAN

1. Pasililytas naujas metodas pavadintas ClustVX, kuris yra skirtas
struktiirizuoty duomeny i§gavimui i tinklalapiy, sugeneruoty pagal
Sablonus. Metodas yra gristas struktiiri$kai ir vizualiai panasiy tinklalapio
elementy klasterizacija. Sis metodas leidzia i¥gauti duomenis ir i3
technologiskai sudétingy Siuolaikiniy tinklalapiy, nes prie§ i§gaunant
duomenis tinklalapis yra atvaizduojamas naudojant $iuolaiking interneto
narSykle. Eksperimentiniais tyrimais parodyta, jog ClustVX metodas
pasiekia didesnj nei 98% tiksluma ir atkuriamuma ir tuo yra efektyvesnis
negu kity autoriy metodai.

2. Pasitlytas ClustVX metodas yra nejautrus jokiai teminiai sri¢iai, ir jam
nereikia turéti iSankstinés informacijos apie iSgaunamus struktiirizuotus
duomenis. Metodas veikia pilnai automatiskai ir nereikalauja jokio rankinio
zmogaus darbo, todél gali biiti panaudotas duomeny iSgavimo sistemose
interneto mastu.

3. Pasitlytas naujas metodas pavadintas UXClust, skirtas sparciai
klasterizuoti panaios strukttiros tinklalapius, kurie yra sugeneruoti pagal
sablonus. Sis metodas i¥naudoja nuorody j vidinius tinklalapius XPath
adresus tam, kad reik§mingai pagreitinty panaSios strukttiros tinklalapiy
klasterizacija. EksperimentiSkais tyrimais parodyta, kad, naudojant §j
metoda, galima suklasterizuoti daugiau kaip viena milijong tinklalapiy per
nepilnas 4 minutes ir kartu iSlaikyti didesnj negu 90% tiksluma ir
atkuriamumg. Sie rezultatai gerokai pranoksta kity autoriy metody
efektyvuma.

Darbo rezultaty praktiné reikSmeé

Pasitilytas naujas metodas, skirtas struktiirizuoty duomeny iSgavimui, yra tinkamas
naudoti duomenims automatiskai iSgauti i§ tinklalapiy sugeneruoty pagal $ablonus.
Kadangi $iam metodui nereikalingas rankinis Zzmogaus darbas ar iSankstinis apmokymas,
jis gali padéti verslo organizacijoms Zymiai sumazinti duomeny rinkimo i§ internetiniy
tinklalapiy kastus. Taip pat $is metodas yra tinkamas automati$kai generuoti XPath kalba
gristas duomeny i§gavimo taisykles, kurios gali biiti panaudotos kitose duomeny rinkimo
sistemose net ir interneto mastu.

Antrasis pasililytas metodas skirtas tinklalapiy klasterizavimui yra tinkamas naudoti
klasterizuojant struktiiriSkai panasius tinklalapius, sugeneruotus pagal $ablonus. Kadangi
§is metodas yra itin spartus, jis yra tinkamas naudoti duomeny rinkimo sistemose interneto
mastu, kuriose yra aktualus tinklalapiy klasterizavimo uzdavinys.

Ginamieji teiginiai
1. Klasteriai su tarpusavyje vizualiai ir struktdiriSkai panaSiy tinklalapio
elementy XPath adresais gali biti panaudoti nustatant pasikartojancia

struktiira, kurioje yra uzkoduoti struktirizuoti duomenys, randami pagal
Sablonus sugeneruotuose tinklalapiuose.

SUMMARY IN LITHUANIAN 107

2. Nuorody tarp vidiniy internetinés svetainés tinklalapiy XPath adresai gali
biiti panaudoti reikSmingai pagreitinti struktiiriSkai panasiy pagal Sablonus
sugeneruoty tinklalapiy klasterizacija.

Darbo rezultaty aprobavimas

Disertacijos tema paskelbti 8 moksliniai straipsniai. Keturi i§ jy yra publikuoti
recenzuojamuose mokslo zurnaluose, i$ kuriy du yra jtraukti j Thompson Reuters ISI Web
of Science duomeny baze ir turi citavimo indeksa.

Disertacijos rezultatai buvo pristatyti SeSiose tarptautinése mokslinése konferencijose
ir vienoje tarptautinéje mokslingje vasaros mokykloje:

e 10™ International Baltic Conference on Databases and Information Systems
(Baltic DB&IS 2012). Liepos 8—11, 2012, Vilnius, Lietuva;

e 12 International Conference on Web Engineering (ICWE 2012). Liepos
23-27,2012, Berlynas, Vokietija;

e 18" International Conference on Information and Software Technologies
(ICIST 2012). Rugséjo 13—14, 2012, Kaunas, Lietuva;

e 6% ACM International Conference on Web Search and Data Mining
(WSDM 2013). Vasario 4—8, Roma, Italija;

e 3" Workshop on Data Extraction and Object Search (DEOS 2013). Liepos
6—8, 2013, Oksordas, Didzioji Britanija;

e 12" Estonian Summer School on Computer and Systems Science (ESSCaSS
2013). Rugpjicio 18—22, 2013, Voore, Estija;

e 4% International Workshop on Data Analysis Methods for Software
Systems. Gruodzio 5—7, 2013, Druskininkai, Lietuva.

Disertacijos struktiira

Disertacija sudaro jvadas, keturi pagrindiniai skyriai, bendrosios i§vados, literatiiros
Saltiniy sarasas, autoriaus publikacijy disertacijos tema sarasas, santrauka lietuviy kalba.
Darbo apimtis — 123 puslapiai neskaitant priedy, tekste yra 22 formulés, 37 paveikslai ir
20 lenteliy. Rasant disertacija buvo panaudoti 116 literatiiros Saltiniy.

1. Struktarizuoty duomeny iSgavimas, metodai ir jy
panaudojimas

Siame skyriuje yra pristatoma struktiirizuoty internetiniy duomeny iSgavimo
moksliné problema, analizuojama literatiira, kity autoriy sitilomi metodai, apzvelgiami
praktiniai struktiirizuoty duomeny i§gavimo metody pritaikymo aspektai.

