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Abstract

Nowadays with growth of the Internet traffic, it is essential to control channel
congestion efficiently for successful utilization of network resources and network
equipment. Today’s main protocol for this objective is Transport Control Protocol
(TCP). It is one of the main data interchange protocols on the Internet, based on
which most of the other, higher-level protocols are running. This is a reliable data
exchange protocol guaranteeing reliable data transfer between two remote net-
work points with data flow control methods.

The aim of this dissertation is to investigate the TCP protocol behaviour in
heterogeneous networks in different network conditions and how network effi-
ciency can be increased via TCP optimization. TCP protocol modifications to im-
prove the performance in high speed links with dynamically adapting acknowl-
edgment function which could lead to significant decrease load of network
equipment and increase speed of shared networks links are proposed in the disser-
tation.

The first chapter gives a short overview of TCP protocol, how it works and
that are the main TCP algorithms that are used today in modern operating systems.
Also a new TCP overhead reduction method was propose for improving network
throughput for TCP in IEEE802.11 and Ethernet networks.

In the second chapter of the work an investigation of TCP in Linux OS kernel
is made. A short overview of basic functions and algorithm is made to understand
how TCP works in Linux OS, also new modification and implementation in Linux
kernel code are proposed and investigated to achieve better efficiency in hetero-
geneous networks.

The third chapter presents the results of testing made on new modified Linux
TCP kernel under different data and network conditions.

The dissertation suggests that in some conditions the network load can be
reduced or throughput can be increased due to reduced TCP protocol overhead
this not only allows to reduce the load to network equipment, but also allows to
reduce load to TCP client and server which are generating and receiving data over
TCP protocol. This TCP protocol overhead can have a big impact to TCP through-
put in high speed networks or reduce the load on network nodes and servers.

The main results of the dissertation were published in 4 scientific publica-
tions, all of them were printed in peer-reviewed scientific journals. The results
were presented in 4 scientific conferences.



Reziume

Siandien vis sparGiau augant Interneto srautams, itin svarbu valdyti duomeny
perdavimo kanalo pralaida siekiant kuo efektyviau iSnaudoti duomeny perdavimo
kanalus bei rysio tinklo jrenginius. Siuo metu pagrindinis duomeny apsikeitimo
protokolas yra transporto valdymo protokolas (angl. Transport Control Protocol —
TCP). Tai vienas i$ pagrindiniy duomeny apsikeitimo protokoly Internete, kurio
pagrindu veikia didzioji dalis kity, aukstesnio lygio, protokoly. Tai patikimas
duomeny apsikeitimo protokolas garantuojantis patikima duomeny perdavima
tarp dviejy nutolusiy tinklo tasky su duomeny srauto kontrolés valdymo metodais.

Disertacijos darbo tikslas yra istirti TCP protokolo veikima nevienalyciy
duomeny perdavimo tinkluose su skirtinga tinklo jranga ir TCP konfigiiracija,
norint pasiekti geresnj TCP efektyvuma bei sumazinti perteklinj duomeny srauta
ir elektroninés tinklo jrangos apkrovima.

Pirmame skyriuje pateikta trumpa TCP apzvalga bei istorija, pagrindiniai
TCP protokolo algoritmai, naudojami moderniose operacinése sistemose. Taip pat
pasitlytas naujas TCP perteklumo mazinimo metodas, siekiant pagerinti doumeny
pralaidumg IEEE802.11 ir Ethernet tinkluose.

Antrajame skyriuje nagrinéjamas TCP protokolo veikimas ir programinio
kodo modifikavimas Linux operacingje sistemoje (angl. Operating System — OS)
branduolyje. Trumpai apzvelgiami pagrindiniai algoritmai bei funkcijos,
pateikiamos Linux branduolio kodo modifikacijos bei esamy TCP programiniy
algoritmy patobulinimai, norint pasiekti didesnj TCP efektyvuma nevienalyc€iuose
duomeny perdavimo tinkluose.

Treciajame skyriuje pateikti patobulinto Linux OS branduolio TCP veikimo
testavimo rezultatai esant skirtingiems duomeny tinklo parametrams ir sglygoms.

Disertacijoje nustatyta, kad TCP protokolo veikimo efektyvumas, greitaveika
bei esamy tinklo bei serveriy resursy apkrova gali biiti sumazinta naudojant adap-
tyvy patvirtinimo (angl. Acknowledgment — ACK) filtravimo algoritmg. Jo déka
galima pasiekti rySsky duomeny perdavimo greitaveikos prieauglj didelés spartos
tinkluose, ar sumazinti tinklo jrenginiy bei serveriy apkrova.

Pagrindiniai disertacijos rezultatai paskelbti 4 recenzuojamuose mokslo zur-
naluose. Rezultatai vieSinti 4 mokslinése konferencijose.
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Notations

Symbols

otcp— TCP RTT calculation variable;

Nack —number of ACK messages;

Peuvic — @ constant multiplication decrease factor applied for W(?);

frcp —a TCP RTT calculation variable;

Friignsize— number of bytes sent by TCP sender but not yet acknowledged by the receiver;
Grcp — wireless throughput of TCP data;

IW — initial congestion window in bytes;

Npeps — number of data bits per OFDM symbol;

Swmiss — TCP advertised maximum segment size;

T1 — time needed for sender from Slow Start to reach slow start threshold value;
tack — RTT time for ACK message;

taasta— RTT time for TCP data message;

T2 — time needed to reach from Slow Start to RWIN value;

Th — random back of period of time for data transmission;

Tcru—time needed for CPU process TCP packet;

Tocr — time needed to make full frame exchange sequence;

Tocr_ack — time needed to send one ACK frame;

Tocr pata— time needed to send one TCP data segment;

Tocr — time needed to make full frame exchange sequence;
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Toirs — DCF Interframe spacing time;

Tmax — time needed to reach maximum link throughput;

Torpm — transmission time of one OFDM symbol,;

Trto— TCP retransmission time value according RFC;

trto — TCP retransmission time value;

Trrr — TCP round tripe time with system processing time;

trrT — round tripe time of average successful TCP transmission;
Ts0t — slot time which is physical characteristic of 8§02.11 standard;
Tsirs — shortest interframe spacing time;

trrr — is the average time of successful TCP message transmission;
ACWND - congestion window change value;

R — the first RTT value in new TCP session;

SMSS — sender’s maximum segment size;

SRTT — smoothed round trip time;

SSTRESH — slow start threshold;

Wewnp — TCP congestion size window in bytes;

Wrwnp — TCP receive window size in bytes;

ortT — the root mean square of deviation of #zr7.

Abbreviations

ACK — TCP acknowledgement;

BDP — bandwidth delay product;

BW — bandwidth;

CBS — committed burst size;

CIR — committed information rate;

CPE - customer premises equipment;

CPU - central processing unit;

CRC — cyclic redundancy check;
CSMA/CA — carrier sense multiple access with collision avoidance;
CW — contention window;

CWDN - TCP congestion window;

DCF — distributed coordination function;
DIFS — distribution inter frame space time;
FTP — file transport protocol;

GRO — generic receiver offload;

GSO — generic segmentation offload;
HGW — home gateway;

IAD — integrated access devices;

IP — Internet protocol,
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/O — input output device;

KVM — Linux kernel-based virtual machine;
MSS — maximum segment size;

MIPS — microprocessor without interlocked pipeline stages;
NIC — network interface card;

NDP — network delay product;

OS — operating system;

PCF — point coordination function;

PPS — packer per second;

RAM - random access memory;

RTO — retransmission time-out;

RTT —round trip time;

RWND — TCP receive window;

SIFS — short inter frame space;

TCP — transport control protocol;

TSO — TCP segmentation offload;

UDP - user data protocol;

WIN — TCP window size;

WWW — World Wide Web.
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Introduction

Problem Formulation

The global interconnecting network or the modern Internet as it is known now
emerged more than 25 years ago with the birth of Transport Control Protocol
(TCP) and Internet protocol (IP) suite (TCP/IP). Now it connects more than bil-
lions of different electronic devices worldwide and provides their data routing and
exchange channels. In the early days of Internet, it was used for basic communi-
cation (WWW, email and file exchange), but only after one decade later things
started to change rapidly, the Internet evolved to multidimensional service field
with network expanding to all directions. From mobile phone to TV, game stations
and even government management and election moved to global network.(Well-
man et al. 2008).

From the first days of the TCP protocol the main and most important prob-
lems were and still are the TCP efficiency and performance (Nagle 1984: 160;
Paxson et al. 1999; Garsva et al. 2014), to make this protocol link aware and allow
utilize the network capacity as much as possible and as fast as possible, independ-
ent from changing condition of network or transport layer. To do this TCP or to
be more correct the Linux OS kernel uses slow start, congestion avoidance, fast
retransmit and other algorithms, which are responsible for data transmission and
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Congestion Window Control (CWND). By controlling CWND the TCP stack in-
directly controls the data sending rate, by slowly probing the link speed and al-
lowing to increase or decrease sending data rate (Jacobson 1988). As the CWND
size is controlled by TCP acknowledgment rate from the TCP data receiver side.
In most cases lower network layers are not controlling data sending rate, and the
information leaving the system Network Interface Card (NIC) at line rate of the
link or maximum speed it is able to do it. In some cases it can lead to network
overload and congestions.

In addition TCP also must handle system resources efficiently, as the same
protocol implementation must work efficiently and with out of problems on dif-
ferent type of systems and devices (Priescu et al. 2012; Eidukas et al. 2005;
Kajackas et al. 2015). As most modern systems like supercomputers or servers
equipped with high performance CPU and RAM can handle intense information
rates. But for TCP data transmission the same TCP implementation is used like in
system with small amount of Random Access Memory (RAM) or low efficiency
performance CPU. In such conditions most important is constant and stable data
flow due to limited or very low network link through which they communicate.

Despite the fact that modern electronic and Central Processing Unit (CPU)
units have high power efficiency, and some basic networking jobs can be done in
NIC, the load generated from TCP/IP stack can take up to 4—13% of data pro-
cessing load (Bencivenni et al. 2009). In normal conditions TCP code execution
can take about ~200 instructions for processing one TCP packet, depending from
CPU architecture and model. Therefore in the following, the problem of TCP im-
plementation efficiency is addressed in the dissertation.

In order to solve this problem such main hypothesis was raised and proven:
the reduction of TCP acknowledgment overhead can reduce load on network and
electronic systems and increase their TCP data throughput without negative im-
pact to TCP session stability and TCP recovery mechanism.

Relevance of the Thesis

The growing demand of Internet and its services increases the need of better uti-
lizations of existing services and transport links. It is extremely important that
current transport control protocol (TCP) should not be the drawback of the evolu-
tion of Internet but also offer new possibilities for developing new services and
network applications.

Increased efficiency of TCP not only reduces the load to electronic systems
and network but allows other applications and system developers to use freed re-
source for other purpose.
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Present research is dedicated to investigate the possibilities and methods to
reduce TCP overhead and reduce load not network and its equipment.

The Object of Research

The object of presented research is current implementation of TCP and acknowl-
edgment algorithms that is used in operating systems (OS) of modern electronic
systems and is used in heterogeneous data transmission networks.

The Aim of the Thesis

The goal of the dissertation is to increase TCP performance in heterogeneous net-
works and electronic network equipment, through reduction of TCP acknowledg-
ment overhead in TCP stack and network equipment.

The Tasks of the Thesis

In order to solve the problem and achieve the aim of the dissertation the following
tasks must be accomplished:

1. Analyse efficiency and operation of TCP in operating system and its data
transmission over heterogeneous networks or asymmetric data links.

2. Analyse the limits and methods of TCP Acknowledgment (ACK) filtering
in electronic network equipment and develop methods for ACK limiting
in Linux kernel.

3. Experimentally investigate the impact of developed ACK limiting method
for TCP performance in heterogeneous networks.

Research Methodology

The following research methods are applied in this work: literature analysis, se-
curity risk analysis, artificial computer networks with emulated delay and
throughput characteristics, code and algorithm optimization and statistical analy-
sis, statistical results validations, performance analyses and methods of experi-
mental research have been used to validate proposed methods.
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Scientific Novelty of the Thesis

In the thesis the following scientific novelty were achieved:

1. Proposed the new dynamical ACK limiting implementation in Linux OS
kernel TCP stack, which allows efficient reduction and control of TCP
protocol overhead.

2. Proposed the new algorithm for calculation of the initial and maximum
values for ACK limiting algorithm in heterogeneous networks.

3. Developed the algorithm for ACK filtering in network and IEEE 802.11
wireless equipment which adapts to various network configurations

Practical Value of the Research Findings

In dissertation two different algorithms were created for TCP overhead reduction.
The first algorithm implements ACK filtering on network equipment. It allows to
reduce the TCP overhead without any end system knowledge or system modifica-
tion. The network load from ACK messages can be reduced up to 80% and the
performance of network routers can be increased up to 32%.

The second algorithm implemented as Linux kernel TCP stack modification.
It allows not only to reduce the TCP overhead and reduce network utilization but
also to reduce system load and dynamically improves TCP performance on the
TCP client and server side dynamically.

Both proposed TCP overhead limiting algorithms can be used in IP based
networks to reduce network load and increase asymmetric link throughput. By
using Linux OS based ACK limiting algorithm end system load can be reduced
up to 50% and increase end system performance.

The Defended Statements

1. ACK filtering on network equipment can reduces the ACK message
overhead up to 8§0% without impacting existing TCP session stability.
This optimization can reduce network load and increase network
router performance up to 32% due to reduced load of ACK messages.

2. The ACK filtering on network equipment and ACK limiting in Linux
OS kernel does not impact TCP session performance and such TCP
sessions can successfully recovers from packet drops if upper limits of
ACK filtering and limiting is not reached.
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3. The dynamic ACK limiting in Linux kernel can reduces CPU load to
network equipment, and can increase TCP throughput up to 50% in
embedded devices.

Approval of the Research Findings

The main results of the dissertation were published in 4 scientific papers: 2 paper
in foreign journal indexed in Thomson ISI Web of Science 2 papers in local jour-
nal indexed in Thomson ISI Web of Science.

The main results and ideas of work were presented in following scientific
conferences:

1. Evaluation of TCP Acknowledgment Mechanism Influence on Router
Performance. 14 ELECTRONICS’2010, 2010, Lithuania, Vilnius.

2. Vilniaus miesto bevieliy tinkly statistiniai tyrimai. Jaunyjy mok-
slininky konferencija ,,Elektronika ir elektrotechnika 2011, 2011,
Lithuania, Vilnius.

3. Analysis of Home WiFi Internet Access Networks Situation in Vilnius
City. 15 tarptautiné konferencija ELECTRONICS 2011, 2011, Lithu-
ania, Vilnius.

4. Analysis of Home WiFi Access Networks Situation in City Area.
ICCCISE 2013: International Conference on Computer, Communica-
tion and Information Sciences and Engineering, 2013, Spain, Barce-
lona.

Structure of the Dissertation

A dissertation consists of three main chapters and general conclusions with sum-
mary in Lithuanian. The dissertation start from introduction followed by first
chapter in which TCP protocol, main functions and working algorithm are ex-
plained. Also an investigation of heterogeneous networks is described and how
ACK overhead can be reduced in network layers is described. In the second chap-
ter of dissertation Linux kernel and TCP limiting kernel is described and how can
it reduce not only ACK overhead to network is described. In the third and final
chapter experimental testing of new Linux kernel ACK limiting algorithm is made
and results provided.

The volume of dissertation is 93 pages, in which are: 63 figures, 35 formulas,
and 2 tables, also in dissertation are 91 references.






Transmission Control Protocol
Overhead in Heterogeneous
Networks

In this chapter a background and short history of TCP protocol is provided includ-
ing a basic working functions and algorithm which are needed for guaranteed and
stable data transmission from one end point to other and how TCP handles packet
loss or session distortions. Also the issue of TCP acknowledgment overhead in
network nodes will be discussed and what new implementation or modifications
could reduce TCP overhead and improve the TCP efficiency and speed in high
utilized or overloaded networks.