Struktiirizuoty duomeny iSgavimo metodais sprendziama problema, kaip iSrinkti
duomenis i§ internetiniy tinklalapiy. Duomeny i§gavimo problema gali biiti dalinama j dvi
dideles sritis: informacijos i§gavimas i§ nattiralios kalbos teksto ir struktiirizuoty duomeny

108 SUMMARY IN LITHUANIAN

iSgavimas i§ tinklalapiy (Bing 2012). Esminis skirtumas tarp Siy dviejy Saky yra tai, kad
didzioji dalis duomenys tinklalapiuose yra uzkoduoti naudojant hiperteksto Zyméjimo
kalba (HTML) ir kiekviename tinklalapyje issiskiria savo reguliariu strukttriniu ir
vaizdiniu atvaizdavimu (Cafarella ef al. 2011). Tai ypa¢ matoma, kuomet duomenys
atkeliauja i§ duomeny baziy ir j tinklalapius yra jraSomi naudojant i§ anksto paruo$tus
$ablonus. Tad strukttirizuoty duomeny iSgavimas i§ tinklalapiy sugeneruoty pagal
$ablonus tuo ir skiriasi nuo informacijos i§gavimo i§ paprasto teksto, kuris néra niekaip
kitaip strukttirizuotas, negu natiiralios kalbos dalimis, sakiniais. Informacijos i§gavimo i§
paprasto teksto metodai dazniausiai mégina atpazinti kalbos dalis tekste, iesko ir iSrenka
realaus pasaulio esybes, rysius, kita paprastomis sakinio formomis aprasoma faktine
informacija (Furche ef al. 2012a), o struktiirizuoty duomeny i§gavimo metodai siekia
i8rinkti duomenis ir atkurti jy struktiira taip, kaip tie duomenys buvo saugomi duomeny
bazés lentelése. Informacijos rinkimas i§ paprasto teksto dazniausiai susijes su natiiralios
kalbos tyringjimu (Bing 2012), o Sioje disertacijoje yra gilinamasi bitent i struktiirizuoty
duomeny i$gavima i tinklalapiy sugeneruoty pagal $ablonus.

Struktrinis ir vaizdinis struktlrizuoty duomeny atvaizdavimo tinklalapiuose
reguliarumas yra itin svarbi savybg, nes identifikavus §j reguliaruma galima nuspéti, kokia
struktira HTML kalba uzkoduoti duomenys buvo saugomi duomeny bazés lentelése.
Esminiai strukttirizuoty duomeny i§gavimo metody uzdaviniai yra §ie:

1. Surasti vaizdinj ir struktiirinj duomeny atvaizdavimo tinklalapyje
pasikartojamuma.

2. Identifikuoti struktiirizuotus duomenis, atskiriant juos nuo hipertekstinés
zymejimo kalbos.

3. Sugeneruoti duomenis iSgaunancias taisykles, skirtas analizuojamam
tinklalapiui.

4. Naudojant sugeneruotas taisykles i§gauti duomenis i§ to paties $ablono
tinklalapiy.

Tradiciskai duomeny surinkimas i3 tinklalapiy yra sprendziamas rankiniu biidu rasant
duomeny isrinkimo taisykles. Savaime suprantama, jog §i programuotojo darbo
reikalaujanti veikla yra daug kainuojanti, ir organizacijos patiria didelius kastus. Vienas i3
biidy klasifikuoti duomeny i§gavimo metodus yra pagal tai, kiek rankinio programuotojo
darbo jiems yra reikalinga. Todél dauguma struktiirizuoty duomeny i§gavimo metody gali
biiti skirstomi i §ias tris kategorijas (Bing 2012):

1. Visiskai rankiniai metodai.
2. Pusiau automatiniai metodai.
3. Pilnai automatiniai metodai.

Naudojant vien tik rankinio darbo reikalaujan¢ius metodus (pirma kategorija),
Zmogus programuotojas pats analizuoja tinklalapio struktiira, hipertekstinio Zyméjimo
koda, iesko pasikartojan¢iy elementy ir suprogramuoja duomeny iSrinkimo taisykles
(Arocena, Mendelzon 1998; Califf, Mooney 1999; Hammer et al. 1997; Laender et al.
2000). Palengvinant §j darba yra sukurta eilé duomeny isrinkimo taisykliy ra§ymo kalby
bei darba palengvinanciy vartotojo sasajy. Taciau rankiniai duomeny igavimo metodai
néra tinkami rinkti duomenis i§ daugybés skirtingy tinklalapiy, nes tai reikalauja tiesiog
per dideliy programavimo kasty (Bing 2012).

SUMMARY IN LITHUANIAN 109

Pusiau automatiniai metodai padeda programuotojui kurti duomeny iSgavimo
taisykles. Dazniausiai programuotojui yra pateikiama tam tikra programiné aplinka,
kurioje atvaizduojamas tinklalapis ir galima rankiniu bidu suzyméti norimus iSrinkti
duomenis (Baumgartner, Flesca 2001; Britain ez al. 1998; Chang, Kuo 2004; Chang 2001;
Kushmerick 1997; Laender et al. 2002). Tuomet programa sugeneruoja taisykles, kurias
galima naudoti i§gaunant duomenis. Kaip ir galima nuspéti, du pagrindiniai $ios
kategorijos metody triikumai: brangus zmogaus darbo reikalaujantis procesas ir nuolatinis
duomeny i§gavimo taisykliy taisymas, kuomet pasikeicia tinklalapio dizainas (Gulhane et
al. 2011; Kushmerick 1997; Raposo et al. 2007).

Trecioji duomeny i§gavimo kategorija yra pilnai automatiniai metodai, kuriy esminis
privalumas yra tai, kad jie dazniausiai beveik visiSkai nereikalauja Zmogaus darbo
(Alvarez et al. 2008; Crescenzi 2001; Hong et al. 2010; Jindal, Bing 2010; Kayed, Chang
2010; Liu 2005; Liu et al. 2003, 2010; Simon 2005; Su et al. 2011; Zhai, Liu 2006; Zhao
et al. 2005).

Taigi, rankinio programavimo reikalaujantys metodai negali biti i$naudojami
praktikoje rinkti duomenis i§ Simty ar tikstan¢iy skirtingo dizaino tinklalapiy, nes
duomeny i§gavimo taisykliy kiirimas yra pernelyg brangus organizacijoms. Todél didzioji
dalis tyrimy krypsta j tre¢iosios kategorijos, t. y. visi§kai automatinius duomeny i§gavimo
metodus (Bohannon et al. 2012; Dalvi et al. 2011; Elmeleegy et al. 2011; Furche et al.
2012b; Gulhane et al. 2011), kurie gali bati pritaikyti rinkti duomenis i§ daugybés
tinklalapiy interneto mastu. Ne iSimtis ir $i disertacija, kurioje tyrinéjama automatiniy
duomeny iSgavimo metody sritis.

2. Metodas, skirtas isgauti strukttrizuotus duomenis
i$ tinklalapiy sugeneruoty pagal sablonus

Siame skyriuje pristatomas naujas metodas, skirtas i¥gauti struktdirizuotus duomenis
i§ tinklalapiy sugeneruoty pagal Sablonus. Sitilomas metodas yra pavadintas ClustVX
(kiles i8 anglisky zodziy Clustering Visually similar XPaths).

Sitilomas metodas remiasi dvejomis pagrindinémis prielaidomis. Pirma, jog didelé
dalis duomeny randamy internete yra pateikiami tinklalapiuose, kurie yra sugeneruoti
pagal $ablonus, ir j kuriuos duomenys patenka i§ duomeny baziy (Cafarella et al. 2011).
Paveiksle S1(a) yra pateikta butent tokio tipo tinklalapio i8karpa. Joje matomi trys
struktiirizuoti duomeny jrasai (produktus — skaitmeninius fotoaparatus), kurie j tinklalapj
yra jkrauti i§ duomeny bazés. Visi trys jrasai yra struktiiriSkai panasis ir iSrikiuoti vienas
Salia kito. Tinklalapio vieta, kur randama struktiri$kai panasiy duomeny jrasy eilé
vadinama duomeny zona (Zhai, Liu 2006). Kaip Zinoma, tinklalapiai dazniausiai yra
parayti naudojant hiperteksting Zyméjimo kalba. Sj hipertekstinj programinj koda daznai
yra paranku vaizduoti medzio struktiiros (HTML tree). Tai leidzia lengvai identifikuoti
medzio Sakas ir jy adresus aprasyti XPath kalba. Taigi, jeigu struktiirizuoti duomeny jrasai
yra randami po viena hipertekstinio dokumento medzio $aka, tai jy XPath adresai bus labai
panasiis, ir daznai skirsis tik posakiy indeksai.

110 SUMMARY IN LITHUANIAN

Antra, internetiniy svetainiy dizaineriai kuria tinklalapiy Sablonus, pritaikytus
skaityti zmonéms. Todél nors kiekvieno tinklalapio dizainas ir struktiirizuoty duomeny
iSdéstymas ir spalvinis atvaizdavimas skiriasi, taiau Zzmogus gana lengvai jzvelgia
tvarkingai pasikartojan¢ius duomenis ir lengvai juos perskaito (Miao et al 2009).
Duomenys, turintys vienoda semanting prasme, tame paciame tinklalapyje atvaizduojami
vienodai (Liu et al 2010). Kaip pavyzdys pateikta ta pati tinklalapio iskarpa S1(a)
paveiksle. Matyti, jog kainos ties kiekvienu jrasu (produktu) yra toje pacioje vietoje,
paryskintu Sriftu, produkty pavadinimai — Zemiau paveiksliuky ir t.t.

FUJIFILM

e

Samsung ES80 Fujifilm FinePix T300 Vivitar ViviCam F529
$84.95 Online Price $174.95 Online Price %$84.95 Online Price

a) tinklalapio fragmentas su trimis struktiirizuotais duomeny jrasais

Xstring: htmlbodydivdivdivfonta-Verdana,brown-red; 400

$84.95 /html/body/div([3] /div[1l] /div/font/a
$174.95 | /ntnl/body/divi3] /divi2] /div/font/a
$84.95 /html/body/div[3] /div[3] /div/font/a

b) klasteris su struktiiriSkai ir vizualiai panaSiais tinklalapio elementais

Image 1 Samsung ES80 $84.95 Online Price
Image 2 Fujifilm FinePix T300 $174.95 Online Price
Image 3 Vivitar ViviCam F529 $84.95 Online Price

c) iSgauti struktirizuoti duomenys

S1 pav. Struktarizuoty duomeny iSgavimas naudojant ClustVX metoda

Ivardintos dvi esminés prielaidos apie struktiirizuoty duomeny atvaizdavima
tinklalapiuose, t. y. juy struktfrinis ir vizualinis panasumas, jgalino sukurti siiloma
ClustVX metoda, kuris remiasi struktiiriSkai ir vizualiai panasiy elementy klasterizacija.
Sis metodas kiekviena analizuojamame puslapyje matoma elementa pazymi kaip teksting
eilute, sudaryta i§ XPath adreso (be $aky indeksy) ir atvaizdavimo stiliaus savybiy, tokiy
kaip Srifto dydis, spalva, tipas ir tt. Si teksting eilut¢ yra vadinama Xstring.
Suklasterizaves tokias eilutes, ClustVX metodas gauna eile klasteriy, i$ kuriy kiekviename

SUMMARY IN LITHUANIAN 111

yra strukttirikai ir vizualiai panaSas elementai. S1(b) paveiksle pavaizduotas vienas toks
klasteris, kurj sudaro produkty kainy elementai ir jy XPath adresai. To paties paveikslélio
vir§uje, i deSing nuo “Xstring:”, yra pavaizduota ir Xstring eiluté, kuri buvo naudojama
kaip elementy tarpusavio atstuma nusakantis atributas klasterizavimo metu. Kiekviena
klasterj sudaro tik tokia pacia Xstring eilute turintys elementai. Toliau apdorojant
suklasterizuoty elementy XPath adresus yra i§vedami duomeny istraukimo taisykliy
rinkiniai, angli§kai vadinami ,,apgaubé¢jais* (angl. wrappers).

S1(c) paveikslo dalyje pavaizduoti jau struktiirizuoti duomenys, kurie gauti jvykdzius
automatiskai sugeneruota ,,apgaubéja“. Sis struktiirizuotas duomeny pateikimas lentele
yra artimas duomeny bazéje saugomy duomeny struktiirai.