The research results are published in author publications: Pavilanskas et al.
(2015); Statkus et al. (2013); Statkus et al. (2012). The main results are announced
in scientific conferences: “Electronics” (Vilnius 2011), “Communication and In-
formation” (Barcelona 2013).



8 1. TRANSMISSION CONTROL PROTOCOL OVERHEAD IN HETEROGENEOUS...

1.1. Evolution of Transmission Control Protocol

The history of Transport Control Protocol or else known as Transport Control
Program started in 1969 with building the United States Defence Advanced Re-
search Projects Agency (DARPA or ARPA) research network else called the Ar-
panet. As the number of hosts in Arpanet network increased the developers real-
ized that trying to use existing protocol in current infrastructure will lead to
performance problems due to different technologies and different network prop-
erties. So the work on new lower layer protocol started in 1973 by Vin Cerf and
Robert E. Kahn, who was hired by DARPA in 1972, where he worked in the
packet communication satellite and radio waves. The new developed protocol had
to meet the following requirements:

1. Independence from underlying network techniques and architecture.

2. Universal connectivity throughout the network.

3. Standardized application protocols.

4. Acknowledgments function.

The new layer protocol of TCP was first formally specified in December of
1974 in RFC 675 by Vinton Cerf, Yogen Dalal, Carl Sunshine. The development
and testing of TCP continued for several years, and in early 1977 a new version
of TCP came out — TCP v2. After one year in 1978 a new version of TCP v3 came
out, with novel idea of splitting the TCP into TCP at the transport layer and IP at
the network layer. The separation of to transport and transmission control protocol
leads to creation of TCP/IP architecture and separation of protocol layers and new
protocol creation. Finally in 1980 the fourth version TCP/IP came and the Internet
was born, the fourth versions are still used up to now. In dissertation only TCP
part will be discussed leaving the IP layer out.

1.2. Transmission Control Protocol
Acknowledgement

The most important function of TCP is the guaranteed data transmission function.
For successful and assured data transmission TCP is using acknowledgement al-
gorithm, which “is at the heart of TCP” (RFC 813). It relies on demand for the
receiver to communicate with the sender by sending back an ACK as it receives
data. For this two main TCP protocol headers fields: sequence and acknowledg-
ments fields are used, they are situated after source and destination fields of TCP
header (Fig. 1.1) (Socolofsky et al. 1991).
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Both Sequence Number and Acknowledgment Number fields are 32 bit long
and mainly are responsible of data acknowledgment and informing about success-
ful data delivery the TCP sender. As defined in TCP RFC documentation all the
data bytes must be send in sequential way to TCP receiver. Based on successfully
received data the TCP receiver acknowledges the received information by naming
(sending back in ACK message) the highest number of successfully received data
byte to the TCP data sender. This is called cumulative ACK technique and is de-
scribed in RFC 813 document. The last ACK message (with highest acknowledg-
ment number) received by the TCP sender indicates that all bytes of data with
sequence numbers less than that value have been successfully received or
acknowledged by TCP receiver. To be more correct the ACK sequence number
identifies the first byte of data which has not been yet received by the client (ACK
shows how much data the receiver has received plus one byte). The example of
TCP acknowledgment algorithm is show in Fig.1.2.

Source Port Destination Port
1]2]3]as5]6]7]8]9]10[11]12[13]14]15]16] 1] 2][3]a][5]6]7]8]910[11]12[13]14]15]16
Sequence Number
1]2]3]a]5]6]7]8]9]10[11]12[13]14]15]16[17]1819]20[21]22]23]24]25]26]27]28]29]30[31[32
Acknowledgment Number
1]2]3]a[5]6]7]8]9]10[11]12]13[14]15]16]17]18]19]20[21]22]23]24]25]26]27]28]29]3031]32

Offset |Reserved TCP Flags Window
1[2]3]al1]2]3]al1]2]3]a]s]6][7]8|1]2]3]4]5]6]7]8]9]10[11]12]13]14]15]16
Checksum Urgent Pointer
1]2]3]4a]5]6]7]8]9]10[11]12]13][14]15]16[1]2]3 4] 5]6]7]8]9]10[11]12]13]14]15]16
TCP Options (optional)
1]2]3]a]5]6]7]8]9]10]11]12]13]14]15][16[17]18]19]20]21]22]23]24]25]26]27]28]29]30]31 32

Fig. 1.1. Transmission control protocol header structure

Because every ACK packet not only generate network load but also increases
processing time of end node, this is very important to systems with lower CPU
power. The frequency of ACK sending must be controlled and meet the following
conditions (Bott 2014; Stevens 1997; Berkeley et al. 2011):

1. After receiving other full segment size (Linux, UNIX) or two TCP
packets (Windows), according RFC 5681, an ACK message should be
generated for at least every second full size segment data packet.
After receiving a packet with push bit set.

3. Onupdate of window size (retransmission timer must not be expired).



10 1. TRANSMISSION CONTROL PROTOCOL OVERHEAD IN HETEROGENEOUS...

4. On expiration of time trigger.

The TCP contains only a general assertion that data should be acknowledged
promptly, but gives no more specific indication as to how quickly and as how
frequently an ACK must be sent. Normally TCP does not send ACK instantly but
after receiving data but delays ACK messages sending (Bott 2014; Allman et al.
1999), hoping to send some data going in the same direction as ACK message. A
typical TCP uses delay of 200 ms and sends ACK for every other data message.
However, there is not much TCP traffic with bidirectional data flows in Internet
(Socolofsky et al. 1991; Kajackas et al. 2011). Delayed ACK is usable for an
interactive applications (Telnet, SSH, and etc.) only (Kim et al. 2008; Caceres
etal 1991).

TCP Layer three network sender
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Rewrans? data6(513——1023*)
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Fig. 1.2. Transmission control protocol
flow of acknowledgment process

Beside the acknowledgment the ACK messages also returns the information
of the buffer which is currently available at the receiver side, also known as win-
dow size (Fig. 1.1). It is responsible for data flow and control of it, also TCP
window protects the receiving side from buffer overflow (Clark 1982). The TCP
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sender uses the offered window to calculate the usable window, this is done by
calculating the difference of received window minus the data which is outstanding
in the network and still are unacknowledged and (estimate how much data can be
outstanding in the network). Upon the size of usable window the TCP sender uses
a congestion window, which growth function depends on the feedback sender gets
from the network through the received ACK. After initializing the TCP sender is
allowed to increase the congestion window (CWND) for each incoming ACK.

1.3. Transmission Control Protocol Flow Control and
Congestion Window

To allow TCP protocol dynamical consume network bandwidth a congestion con-
trol functions and algorithms are employed. It consists of four critical congestion
control algorithm: slow start, congestion avoidance, fast retransmit and fast re-
covery. Each of the algorithms is applied in different state TCP to control the data
flow of TCP data. The current congestion control algorithm implementation is
defined in the latest RFC 5681 document (it absolutes RFC 2581 and RFC 2001,
RFC 813).

1.3.1. Transmission Windows

Before grasp slow start algorithm, it is necessary to understand how TCP places
limits on the amount of data, which can be in transit between two endpoints at a
given time. Because of the reliable nature of TCP, a TCP sender can transmit only
a limited amount of data before it must receive an acknowledgement from the
TCP receiver. This is done to ensure that all send data during time frame was
received successfully and that any lost segments can be retransmitted efficiently
(Jacobson 1988; Griner ef al. 2000).

There are two main variables (windows) which affect how much unacknowl-
edged data a sender can send. The first windows or receiver window — RWND, it
is always advertised by the TCP peer to other end in TCP header at the start of
TCP session or updated during data transmission. The second window is called
congestion window CWND and is dynamically calculated on TCP data sender
side (Handley ez al. 2000; Allman ef al. 1999). The sender's congestion window,
however, is known only to the sender and does not appear on the wire. According
the RFC documentation the CWND window must be lower than RWND value,
and it is the maximum amount of unacknowledged data the sender can transmit
before receiving ACK message.
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At the start of TCP session the CWND initial windows or /W must be set
according the RFC 5681 the initial window (/W) size must be set in accordance
with the following conditions shown in flow graph (Fig. 1.3).