Pilnai uzkrautas/
atvaizduotas
tinklalapis su

elementy vaizdine

informacija

Tinklalapis

i ClustVX

- Tinklalapio (Struktdrizuoty
atvaizdavimas duomeny iSgavimas ir
JAVASCRIPT narsykléje taisykliy generavimas)

S2 pav. Prototipinés sistemos su realizuotu ClustVX metodu architekttira

S2 paveiksle pavaizduota realizuoto ClusVX metodo prototipo architektiira. Kaip
matyti i§ paveikslo, centrinis metodo elementas yra $iuolaikiné interneto nar$yklé Mozilla
Firefox. Sioje interneto narykléje yra uzkraunami visi tinklalapiai, i§ kuriy siekiama
iSgauti strukttrizuotus duomenis. Tai daroma dél dviejy priezas€iy: pirma, $iuolaikiniai
tinklalapiai yra itin sudétingi ir daZnai duomenys j juos patenka naudojant AJAX
(Asinchroninis JavaScript ir XML programavimas) technologija, kuria leidzia jau
uzkrovus tinklalapj papildomai kreiptis j serverj ir atsisiysti duomenis. Todél daznai
sutinkama situacija, kai pagal tinklalapio adresa tiesiai i§ serverio atsisiystas puslapis yra
tusc¢ias Sablonas, nes nebuvo ivykdytos papildomos asinchroninés uzklausos.

Antra, i§ pirmo Zzvilgsnio gana paprasta uzduotis — gauti tinklalapio elementy
atvaizdavimo stiliy (spalva, dydj ir t.t.) — néra lengvai jgyvendinama praktikoje, nes stiliy
apraSantis kodas gali biiti jraSomas daugybéje skirtingy viety, tokiy kaip hipertekstinés
zymeéjimo kalbos elementy atributuose, nutolusiuose CSS (angl. Cascading Style Sheets)
failuose, JavaScript kode ir t. t.

112 SUMMARY IN LITHUANIAN

Sprendziant minétas problemas, t. y. JavaScript kodo jvykdyma ir pilna
atvaizdavima, ir yra naudojama $iuolaikiné interneto narSyklé. Pilnai uzkrauto tinklalapio
kodas (HTML dokumentas) kartu su elementy atvaizdavimo savybémis (spalva, Srifto
dydziu, tipu ir t.t.) yra persiun¢iamas j tolimesnius ClustVX metode aprasytus zingsnius.
Tokiu biidu ClustVX sugeba iSgauti duomenis ir i§ technologiskai sudétingy Siuolaikisky
tinklalapiy, ir tai daznai leidzia padidinti metodo efektyvuma lyginant su kity autoriy
metodais, kuriuose nenaudojama Siuolaikiné narSykleé.

Sékminga pasitilyto ClustVX realizacija pagrindé jo prakting verte. Tapo aisku, jog
realizuota prototipa galima patalpinti nutolusiame serveryje ir padaryti jj pasiekiama per
interneta treciyjy Saliy sistemoms. Tokiu biidu metodas gali biiti gana lengvai panaudotas
kaip sudétiné kity duomenis renkanciy sistemy dalis.

3. Metodas, skirtas klasterizuoti struktiriskai
panasius tinklalapius, sugeneruotus pagal Sablonus

Struktiirizuoty duomeny iSgavimo sistemos, apdorojancios itin didelius kiekius
tinklalapiy, susiduria su problema, kaip atpazinti pagal ta patj Sablona sugeneruotus
tinklalapius. Kaip Zzinia, kiekvienam $ablonui galima sugeneruoti duomenis i§gaunancias
taisykles ir jas naudoti kiekvienam to paties Sablono tinklalapiui. Todél ieSkoma
sprendimo, kaip sparciai suklasterizuoti Simtus tiikstan¢iy ar milijonus tinklalapiy pagal
ju struktiirinj panasuma (Blanco et al. 2011).

Nors tinklalapiy klasterizavimo pagal juy struktiirinj panaSuma problema yra jau gana
ilgai tyrinéjama (Blanco et al. 2011; Chakrabarti, Mehta 2010; Crescenzi et al. 2005; Joshi
et al. 2003), taCiau dauguma metody remiasi iSskirtinai tinklalapiy turinio analize ir
naudojami algoritmai yra kvadratinio sudétingumo. Tai kelia rimty problemuy, nes tokio
tipo sprendimai néra tinkami iSgaunant duomenis ir klasterizuojant tinklalapius interneto
mastu (Blanco et al. 2011). Vienoje duomeny baze paremtoje interneto svetainéje, kurioje
tinklalapiai generuojami pagal Sablonus, gali biiti milijonai pasiekiamy tinklalapiy su
skirtingais duomenimis. Tarkime, projektas XProj (Aggarwal et al. 2007) yra vienas
naujausiy ir zinomiausiy sprendimy, skirty XML dokumenty klasterizavimui (pritaikoma
ir tinklalapiams prarasytiems $variu HTML kodu). Si sistema naudoja linijinio
sudétingumo algoritmus ir sugeba suklasterizuoti milijona tinklalapiy tik per 20 valandy
(Blanco et al. 2011).

Siame skyriuje aprasomas antrasis $ioje disertacijoje siilomas metodas, kuris yra
skirtas sparciai klasterizuoti struktariskai pana$ius tinklalapius, sugeneruotus naudojant
$ablonus. Metodas pavadintas UXClust (kiles i§ angl. zodziy URL XPath Clustering), ir
jis iSnaudoja vidiniy interneto svetainés nuorody XPath adresus tinklalapiuose tam, kad
reik§mingai pagreitinty tinklalapiy klasterizacija.

Kaip jau zinome, interneto svetainiy dizaineriai pritaiko tinklalapiy i$vaizda
vartotojams perskaityti. Toje pacioje interneto svetainéje tinklalapiai, sugeneruoti pagal ta
pati Sablona, yra labai panasis ir skiriasi tik informacija bei keliais paveiksliukais (pvz.:
produkto pavadinimas, kaina, nuotrauka, aprasymas). Vartotojai lengvai jsimena $ablona
ir greitai perskaito bei supranta kiekviena pagal ji sugeneruota tinklalapj. Skirtingos

SUMMARY IN LITHUANIAN 113

i8vaizdos Sablony vienoje interneto svetainéje néra daug, be to, kiekviename i3 §iy Sablony
yra numatytos konkre€ios vietos, kuriose yra talpinamos nuorodos i kitus vidinius
svetainés tinklalapius. Taigi, sillomas UXClust metodas remiasi prielaida, jog toje pacioje
$ablono vietoje esanti nuoroda kiekviename pagal ta $ablona sugeneruotame tinklalapyje
veda j struktiriskai panasius tinklalapius. Sis $ablono isvaizdos ir funkcionalumo
reguliarumas yra lengvai suprantamas vartotojams, taciau kartu yra labai gera priemoné
nuspéti pagal nuoroda randamo tinklalapio $ablona.

L

I

Taip P, . :
KorteZy rinkinys <URL, XPath, doclD>
Rastas T
neraeRtLyrEas [3.Korteiy
3 i | generavimas |
1.Internetinés & : .
svetainés —> 2. Nuorody
narsymas . ISgavimas)
g [T 4. Pirminis |
URL HTML HTML klasterizavimas
(" 5. Pataisomasis : :
% klasterizavimas

L—>7 Iit;taléytl klasteriai 7 T’lrminlal klasterial

S3 pav. Prototipinés sistemos su realizuotu UXClust metodu veiklos diagrama

Klasterizuodamas XPath adresus, kuriuose randamos nuorodos, UXClust metodas
i$vengia daug resursy reikalaujancios tinklalapio turinio analizés, dél kurios kity autoriy
metodai yra gerokai lé¢iau veikiantys. Zinoma, skirtingi XPath adresai su nuorodomis gali
rodyti j tos paties $ablono tinklalapius. Tarkime, elektroninés komercijos svetainéje
matant produkty sarasa ir spaudziant ant bet kurio produkto pavadinimo, nuotraukos ar
kainos, greiCiausiai bus patenkama j to paties Sablono tinklalapj, t. y. detalaus produkto
apraSymo tinklalapj. Todél vienas i§ UXClust metodo zingsniy ir yra patikrinti ar nereikia
tam tikry klasteriy sujungti.

/html/body/div/div/a
/html/body/div/center/table/tbody/tr/td/div/a
/html/body/div/p/div/ul/1li
/html/body/div/div/p/div/ul/11i
/html/body/footer/div/p

S4 pav. Tinklalapj sudaranciy elementy XPath rinkino pavyzdys

Pagal siiloma UXClust metoda realizuoto prototipo veiklos diagrama, matoma S3
paveiksle, ir sudaryta i§ Siy penkiy zingsniy: interneto svetainés nar§ymo; nuorody

114 SUMMARY IN LITHUANIAN

iSgavimo; i§ URL, dokumento ID ir XPath adresy, sudaryty kortezy generavimu; pirminio
klasterizavimo; pataisomojo klasterizavimo. Penktajame Zzingsnyje - pataisomojo
klasterizavimo metu, ieSkoma klasteriy, kuriuose esanciy tinklalapiy struktdrinis
panasumas yra didesnis, negu i§ anksto nustatyta konstanta. Struktiirinis pana§umas tarp
dviejy tinklalapiy i§ skirtingy klasteriy yra nustatomas lyginant ty tinklalapiy programinio
kodo, t. y. HTML, medzio strukttiros baigtiniy $aky (neturin¢iy vaiky) XPath adresus
(Joshi et al. 2003). S4 paveiksle pateikiami tokiy XPath adresy pavyzdziai.

Taigi, tokiu biidu kiekvienas tinklalapis, vadinamas P; gali biti laikomas medzio
Saky XPath adresy rinkiniu, vadinamu xp(P;). Tinklalapiy panasumas (CPD) yra iSreikstas
kaip vienody medzio $aky XPath adresy santykis su didesniojo tinklalapio medziy Saky
skai¢iumi (Gottron 2008):

_ 4 _ __lxp®y)nxp(Py)|
CPD(Py, P) =1 max(lxp(P)LIxp(P)) M

Tad i$naudojant vidiniy interneto svetainés nuorody XPath adresus, galima
apytiksliai suklasterizuoti tinklalapius pagal jy struktirinj panaSuma. Tokiam
klasterizavimui nereikia analizuoti ir lyginti tinklalapiy turinio, todél Zenkliai pagreitéja
klasterizavimo procesas. Pataisomojo klasterizavimo metu klasteriai, turintys vienodo
Sablono tinklalapius, yra sujungiami. Taciau ir pastarojo zingsnio metu yra lyginamas tik
keliy tinklalapiy turinys (XPath adresai), kas nesumazina UXClust metodo efektyvumo
laiko prasme.

4. Pasillyty metody eksperimentiniai tyrimai

Siame skyriuje aprasomi eksperimentiniai tyrimai, kuriais ibandomi du pasitilyti
metodai, t. y. metodas vadinamas UXClust, kuris skirtas klasterizuoti tinklalapius pagal ju
struktiirinj panaSuma, ir metodas ClustVX, kuris yra skirtas struktiirizuotiems duomenims
iSgauti i§ tinklalapiy, sugeneruoty pagal $ablonus. Abu siilomi metodai buvo realizuoti
kaip prototipai. ClustVX realizuotas naudojant PERL ir JavaScript programavimo kalbas,
o UXClust — naudojant Python programavimo kalba. Eksperimentai buvo vykdomi
kompiuteryje su Ubuntu 12.04 operacine sistema, Intel® Core™ {7-2670QM CPU @ 2.20
GHz centriniu procesoriumi, 8 GB operatyviaja atmintimi, 7200 RPM standziuoju disku.

Abu metodai buvo isbandyti su realiais tinklalapiais, lyginant rezultatus su kity
autoriy atitinkamy metody rezultatais. Disertacijoje sitilomas UXClust metodas buvo
lygintas su common XPaths (Joshi et al. 2003) and pg-grams (Augsten et al. 2005)
metodais, o ClustVX su— G-STM (Jindal, Bing 2010), DEPTA (Zhai, Liu 2006), FiVaTech
(Kayed, Chang 2010), MDR (Liu et al. 2003), ViNTs (Zhao et al. 2005), CTVS (Su et al.
2011), DeLa (Wang, Lochovsky 2003) ir metodu apradytu (Alvarez et al. 2008).

UXClust metodo bandymy atveju buvo sudarytas testinis tinklalapiy rinkinys,
susidedantis i§ daugiau kaip vieno milijono tinklalapiy, atsiysty i§ keturiolikos skirtingy
internetiniy svetainiy. Visi §ie tinklalapiai sugeneruoti pagal $ablonus. S1 lenteléje matyti,

SUMMARY IN LITHUANIAN 115

jog bandymams buvo naudota daugiau kaip vienas milijonas tinklalapiy, kurie bendrai
uzémé 119,1 GB duomeny.