The IW calculates based on sender's maximum segment size or SMSS value.
It is received in TCP header option field (Fig. 1.1) as maximum segment size
(MSS) sub option value, from other side during TCP connection setup in the TCP
Synchronize (TCP SYN) packet. In example a MSS value 1460 B according to
RFC 5681 algorithm (Fig. 1.3), would give I of 4380 B (3 x 1460 = 4380 B).
However, in practice the /W or initial CWND size will vary among TCP/IP stacks
and OS implementations.

TCP SMMS value

YES| IW = 45MSS

NO

—YESP| IW =4380 B

1095 < SMSS < 2190

NO

YESP| IW = min(2SMSS, CWND)

Fig. 1.3. Transmission control protocol initial window selection based on
sender's maximum segment size value algorithm

It is important to note that the sender's effective transmission window is al-
ways lower than CWND and RWND and by using slow start, congestion avoid-
ance algorithm the TCP sender dynamically adjusts data sending speed during the
TCP session time (Jacobson 1988; Allman et al. 1999).
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1.3.2. Slow Start Algorithm

Every new TCP session, not depending from the last status (if it’s new/recon-
nected) starts from slow start algorithm. This is done due to unsureness of data
transmission link and network conditions, because a big burst of data injected into
network could cause packet loss in network due equipment buffer congestion or
network overload (Caceres ef al. 1991; Floyd 2003; Podolsky et al.).

Due to network link diversity and fragmentation most of the networks nodes
must queue received data packets for further processing. In most cases the network
nodes must accumulate several network links which eventually lead to network
overload and congestion. To avoid this and not allow initial network queues over-
run TCP is using slow start algorithm. This algorithm operates on TCP sender side
and is based on received ACK message rate or “self-clocking”, as described by V.
Jacobson in 1988. This algorithm allows slowly (in the start) increase TCP send-
ing rate, without instantly overrunning the network links or routers queues with
TCP data messages (eventually, after some time the network congestion mostly
will happen).

The TCP slow start algorithm is used in three states of TCP session:

1. After starting a new TCP session (after TCP three way hand shake).
2. After restarting the transmission after long idle period.

3. After retransmission timeout.

Every time a slow start algorithm is activated two variables must be set:
CWND, and slow start threshold (SSTHREH) values (Seth et al. 2008; Al-Khatib
et al. 2006). The first variable defines the amount of data in bytes which can be
sent without receiving ACK from the receiver. It must not be bigger the advertised
window size or RWND. The second one defines the threshold of TCP slow start,
used to define the upper limit of slow start algorithm and must be used until
CWND > SSTHRESH) After exceeding this value the congestion avoidance algo-
rithm is used to increase CWND and control TCP data transmission (RFC 5681).
The initial size of SSTHRESH should not be higher than advertised RWIN, but
it’s not fully specified in the RFC what is the maximum and minimum size of it.
According the old RFC 2001 the initial value of SSTHRESH for new session
should be 65,535 B. In the initial state of new TCP session slow start /¥ of CWND
must be set, according the RFC 5681seen in Fig. 1.3.

The IW selection is only use after three way hand shake and must be used if
no packet loss where in three-way-hand shake phase (Bott 2014). If packet loss
during three-way-hand occurs or SYN, SYN/ACK messages do not arrive upon a
TCP timeout. The CWND must set to one SMSS bytes at most (RFC 5681) (Loss
Window). By using bigger initial window for CWND the transmission time can
be noticeably decreased, this is especially noticed in short time TCP sessions with
less than 4 KB (Allman et al. 2002; Fox 1989), but this could also can lead to
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network overload and congestions with small bandwidth capacity or with mul-
tisession applications.

The slow start algorithm is explained in Fig 1.4, the /W in our example is set
to one MMS = 1000 B for simplicity.
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Fig. 1.4. Transmission control protocol slow starz
algorithm at session start

The slow start algorithm in Fig. 1.4 takes place only the three-way-handshake
and initial window is set (in over case the /I is set to one data segment or MSS
to 1000 B). After it the TCP data sender is allowed transmit one data segment
(MSS = 1000 B) and must wait for ACK message which acknowledges received
data for further data transmission. After receiving ACK message the congestion
window (CWIN) can be increased two times to maximum segment size and two
TCP data segments are allowed to transmit. If both data segments received one
acknowledgment for both of them is generated, it acknowledges both data seg-
ments, (RFC 5861) and is send to the TCP data sender. After receiving it the TCP
CWIN is increased up to 4 MSS and so on until the maximum allow window size
(SSTRESH) is reached or packet loss occurs (Stevens 1997b). The congestion
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value is increased by maximum one SMSS every ACK (if ACM messages is gen-
erated for every data segment) or by CWND within Round Trip Time (R77) time
if ACK is generated for all data segment.

In practice the ACK is generated for every second full size TCP segment and
this increase is no more aggressive than allowed in RFC documentation of TCP.
Despite the fact that in practice most operating systems generate ACK for every
second full size segment (RFC 5681) in some cases it could have a security draw-
back. This is known as ACK division attack, when ACK is generated more fre-
quently. It leads to TCP CWND inflation and can reduce or reset parallel TCP
sessions. This issue was discussed in detail and a solution was proposed in
RFC 3465 document, which later was included in standard track of latest TCP
congestion control RFC document (RFC 5681). The offered solution agents ACK
division suggested of using ABC algorithm or appropriate byte count for CWND
increase. It suggests that TCP window CWND must be increased not be bigger
when the number of previously unacknowledged bytes of last received ACK:

Where N is the number of previously unacknowledged bytes acknowledged in the
incoming ACK, SMSS is the size of the largest segment that the sender can trans-
mit. This not only increases the CWND more correctly but also protects agents
ACK division attacks described in paper “TCP congestion control with a misbe-
having receiver” by S.Savage et al. (1999).

The slow start and congestion window growth functions can be defined as
exponential (due to variation of R7T and delayed ACK is not exact exponential)
and the sending rate of TCP is increasing rapidly after three way hand shake is
over. The time needed to reach TCP SSTRESH defined value mostly depends form
RTT and link speed. In cases where SSTRESH value is set as big as RWIN the time
needed to reach maximum link throughput or 7max time can by:

(1.2)

- WIN
Tax = Trrr -logzw-
Where Wwin is the TCP window size value needed to reach maximum link
throughput, and can be equate to network delay product (BDP) of transmission
link. Considering that the system processing time of TCP is much smaller than
RTT. The BDP can be calculated by equations (Alrshah ez al. 2014):

(1.3b)
MSS?

Thax = Tryr -log,



16 1. TRANSMISSION CONTROL PROTOCOL OVERHEAD IN HETEROGENEOUS...

Based on (1.3b) the TCP throughput in slow start state is mostly impacted
from RTT time and can dramatically reduce the TCP throughput increase on high
speed links with big delay or short TCP sessions then receiver employs delayed
ACK (Allman et al. 2002). The results of how RTT impacts TCP throughput are
presented in Table 1.1.

Table 1.1. Transmission control protocol start time dependence from round trip time
value

Bandwidth Time with Time with Time with
RTT =5 ms RTT =10 ms RTT =20 ms

1 Mbit/s 61.4 ms 132.9 ms 285.8 ms

10 Mbit/s 78 ms 166 ms 352.2 ms

100 Mbit/s 94.7 ms 199.3 ms 418.6 ms

1000 Mbit/s 111.3 ms 232.5 ms 485 ms

1 Gbit/s 128.9 ms 265.8 ms 551.5ms

A noticeable impact is seen in short time (small data size transfer) TCP ses-
sions, when all data exchange takes places in slow start. Basically most of web-
sites are impacted by this issue and can dramatically increase the page loading
time with big RTT even having high bandwidth throughput links (Shepard et al.;
Pranevicius et al. 2006). To reduce the impact of TCP slow speed in Slow Start
phase, several proposal were suggested (Allman ef al. 2002) to increasing the in-
itial upper bound from one segment RFC 2001 to up to 4 KB, which was left for
further testing and discussion in RFC 2581 documentation.