S1 lentelé. Apibendrinti duomenys apie eksperimente naudoty svetainiy tinklalapius

Nr. | Svetainé Tinklalapiy Duomeny | Vidutinis

kiekis GB | dydis KB
1. argos.co.uk 111142 7,33 69,20
2. azon.lt 102313 18,28 187,32
3. bigbox.It 120557 27,03 235,12
4. citylights.com 13698 0,34 26,29
5. currys.co.uk 9993 0,67 70,42
6. elshop.It 90001 2,27 26,44
7. ikea.com 122686 10,16 86,83
8. ilterzogirone.it 66404 3,64 57,55
9. imk.1t 74295 14,46 204,14
10. | iristorante.it 116410 5,35 48,21
11. | kompiutera.lt 21623 1,08 52,24
12. | smartbuy.lt 15638 0,41 27,62
13. | tesco.com 88773 15,64 184,76
14. | varle.lt 117514 12,44 110,96
Vidurkis: 76503 8.51 99,08
Viso: 1071047 119,1 -

I§ kiekvienos internetinés svetainés tinklalapiy $ablony buvo pasirinktas vienas
konkretus, kuris buvo naudojamas skai¢iuojant klasterizavimo efektyvuma. Efektyvumas
buvo apibréztas trimis rodikliais: tikslumu (angl. precision), atkuriamumu (angl. recall) ir
vykdymo laiku. SkaiCiuojant efektyvuma teisingai teigiamu (TT) sprendimu buvo
laikomas rezultatas, kuomet metodas priskirdavo du struktiiriskai panasius tinklalapius i
ta pati klasterj. Teisingai neigiamas (TN) sprendimas reiské, jog du struktiriskai
nepana$is tinklalapiai priskirti j skirtingus klasterius. Du klaidingi sprendimai buvo
ivardinti kaip klaidingai teisingas (KT), kuomet du struktiiriSkai nepanasis tinklalapiai
priskiriami vienam klasteriui, o klaidingai neteisingas (KN) — kuomet du strukttiriskai
panasiis tinklalapiai priskiriami skirtingiems klasteriams. Tokiu biidu tikslumas ir
atkuriamumas buvo skai¢iuojamas pagal $ias formules:

TT
TT+KT °

Tikslumas =

2

116 SUMMARY IN LITHUANIAN

TT
TT+KN °

Atkuriamumas =

(€))

S2 lenteléje matyti eksperimentiniy tyrimy rezultatus, kuriuose siilomo metodo
klasterizavimo rezultatai lyginami su dvejais kity autoriy metodu, t. y. pg-Grams ir CP
rezultatais. Skliausteliuose esantis skaiCius prie metodo pavadinimo nurodo skaiciy
tinklalapiy, kurie buvo panaudoti vertinant atitinkamo metodo efektyvuma. Sis skaiius
skiriasi, nes metody vykdymo laikas ir gebéjimas apdoroti didelj kiekj tinklalapiy labai
skyreési. Sitlomas metodas UXClust dirbo su daugiau kaip milijonu tinklalapiy, kai pg-
Grams - su 100, o CP - su 1000. Antrojoje lentelés eilutéje ,,Viso* reiskia pagal kiek
tinklalapiy buvo matuojamas tikslumas ir atkuriamumas, T — tai tikslumas, o A —
atkuriamumas. Kaip matoma i§ rezultaty, sitilomas UXClust metodas nenusileidzia
kitiems dviem metodams savo tikslumu ir efektyvumu, o daugeliu atvejy net ir lenkia kitus
metodus.

S2 lentelé. Tinklalapiy klasterizavimo rezultatai naudojant sitiloma ir du kity autoriy metodus

Nr. |Svetainé UXClust pg-Grams (100) CP (1000)
Viso T A Viso |T A Viso |T A

1. |argos.co.uk 30460 0,92 0,72 40 1] 0,15] 332 0,94| 049
2. |azon.lt 36643 1 1 34 1]0,32(370 1| 087
3. |bigbox.It 10282 0,68 0,94 13| 0,88 0,54| 176| 08| 0,96
4. |citylights.com 2026 1| 0,64 22| 0,33] 0,36| 190 1| 0,56
5. |currys.co.uk 2009 1| 081 56 1| 03| 627 1| 045
6. |elshop.lt 22019 1 1 22 1] 0,55 244 1| 0,76
7. |ikea.com 4909 1 1 9 1] 0,56 99 1 1
8. |ilterzogirone.it 2866 1 1 10 1| 07| 49 1| 0,98
9. |imk.It 10173] 0,96 1 16| 0,82 0,56| 191 0,95| 0,93
10. |iristorante.it 967 1 0,9 4 1 1 35 1| 0,74
11. |kompiutera.lt 11440| 0,54 1 41| 0,44 1| 528 0,53 1
12. |smartbuy.lt 3632 1 1 36 1] 0,25 396 1l 0,99
13. |tesco.com 13066 0,97| 0,96 30 0,81] 0,83| 274| 0,79| 0,15
14. |varle.lt 59450 1 1 48 1] 0,73| 483| 0,98| 0,98

Vidurkis: 14996 0.93| 0,93 271 0,88] 0,56| 285 0,93 0,78

Kaip matyti i§ S3 lentelés, kur rodomas vykdymo laikas sekundémis, UXClust
metodas suklasterizuoja i matuojama klasterj vidutini$kai 893 tinklalapius per sekunde,
kai tuo tarpu pg-Grams atitinkama reik§meé yra tik 0,4 ir CP — tik 3,14. Be to, kaip yra
zinoma, UXClust metodu buvo klasterizuojami visi kiekvienos internetinés svetainés

SUMMARY IN LITHUANIAN 117

tinklalapiai, t. y. viso daugiau kaip vienas milijonas. Gerokai létesniems kity autoriy pg-
Grams ir CP metodams i$ kiekvienos internetinés svetainés buvo naudojama atitinkamai
tik 100 ir 1000 tinklalapiy. I§ absoliutaus vykdymo laiko matyti, jog UXClust metodas
suklasterizavo daugiau kaip vieng milijona tinklalapiy per 235 sekundes, pg-Grams
metodu suklasterizuoti 1400 tinklalapiy pavyko per 83 sekundes, o su CP metodu — 14000
tinklalapiy per 132 sekundes. Bitent klasterizavimo laike ir idry$kéja neabejotinas
UXClust metodo prana$umas.