Later more discussion by M. Allman was made, who suggested increasing
the initial slow start congestion window (CWIN) from two/four segments to 10 or
more (Berkeley et al. 2011). This would help to overcome short TCP session prob-
lem, the time Tmax needed to reach maximum link throughput would be:

MSS

10-MSS )

=Tgrrr 'lng( (1.4)

Also additional solution was proposed, which focused on reducing the total
time of all session. So basically the three way handshake algorithm was modified
to allow to send or request need data in SYN packet and replay needed data in
SYN ACK packet. This allows noticeably reduce session time in small size TCP
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exchange sessions and speed up sequential communication between TCP client
and server.

In addition to increased /I value, the latest RFC also recommends of using
appropriate byte count (Allman 2003), which should increase the security of TCP
and now allow ACK division attacks.

1.4. Congestion Avoidance Algorithm

One of most important TCP function is dynamical transmission rate control and
adaptation to changing network conditions. It is controlled by congestion control
algorithm which is responsible for CWND window growth after the slow start is
over or then CWND reaches the SSTRESH value. Like in TCP the slow start the
congestion avoidance algorithm tries to increase the CWND but this is doing it
more slowly and keep the network in optional state of operation. This is done by
increasing the CWND by a small amount of data for each received non duplicated
ACK packet (RFC 5681).

The increase of CWND should not be bigger than one SMSS per RTT, and
usually is describe as following equation (Bott 2014):

SMSS - SMSS . (1.6)

W =W,

CWND CWND WCWND

This functions is executed every time an ACK message is received which

acknowledges new data received from TCP sender. In case the ACK message is

generated for every TCP data segment the increase of the CWND would be one

SMSS per RTT, if ACK is generated for every second TCP data segment as de-

fined in RFC 1122 the CWND increase will be no bigger than one SMSS per RTT.

The increase fraction per RTT is define as following equation, in condition then
ACK is generated for every second full size TCP data segment:

SMSS?

CWND

AWewnp = “Nack- (1.7)

Here Nack is the number of ACK messages received per RTT time, and can be
found as follow (Allman ez al. 1999):

W,

Ny = CWND_. 1.8

ACK ™ . SMMS (18)
SMSS

AWy = 222 (1.9)
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The main problem of this function is that CNWD growth function is directly
depending from ACK generation rate. With more frequent ACK generation rate
the CWND increase can be bigger and unfairness can arise in concurrent TCP
sessions, like it was said in paper of Stefan Savage et al. “TCP congestion Control
with a Misbehaving Receiver” (1999). This not only has a negative impact to TCP
session’s fairness but can also be used as a security fault, also known as ACK
division. It can lead to denial of service for other TCP clients or network link
overrun.

The second issue with (1.6) is due the arithmetic counting, according, when
CWND is bigger than SMSS x SMSS, the delta or increase of CWND will yield 0.
To overcome this problem the returned value must be rounded to one.

The solution of these issues was defined and explained in RFC 3465, which
suggested of using appropriate byte counting or ABC for CWND increase, the
CWND should be increased not based on number of received ACK from the re-
ceiver but based on the number of acknowledged bytes. In this case the rate of
received ACK has no impact to CWND increase and only the amount of bytes
acknowledged by ACK is used as a factor for increase of CWND. This not only
allows overcoming the security issued of ACK division but also can help in cases
of lost ACKs and delayed ACK is used.

Despite the fact that ABC algorithm allows to solve ACK division issue and
increase the CWND more equal in time it also requires new TCP state variables
and checking with current CWND. In adds additional load to system and con-
sumes CPU and RAM resources. Also the RFC 5681does not forbid of using old
implementation of CWND increase in congestion avoidance phase, it should give
as acceptable growth of congestion window, with limitation that the CWND in-
crease must not be bigger than 1 SMSS per RTT.

If during the CWND increase a segment loss accurse, due to expiration of
retransmission timer the SSTHRESH (slow start threshold) must reduce as follow
(Berkeley et al. 2011):

SSTHRESH:max(%,zSMSJ. (1.10)
Here Frignsize variable defines bytes that are sent but not yet acknowledged by the
receiver, the bigger the delay the bigger Friignsize Will be.

Without mentioned and described congestion control algorithm in practice
where more OS are based congestion control algorithm that includes various as-
pects of an additive increase/multiplicative decrease. In dissertation TCP Cubic
congestion avoidance algorithm was used. TCP Cubic congestion window is de-
termined by function(Ha ez al. 2008):
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K=3 Wmax(t) chublc .
\ C ’ (1.11)

W.(6)=C(t—K) +W,, (),

here K is time period that takes to increase current congestion windows W, to
Wmax, C is a Cubic parameter (scaling factor), ¢ [s] — the elapsed time from the last
window reduction, Wnax [bytes] — the maximal window size before the last reduc-
tion; Seuic — a constant multiplication decrease factor applied for W, reduction to
minimal at the time of loss event (Ha et al. 2008).

In TCP data loss invent the new congestion window of Cubic would be:

W(t)min = W(t)max - :Bcubic : W(t)max' (112)

Here Whin(?) is the new minimal congestion window, Wpa(f) — current con-
gestion window before loss.

1.5. Fast Retransmit and Fast Recovery Algorithm

The TCP data message retransmission can occur because of two main reasons
(Keceli et al. 2007): after expiration of retransmission timer (RFC 813) and after
receiving three or more duplicated ACK (Fig. 1.5: ack3, ack4, ack5). In first case
the retransmission timer expires when no new data is acknowledged for a set of
threshold time (RFC 2581).

The retransmission timeout (frto) is taken as a loss indication, and it triggers
retransmission of the unacknowledged segments. The threshold time during which
the confirming ACK message must be received, frto can be determined by the
equation (Allman ez al. 1999)

IRTO =IRTT +4 - ORTT. (1.13)

Here rrr is the average time of successful TCP message transmission, Grrr —
the root mean square of deviation of rgry .

If during frro the ACK is not received, the data segments loss will be detected
and the TCP sender will set W(¢) to one segment (RFC 2988); since frto indicate
that channel utilization has changed dramatically (Keceli ez al. 2007).

Second reason occurs after receiving three or more duplicated ACK (Allman
2003; Sarolahti et al. 2003; Kojo ef al. 2009). As shown in Fig. 1.4 the message
data4 was lost. The TCP receiver accepts messages data3, data), data6, and so
on but not data4. The ack4, ack5 with same ACK number 512 were sent for re-
ceived messages. After duplicated ACK is detected, the transmitter waits for frto
to expire. TCP does not yet know whether a duplicate ACK is caused by a loss or
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just reordering of segments. TCP sender waits the timeout value and assumes that
if there is just a reordering it will not get ACK with number 512 anymore. How-
ever, after a while, a third duplicated ACK is received in a row (ack)). It is a
strong indication that segments have been lost. TCP performs retransmission of
segments 513—1023 with data6, without waiting for a fr1o to expire. After this the
sender maintains the number of outstanding segments by sending a new segment
for each incoming ACK. It should be noted that only retransmission of identified
as lost (timed out) TCP segments, are implemented in the conservative o passive
TCP versions (RFC 3517). Meanwhile, in aggressive TCP implementation after
the loss, all unacknowledged messages are retransmitted (Seth ez al. 2008).
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Fig. 1.5. Transmission control protocol fast retransmit and fast
recovery after packet drop

The TCP contains only a general assertion that data should be acknowledged
promptly, but gives no more specific indication as to how quickly and as how
frequently an ACK must be sent. In RFC’s clearly is indicated, that current algo-
rithm must maintain two very important functions: to prevent data retransmission,
and as soon as possible to make ACK to permitting further data to be sent (Bott
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2014). In addition to this argument, the fact that ACK message are very important
in the initial phase (1) of data transmission and the fact that rate of ACK relay on
data rate (segments loss due to receiving 3 or more duplicated ACK) and cannot
be less than 1/7rro must be evaluated.

1.6. Nagle’s and Delayed Acknowledgment Algorithm

In the early days of TCP the small packet problem appeared when TCP had to
deal with small data chunks send to TCP stack. This generates a big protocol over-
head and could lead to congestion in heavily loaded networks. To solve this prob-
lem John Nagle introduced simple but effective algorithm to solve small packet
problem (Nagle 1984). It’s based on delaying of sending the data to remove node
until one following requirements are met:

1. The buffered data reached MSS.

2. An ACK from remove node is received — the system state changes.
The Nagle’s algorithm can protect the network from small packet problem by
forbidding of sending small chunk of data before buffering.
In same time a different type algorithm on receiving side is used — delayed ACK.
It implies that the receiver must not send an acknowledgment to remote side until
following requirements are met (see Fig. 1.6) (Nagle 1984):
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Fig. 1.6. Transmission control protocol Nagle’s and delayed
acknowledgment algorithm
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1. The ACK messages should not be delayed more than for 500 ms (from
2.6 Linux kernel implementation the value is reduced to 200 ms).

2. A second full size segment is received (or two TCP packets in Win-
dows OS).

Two algorithms working at same time can create a problem when TCP sender
is not allowed to send more data until it has more data or an ACK is received from
remote node. But in the remote node the delayed ACK algorithm postpone of send-
ing ACK messages due to that only one TCP data segment is received and the
delayed ACK algorithm timer is not expired and could lead of performance deg-
radations where additional timer is needed to finish data exchange between two
nodes (see Fig. 1.6) (Karn er al. 1987).

1.7. Retransmission Timer Calculation

As TCP segments can be lost or corrupted due to network errors, communication
problems or OS issues, the TCP sender and receiver must track the information
they have send or received. It is done via TCP sequence and acknowledgment
numbers (see Fig. 1.1). This is information is send back to TCP sender or to re-
ceiver in TCP header. After receiving acknowledgment for the sent segment, a
new portion of data can be transmitted. In cases a last ACK messages is lost, the
TCP sender will wait this message and will not transmit any new TCP data mes-
sages. To solve this issue retransmission timeout (RTO) was introduced in
RFC 793. As the network conditions can change over the time the retransmission
timeout values must be dynamically adjusted for changing conditions (Karn et al.
1987; Ramakrishnan et al. 2001). As defined in the latest standard track RFC 6298
(in some implementation it can differ or use older RFC recommendations) the
RTO value is computed from two state variables RTTVAR — round trip time vari-
ation and SRTT — smoothed round trip time (Berkeley et al. 2011). For this the
RTT timer must be calculated first, it is done by measuring the time it took the
sender to send and receive the ACK packet containing acknowledgment for the
sent sequence number. Then RTT is calculated the SRTT value can be computed.
Depending from the state of the session two different calculations of this variable
can be made. If the TCP is in initialization state and no RTT is calculated, the
RTO value is set to one second, in older RFC documentations or OS the suggested
value is set to three seconds. In new TCP session, when no RTO value is compute
yet. the RTO is calculated accordingly RFC (Berkeley ef al. 2011):

SRTT = R; (1.14)

RTTVARzg; (1.15)
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Tyro = SRTT + max (G,K - RTTVAR). (1.16)

Here Trto is new retransmission time out value, K = 4, G is the clock granularity
in second and the R is set to round trip time value when the first measurement of
RTT is made.

After subsequent RTT measurement are made and new R values are obtained,
the RTTVAR and SRTT values must be updated as follows (Berkeley ez al. 2011):

RTTVAR = (1= Bycp)- RTTVAR + Bycp-| SRTT — R|. (1.17)
SRTT =(1-tyep ) SRTT + gy - R. (1.18)

The RTTVAR and SRTT values, according the RFC 6298, should be computed
using a.rcp = 0.125 and frep = 0.25, but can changed on condition. The new value
of Tro is calculated based on (1.16). If calculated RTO value is less than one
second the result should be rounded to 1 s.

Despite the fact that the 7rto value must be large enough to not allow retrans-
mission of the segment to early, the big Trto value has significant impact to TCP
performance (McKenzie 1989) after packet drops or idle periods especially in

wireless link with big delay variations and smaller RTO would be more acceptable
(Chen et al. 2011).

1.8. Heterogeneous Networks

From the birth of TCP protocol in early 1974, the first specification of TCP pro-
tocol, was made to work in heterogeneous networks and connections, over long
distance links with high probability of packets loss and low throughput. But now
with network throughput increasing the typical TCP protocol implementations,
which is successful at low speed (up to 100 Mbps), is unfit for high speed net-
works (Berkeley et al. 2011; Allman ef al. 1999). This not only reduce the effi-
ciency of TCP protocol (does not allow for full link utilization in some cases) but
also the growth of network bandwidth is directly coherent with ACK message rate
on the following TCP session. When the TCP data rate increase, the ACK rate on
the channel is increasing too. High speed network have another undesirable fea-
ture — growth of technological expenditures (Dalton er al. 2004; Maier et al.
2009). This protocol overhead not only reduces the network capacity but also in-
crease the load to network devices and end nodes. In addition to TCP overhead
other different network technologies and transport protocol add protocol over-
head, which uses network capacity and system resource of network nodes. It is
especially noticeable in wireless networks (IEEE 802.11a/b/g etc.) where same
data channel is used for data transmission and receiving (Keceli et al. 2007;
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RindzevicCius et al. 2015; Al-Khatib et al. 2006). In such heterogeneous networks
TCP protocol overhead is mostly noticeable and has biggest impact to TCP re-
sponse time and throughput.

Even nowadays basically most of current existing networks can be called het-
erogeneous, due to fact that are using direct interconnecting technologies. Only
small part of data centers and NAS networks still can be call homogeneous net-
works, where networks servers and clients are not limited by network throughput
or all nodes have same throughput with no multisession communication in place.
By saying heterogeneous networks we mean not only different network technolo-
gies but also protocols and link utilization and delay. With more data streams send
over one link or network node a fairness problems arise. In such case one or sev-
eral data streams with smaller RTT or loss probability can consume most of the
network traffic and leaving nothing to other streams (Floyd ez al. 2000; Paxson et
al. 1999). In addition to this the TCP protocol by nature is dynamical, and tries
fully utilize network capacity. Basically there are two network streams which
compete for network capacity you create heterogeneous network environment.
Reduction of the TCP overhead not only reduce the load to network nodes and
channels but also decrease electronic system utilization of network nodes
(Paredes-Farrera et al. 2006). In some cases the reduction of TCP overhead can
reduce the load off all network and even eliminate the CPU bottleneck in some
network devices or end systems. It also reduces the level of uneven in data trans-
mission networks (Rose ef al. 1991).

1.9. Network Based Acknowledgment Filtering
Technique

The concept of ACK filtering was discussed well in (Karn 2011). The idea of
ACK message filtering is fairly simple, when router or other network devices
needs to send the ACK message, it scans output queue for any earlier arrived ACK
message. [f a new ACK has higher acknowledgment number value, the older ACK
message must be dropped. Since TCP acknowledgments are cumulative and the
newest one obsoletes all older ACK messages. So, there's no need for more than
one ACK message to be in output queue belonging to the same TCP session.
Dropping old ACK when a new one is queued means there would never be more
than one ACK on the queue at any time. It is the same as replacing the earlier
ACK with the newer one.

The main concept of ACK message filtering is seen in Fig. 1.7. In network
devices, which performs ACK message drop. This action does not affect the TCP
session performance and stability and also the TCP sender does not even suspect
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that ACK message drop occurred. But as explained in (Karn 2011) where also
main drawbacks of ACK filtering were reviewed.

The destination application .

Fig. 1.7. Acknowledgment filtering technic in network

The system must comply that TCP session is fully opened and the CWND
and retransmission time out values Trro of TCP are high enough to allow one or
several ACK drops. It is noted that ACK clocking scheme, which for both drop
and congestion control is used, with the ACK filtering can be destroyed. The cur-
rent propositions are compelling. However, the discussed apprehensions can be
challenged with arguments of (Haitao Wu et al. 1999), where the TCP perfor-
mance in the asymmetric links was analysed. It is shown that asymmetry affects
the TCP performance, because it relies on feedback of cumulative ACK from the
receiver. In addition, typical TCP is ACK clocked, so the arrivals of ACK on the
reverse channel have significant effects on the forward channel throughput. In the
networks with bandwidth asymmetry the ACK filtering can work well. This im-
proves the forward TCP throughput and the fairness of competing connections
greatly.