S3 lentelé. Vykdymo laikas

Nr. |Svetainé UXClust pg-Grams (100) CP (1000)
laikas (s) | teisingy/s|laikas (s) |teisingy/s |laikas (s) |teisingy/s
1. argos.co.uk 31 982 49 0,82 61 5,44
2. |azon.lt 12 3053 66 0,52 71 5,21
3. | bigbox.lt 35 293 123 0,11 190 0,93
4. citylights.com 1 2026 21 1,05 26 7,31
5. |currys.co.uk 1 2009 61 0,92 67 9,36
6. |elshop.lt 5 4403 16 1,38 37 6,59
7. |ikea.com 18 272 65 0,14 89 1,11
8. ilterzogirone.it 12 238 70 0,14 38 1,29
9. |imk.It 25 406 108 0,15 153 1,25
10. |iristorante.it 13 74 50 0,08 46 0,76
11. |kompiutera.lt 5 2288 54 0,76 100 5,28
12. |smartbuy.lt 2 1816 21 1,71 31 12,77
13. |tesco.com 56 233 165 0,18 229 1,20
14. |varle.lt 17 3497 83 0,58 132 3,66
Viso: 235 - 950 - 1271 -
Vidurkis: - 893 - 0,40 - 3,14

ClustVX atveju buvo sudarytas vienas testinis rinkinys turintis tinklalapius su
struktiirizuotais duomenimis i§ deSimties skirtingo dizaino interneto svetainiy, bei buvo
pasinaudota dar trimis vieSai prieinamais testiniais tinklalapiy rinkiniais ((Zhao et al.
2005), (Alvarez et al. 2008) ir (Yamada, Craswell 2004)). Visi keturi testiniai rinkiniai
buvo sudaryti i§ 363 skirtingo dizaino interneto svetainiy. S4 lenteléje pateikiami $iy
keturiy testiniy rinkiniy duomenys.

Kai kurie testiniai rinkiniai turéjo daugiau negu viena tinklalapj i$ vienos internetinés
svetainés. Vykdant eksperimentinius bandymus buvo skai¢iuotas struktiirizuoty duomeny
jrasy kiekis imant tik po viena tinklalapj i$ kiekvienos skirtingo dizaino svetainés.

118 SUMMARY IN LITHUANIAN

Tiriamy metody efektyvumas buvo skai¢iuojamas remiantis dvejais rodikliais:
tikslumu ir atkuriamumu. Sie rodikliai skai¢iuojami remiantis skai¢iumi struktirizuoty
duomeny jraSy esanciy tinklalapyje (DRcsantys tinkiatapyje)» Skai¢iumi iSgauty duomeny
irady i tinklalapio (DRy;s; izgausi)> skaiCiumi teisingai iSgauty duomeny irady (DR eisingi)-
Sie rodikliai kiekvienam tinklalapiui yra paskai¢iuojami atskirai ir rezultaty lentelése
rodomas bendras vidurkis. Minétiems rodikliams apskai¢iuoti naudojamos Sios formulés:

Tikslumas = IDRteisingi N DRyisi_isgautil

; (C)

|DRvisi_i§gauti|

Atkuriamumas =

|DRvisi_i§gauti n DResantys_tinklalapyje| (5)
DResantys_tinklalapyje '

S4 lentelé. Testiniai tinklalapiy rinkiniai naudoti vykdant metody eksperimentinius tyrimus

Testinis tinklalapiy rinkinys: | ClustVX ViNTs-2 Alvarez | TBDW
Svetainiy 10 102 200 51
Tinklalapiy is vienos svetainés 3 11 1 5
Struktirizuoty ~ duomeny jrasy | 22 24 18 21
tinklalapyje
Viso jrasy (imant po vieng tinklalapj | 218 2489 3557 1052
i§ svetaineés)

Zemiau esan&iuose lentelése pateikiami eksperimentiniy bandymy rezultatai su
kiekvienu testiniu tinklalapiy rinkiniu atskirai. Kaip matyti i§ pateikty rezultaty, sitilomas
ClustVX metodais su visais testiniais tinklalapiy rinkiniais savo efektyvumu lenkia kity
autoriy metody rezultatus.

S5 lentelé. Bandymy rezultatai naudojant ClustVX testinj tinklalapiy rinkinj

Metodas /

Rodiklis ViNTs FiVaTech MDR ClustVX
Tikslumas 86,0% 97,7% 50,0% 100,0%
Atkuriamumas 65,6% 59.2% 9,2% 99,5%

Pazymétina, jog didziausias skirtumas tarp sitilomo ClustVX metodo ir kity autoriy
metody matomas S5 lenteléje. Kaip zinia, $is testinis tinklalapiy rinkinys buvo sudarytas
i§ Siuolaikiniy technologiSkai sudétingy tinklalapiy. Tokie tinklalapiai pasizymi ilgu

SUMMARY IN LITHUANIAN 119

HTML kodu, daugybe reklamy, JavaScript kodo vykdymu, bei kitomis technologiskai
sudétingomis ypatybémis, kurios sukelia sunkumy iSgaunant struktiirizuotus duomenis
naudojant kiek senesnius kity autoriy metodus.

S6 lentelé. Bandymy rezultatai naudojant VINTS-2 testinj tinklalapiy rinkinj

Metodas / Rodiklis ClustVX | G-STM DEPTA
Esantys jrasai 2489 N/D N/D
ISgauti jrasai 2452 N/D N/D
Teisingai iSgauti 2417 N/D N/D
Tikslumas 98.6% 98.5% 95.1%
Atkuriamumas 98.5% 96,7% 83,9%

Kaip matoma i§ S6 lentelés, struktiirizuoty duomeny irasy gavybos rezultatai su
VINTS-2 testiniu rinkiniu vél atskleidé, jog sitilomas ClustVX metodas pasiekia labai
auksta tiksluma ir atkuriamuma, t. y. 98,6% ir 98,5% atitinkamai. Sie rezultatai yra geresni
negu kity dviejy metody. Naudojant §j testinj rinkinj didzioji dalis netikslumy atsiranda,
kuomet ClustVX metodas netinkamai segmentuoja struktlirizuoty duomeny jrasus
tinklalapyje.

S7 lentelé. Bandymy rezultatai naudojant Alvarez testinj tinklalapiy rinkinj

Metodas: | ClustVX | Alvarez et al.
Esantys jrasai 3557 3557
ISgauti jrasai 3546 3570
Teisingai isgauti 3482 3496
Tikslumas 98.,2% 97,9%
Atkuriamumas 99,7% 98.3%

S7 lenteléje pateikiami bandymy rezultatai naudojant (Alvarez et al. 2008) sudaryta
testinj tinklalapiy rinkinj. Verta atkreipti démesj, jog pats Alvarez metodas tinklalapiuose
randa ir i§gauna daugiau struktiirizuoty duomeny jrady negu jy i$ tiesy yra. Tai gali bati
jvardijama kaip klaidingai teigiamas (angl. false positive) struktirizuoty duomeny
iSgavimas ir tokio tipo sprendimai mazina metodo tiksluma.