In the work of F. Keceli (2007) presents a quite similar study. Analysis of
unfairness problem between TCP upstream data and ACK downstream on the un-
evenly shared wireless channel is provided. It is shown that ACK message filter-
ing increases IEEE 802.11 wireless channel utilization without any dependence to
trro (Ha et al. 2008; Soediono 1989; Bellovin 1996).
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The extensive simulations with ACK filtering in (Chen ef al. 2009) were pro-
posed. It is demonstrated that lowering ACK number can improved TCP perfor-
mance significantly: achieving up to 25% gain in chain networks and 35% in a
complex grid network, compare with typical TCP. In work the ACK filtering mo-
tivation follows from fact that short ACK messages consume channel capacity
comparable to data packets when the transmission is high rate.

1.10. Acknowledgment Filtering Influence on Router
Performance

In order to find out, what real influence the ACK filtering makes to the TCP func-
tionality and how it affects the performance of the network channel devices (rout-
ers) an experiments were performed. For this reason Ethernet network with IP
routing, and TCP session between two independent nodes (PC0O and PC1/PC2,
Linux OS, 2.6.32 kernel, and TCP Cubic version enabled (Ha et al. 2008; Bao
et al. 2010; Jain et al. 2011) were created. The structure of network is presented
in Fig. 1.8.

TCP messages with data

FTP . N FTP client 1
ooy MAVATAUATE . .. UL ... pc;
I:l " TCP messages with ACK of data o :I

==

MWM

ACK fi ltermg (random drop)

100 BaseTx 100BaseTx

ACK fillter

RO R gme . BR L2bridge
100BaseTx IOéBaseTx ——
[
Target )
. router 100BaseTx
' FTP client 2
—= P

Fig. 1.8. Acknowledgment filtering on network bridge node

In current network the following equipment has been used: PCO as FTP
server — the transmitter of data TCP messages, and PC1/PC2 as FTP client — re-
ceiver of TCP data messages (ACK message sender), the transparent Ethernet
bridge — BR, target router — R, and additional router — RO (Cisco 881) as well. For
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experiments two routers of different generations Cisco 881 and Cisco 1841 were
used. The main difference between them is CPU power. All devices were con-
nected with 100 Mbps Ethernet links (100BaseTx). The ACK filtering was imple-
mented on BR device. It has been created on Linux based (2.6.32 kernel) PC with
Ethernet bridging <brctl> application. This tool was taken because Linux bridging
is faster, work as simple switch, and don't make significant impact to flow param-
eters comparing with routing.

The ACK filtering has been pursued only in one direction from PC1/PC2 to
PCO0, whereas in opposite direction the traffic passed through BR without any al-
terations. Filtering was based on exact frame rate control with Committed Infor-
mation Rate (CIR) and Committed Burst Size (CBS = 5 KB). The last one was
used to avoid degradation of congestion window on initial growth phase. Filtering
was made using <tc> application, which drop/policed ACK messages if it exceeds
specified rate. The scripting code of ACK filtering is shown in Fig. 1.9.

01 tc gdisc add dev ethl ingress

02 tc filter add dev ethl parent ffff:0
protocol all prio 1 u32 match u32
Oxaff0001 Oxffffffff at 16 classid
ffff:0 police index 2 rate 12500bps
burst 102400 mpu 0 action drop/pass

03 tc filter add dev ethl parent ffff:0
protocol all prio 1 u32 match u32
0x0 0x0 at 0 classid ffff:0 police
index 3 rate lbps burst 1 action
drop/drop

Fig. 1.9. Scripting source of <tc> policing

The second router (RO) has been used on purpose to keep more realistic [P
based network with all routing and switching functionalities. The target router
parameters during the experiments with SNMP protocol were collected throw in-
dependent router interface. For data transmissions the FTP application has been
used. In all experimental iterations file of 400 MB size was transferred. The data
speed was controlled on PCO (FTP server) with <tc> script, which shaped to de-
sirable speed without packet loss (delay of traffic only). For this Token Bucket
Filtering — TBF was used (Tschofenig e al. 2009).



28 1. TRANSMISSION CONTROL PROTOCOL OVERHEAD IN HETEROGENEOUS...

1.11. Performance Evaluation Experiments

The target of first experiment scenario was to find how the ACK message filtering
can influence the TCP performance and data transfer integrity. For this, a file of
400 MB size from PCO to PC1 was repeatedly transferred (Fig. 1.10). On the each
iteration the ACK message filtering rate (0%, 20%, 40%, 60%, and 80%; values
of the maximal ACK rate without filtering) was changed.

As shown in Fig. 1.10 TCP message rate for entire period was stable in all
iterations. The growth of message rate is high and equal at all ACK drop values
(events up to ~3 s). This occurred because of two reasons: W(f) of used TCP
version slightly depends frro and ACK filtering is activated only after CBS is

exceeded — when the W(f) = Wiax(f). At the end of transfer decline of throughput
is seen — the finish of data transfer.
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Fig. 1.10. Transmission control protocol messages rate during file transmission
with various acknowledgment drop values

The result shows that ACK message filtering does not affect data transfers of

single TCP session. Observations shows that transfer remains stable for up to §0%
of ACK drops. However, if losses are above 85% the ACK rate becomes less than
1/ trT0, and data rate degrades fatally. In cases of bigger RTO time the ACK rate
limiting could be bigger, but also bigger TCP window size (on TCP sender and
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receiver) would be required to achieve the desired throughput. Also after packet
loss a longer time would be needed to recover from packet drops due to increased
RTO timer value and more unacknowledged would be lost.

The comparison of cumulative TCP segments (count of segments on TCP layer)
and FTP bytes (count of data on FTP layer) rates during period of file transfer is
presented in Fig. 1.11. It is shown that on FTP and TCP layers (lines are coincident)
the same amount of bytes was received at any given time period. Consequently, it is
possible to do the suggestion, that count of duplicated ACK and TCP data retrans-
missions are not increased respectively (fRtt = faaa + fack 1s less than fr1o).
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Fig. 1.11. Cumulative growth of transmission control protocol segments count during
file transmission for various acknowledgment drop values

The second experiment goal was to find what kind of influence cumulative
ACK algorithm has on network equipment performance. For this purpose a file
transfer of 400 MB, was performed and CPU load of router (Cisco 881, Cisco
1841) was measured (see Fig. 1.12.). The experiments were performed at various
datarates (1, 4, 8, 16, 32, 65, and 90 Mbps) in scenarios with and without filtering
and in scenario when 80% of ACK is filtered.

As shown in Fig. 1.12 the CPU load is decreasing when the ACK filtering is
used. The same situation is observable for both routers. It is clear that results do
not depend on router type and amount of data in TCP message. It depends on
amount of processed packets by the router CPU. This is confirming the results
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presented in (Paredes-Farrera et al.; Balakrishnan et al. 2002). Moreover, in Fig.
1.12 is observable that CPU load utilization is almost linear, and depends on TCP
message rate: if the TCP data rate increases, the ACK rate is increasing too. The
functions of the CPU load curves are quite similar for both routers. The difference
is only in designed CPU's power.
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Fig. 1.12. Target routers system load for various traffic rate
(TCP goodput) when 80% acknowledgment is dropped

The relation between target router performance and CPU load is shown in
Fig. 1.13. Performance increase should be understood as relative CPU load reduc-
tion caused by employing of ACK filtering. With ACK message drop of 8§0% the
performance can be increased by 30%, comparing with case when CPU load is
25%, and ACK filtering is not used. Meanwhile, if CPU load is more than 60%
(more than routers overload threshold) with 80% of ACK drop the increase of
routers performance is ~32%. The reduction of ACK messages could lead to better
performance of the network in generally, not only routers but also firewall, proxy
or load balancers, who are directly affected by high TCP rates and could have
significant gain in performance due reduction of it.