I8 S8 lenteléje pateikty duomeny matyti, jog sitilomas ClustVX metodas vélgi savo
tikslumu ir atkuriamumu nenusileidzia kity autoriy metodams. Pazymétina, jog ClustVX
metodas pasiekia absoliuciai geriausia tiksluma, kuris lygus net 99,5%. Maza dalis klaidy,
kurios neleido pasiekti Simtaprocentinio tikslumo, buvo susijusios su tuo, jog
struktiirizuoty duomeny jrasy lentelés pirmoji antrastiné eiluté buvo priskiriamas kaip
atskiras duomeny jradas. Sio tipo klaidy gana sudétinga i§vengti, nes lentelés antrasting

120

SUMMARY IN LITHUANIAN

eiluté daznai yra vizualiai ir strukttiriSkai labai panasi j duomeny jrasus ir skirtuma galima
pastebeti tik atliekant pateikto teksto semanting analizg.

S8 lentelé. Bandymy rezultatai naudojant TBDW testinj tinklalapiy rinkinj

Metodas: | ClustVX G-STM | DEPTA FiVa CTVS | DeLa
Tech
Esantys jrasai 1052 N/A N/A 693 693 693
ISgauti jrasai 1047 N/A N/A 690 688 655
Teisingai iSgauti 1045 N/A N/A 672 680 616
Tikslumas 99.8% 99,8% 99,5% 97,0% 98.8% | 88.8%
Atkuriamumas 99,5% 96,6% 85,3% 97.4% 98,1% | 94,0%

Taigi, Siame skyriuje eksperimentiniais tyrimais buvo isbandyti abu sitilomi metodai:

ClustVX ir UXClust. Bandymy rezultatai atskleidé, kad abu sitilomi metodai savo
efektyvumu, kuris skaiCiuojamas kaip tikslumas ir atkuriamumas, lenkia daugelj kity
autoriy metody.

Bendrosios iSvados

Literatiros analizé¢ atskleidé, kad rankiniu zmogaus darbu gristi
strukttirizuoty duomeny i§gavimo metodai reikalauja dideliy kasty ir kartu
néra tinkami i§gauti duomenis interneto mastu, t. y. i§ ttkstan¢iy vizualiai ir
struktiiriSkai skirtingy tinklalapiy. Todél dauguma $iuolaikiniy automatiniy
duomeny iSgavimo metody tinklalapiuose, sugeneruotuose pagal Sablonus,
ieSko struktiiriniy pasikartojimy, kuriuos i$naudoja automatiSkai
identifikuojant ir iSgaunant struktiirizuotus duomenis. Taciau visiskai
automatinis interneto masto struktiirizuotas duomeny iSgavimas, kurio
tikslumas ir atkuriamumas bity pakankamas praktinéms problemoms
spresti, vis dar iSlieka iki Siol nepasiektas tikslas.

Pagal $ablonus sugeneruoti tinklalapiai turi strukttriskai ir vizualiai
pasikartojan¢iy elementy. Disertacijoje siiloma nauja vizualiai ir
struktiiriSkai pana$iy tinklalapiy klasterizavimo technika padeda surasti
Siuos struktiirinius pasikartojimus ir juos suklasterizuoti. Gauti klasteriai su
tinklalapio elementy XPath adresais gali buti iSnaudojami automatiskai
generuojant i$ tinklalapiy strukttirizuotus duomenis iSgaunancias taisykles.
Eksperimentiniais tyrimais parodyta, kad siilomas ClustVX metodas,
skirtas struktiirizuoty duomeny iSgavimui, pasiekia 98% tikslumag bei
atkuriamuma ir tuo lenkia visus kitus bandymuose palyginimui naudotus

SUMMARY IN LITHUANIAN 121

Siuolaikinius struktiirizuoty duomeny iSgavimo metodus. Be to, sitilomas
metodas gali i§gauti duomenis i$ technologiSkai sudétingy tinklalapiy.

4. Pasinaudojant internetinés svetainés vidiniy nuorody XPath adresais
tinklalapiuose galima Zenkliai pagreitinti tinklalapiy klasterizavima pagal ju
struktiirinj pana§uma. Be to, parodyta, kad klasterizavimo metu skai¢iuojant
struktiirinj panasuma tarp tinklalapiy, galima naudoti Zakaro (Jaccard)
panasumo tarp baigtiniy rinkiniy koeficienta.

5. Pasitlytas UXClust metodas, skirtas spar¢iam tinklalapiy klasterizavimui,
yra daugiau kaip 200 karty spartesnis negu lyginimui pasirinkti kiti du
Sivolaikiniai kity autoriy metodai. Pasililytas metodas yra pajégus
suklasterizuoti daugiau kaip 1 milijona tinklalapiy per nepilnas 4 minutes ir
kartu iSlaikyti didesnj negu 90% tiksluma ir atkuriamuma.

6. Abu pasialyti metodai, skirti struktirizuoty duomeny i§gavimui ir
tinklalapiy klasterizavimui pagal struktirinj panaSuma, nereikalauja
iSankstinio apmokymo, veikia automatiskai, yra nejautriis teminéms sritims,
todél gali buti panaudoti kuriant interneto masto struktiirizuoty duomeny
iSgavimo sistemas.

Annexes’s

Annex A. The Co-authors Agreements to Present Publications for the
Dissertation Defence

Annex B. Copies of Scientific Publications by the Author on the Topic of the
Dissertation

13 The annexes are supplied in the enclosed compact disc
123

STRUCTURED DATA EXTRACTION FROM TEMPLATE-GENERATED WEB PAGES
Doctoral Dissertation

Technological Sciences,
Informatics Engineering (07T)

Tomas Grigalis

STRUKTURIZUOTY DUOMENY ISGAVIMAS IS TINKLALAPIY SUGENERUOTU
PAGAL SABLONUS

Daktaro disertacija

Technologijos mokslai,
informatikos inzinerija (07T)

2014 08 14. 11,5 sp. |. Tirazas 20 egz.
Vilniaus Gedimino technikos universiteto
leidykla ,Technika“,

Saulétekio al. 11, 10223 Vilnius,
http://leidykla.vgtu.lt

Spausdino UAB ,Baltijos kopija“
Kareiviy g. 13B, 09109 Vilnius
www.kopija. It