The third experiment issue was to find how the ACK filtering can influence
two concurrent and independent TCP sessions. During investigation the PC0O was
used as FTP server and PC1/PC2 — as FTP clients. With each TCP session the
400 MB files were transferred. The ACK message filtering was performed on both
sessions simultaneously.
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The dependence of two TCP sessions message rate during file transmissions
is presented in Fig. 1.14. Both independent sessions remained concurrent and di-
vide channel almost equally (equal channel sharing is not possible due constant
TCP channel probing nature (Bott 2014) At 3 s, as in situation with one session
(Fig. 1.14), the TCP1 begins to increase the message rate according to Wc(¥).
While at 6 s TCP2 session is starting too, and about 9 s the message rate of both
sessions becomes approx. TCP1 throughput ~44 Mbps, TCP2 throughput
~49 Mbps and aggregated ~93 Mbps.

After 78 s the TCP1 rate is decreasing since finishing of file transfer, while
the TCP2 conversely starts to grow-up rate. At 81 s TCP2 is finishing transfer,
too. Current fine competition between two independent session’s show, that both
of them from TCP point of view are working well, and the ACK filtering does not
make significant influence on TCP functionality in current conditions.

The dependence of cumulative data during two file transmissions is shown in
Fig. 1.15. It can be seen that both sessions collect messages well in TCP layer and
in application layer (Fig.1.15.). It means that TCP goodput (transmitted data to
upper layer) of both sessions are close to maximal, while the count of duplicated
ACK is minimal.
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Fig. 1.15. Cumulative growth of transmission control protocol segments count during
two file transmission: both sessions with 80% of acknowledgment drops
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TCP interoperability defines whether a protocol is fair to other TCP sessions.
Therefore, it’s important to find how ACK filtering increases unfairness of TCP.
For this purpose fourth experiment was performed. The scenario was the same as
in previous, only the filtering for one session and the PCO without shaping was
used (Fig. 1.16).

The dependence of message rate of two TCP sessions on file transmissions
time is presented in Fig. 1.16. The graph shows that both sessions divide channel
almost equally as in previous scenario. The insignificant unfairness between two
TCP sessions was observed (Jacobson et al. 1992). But this is typical case for real
network situation were one TCP session has a bigger throughput gain. To better
understand unfairness better, the extensive analysis must be done with various
TCP versions and modification also different OS systems. And this is the main
issue of future investigations. In addition, during the tests the ACK message rate
filtering also adds delay to network, this have negative impact to TCP fairness.
Because the TCP session with ACK limiting enabled is filtered on Linux box, and
additional delay of packet processing is added to the total RTT time of TCP.
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1.12. Acknowledgment Filtering in Heterogeneous
IEEE 802.11 Networks

In order to find out how described ACK filtering technic performance in
IEEE 802.11 wireless networks an experiments were performed. Due to shared
medium of wireless link the ACK filtering has big impact not only to network
equipment but also to shared wireless medium. Reducing ACK message rate can
increase wireless link capacity and ensure better performance for applications or
reduced wireless saturation.

To better understand how ACK filtering is working and is the impact of it to
heterogeneous networks and investigation of ACK messages rate and its impact
to IEEE 802.11 was made. In wireless networks TCP or other session orientated
protocols is competing to get network access or capacity needed for data trans-
mission. IEEE 802.11 MAC protocol provides a fair access to the shared wireless
medium through two different access functions: polling based protocol, called the
Point Coordination Function (PCF) and contention based access protocol, called
the Distributed Coordination Function (DCF) (Vindasius et al. 2015; Potorac et al.
2015).

The DCF is more frequently implemented compared with PCF and is used
for automatic medium sharing between compatible stations (Choi 2012; Zhao et
al. 2009). This is done by using CSMA/CA. Before a station can send data, it must
sense the wireless medium to determine if it is free. If it is so, the transmission
may proceed, other ways the station will wait until the end of the in progress trans-
mission (Potorac et al. 2015; Balachandran ez al. 2002). The CSMA/CA requires
a minimum specified space gap between frame transmissions to ensure that the
medium has been idle for the specified time period.

To ensure that the DCF uses to basic rules: first the medium must be free
more than for DIFS (Distributed Inter Frame Space time) interval, and the second
rule says, to reduce the probability of sending two stations at the same time, the
stations must wait random back of period — Ty (Zhao et al. 2009; Miguel et al.
2011):

T, =rand(CW)- T . (1.19)
Where rand(CW) is a pseudo random integer value selected from interval
from zero to CW and the T value correspond to slot time which is physical char-

acteristic of IEEE 802.11 standard.
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1.13. Acknowledgment in IEEE 802.11 Networks

Like in TCP the IEEE 802.11 MAC uses acknowledgment (ACK) frames upon
successful reception of a data frame. Only after receiving an ACK frame correctly,
the transmitter assumes successful delivery of the corresponding data frame. To
ensure that 802.11 ACK frame is send before other data frame, the wireless client
wait small time gap SIFS (Short Inter Frame Space) before transmitting acknowl-
edgment frame. This frame exchange sequence, prevents other stations of sending
data — which are required to wait for the medium to be idle for a longer time when
SIFS for attempting to use the medium (Jain et al. 2005; Xiao et al. 2002;
Vindasius et al. 2015). This allows to successfully completing the frame exchange
sequence. The successful frame transmissions is shown in Fig. 1.17.

If no wireless ACK frame is received within a SIFS interval due possibly to
an error in reception of the preceding data frame (see Fig. 1.17) the transmitter
will contend again for the medium to retransmit the frame after an ACK timeout
(Kaur ef al. 2010; Misra, Sudip, Isaac Woungang 2009).
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In basic DCF mode of IEEE 802.11 MAC standard the good throughput — Gy,
of wireless media can be calculated based on following function (Gast 2005;
Bianchi 2000):
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G, = (“’ﬁj . (1.20)

TDCF

Where Lpara is the length of payload size of 802.11 data frame, and Tpcr the
total time needed to make successful full frame exchange sequence. The Tpcr time
consists of sum of times needed to make frame exchange in wireless media can
be determined by the equation (Xiao 2005):

TDCF:TDIFS+TB+TDATA+7;IDFD+TACK' (121)

The Trre, Tray, Tors, Tsirs variables are mostly constants and are only differ
based on different IEEE 802.11 standards. The Tparta and Tack time frames are
calculated based on payload size and sending data rate of physical wireless media
or from Torpm — transmission time of one OFDM symbol and Npgps — number of
data bits per OFDM symbol:

2248 (L, +Lp
Toata ZTPRE+TPHY+TOFDM"V (N ATA)—|; (1.22)
DBPS
22+8-L
TACK = TPRE + TPHY + TOFDM [ N ACk —‘ . (1.23)
DBPS

From (1.21) and (1.22) the time needed to transmit the information over wire-
less IEEE 802.11g/a link is closely related to its size of data packet the wireless
access point receives in input (in our cases from Ethernet). As the data packet get
smaller on Ethernet the total time needed in wireless links increases due to Tpre,
Truy, Towrs Tsies values. The smaller the data packet is send over IEEE 802.11a/g
network, the bigger is the protocol overhead for this packet (Gast 2005; Xiao
2005).

1.14. Performance Evaluation of Acknowledgment
Filtering in IEEE802.11 Networks

In order to find out what is ACK message filtering in IEEE 802.11a networks and
how it affects the TCP performance an experiments were performed. For this rea-
son I[EEE 80211a wireless network with IP routing, and TCP session between two
independent nodes (PC1 and PC2, Linux OS, 2.6.32 kernel, and TCP Cubic ver-
sion enabled) were created. The structure of network is presented in Fig. 1.18.
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In testing network the following equipment has been used: PC1 as TCP cli-
ent — the transmitter of data TCP messages to PC2 — receiver of TCP data mes-
sages. The Wi-Fi AP and PC2 were connected with 100 Mbps Ethernet links
(100BaseTx) were created. The structure of network is presented in Fig. 1.18.
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Fig. 1.18. Acknowledgment filtering on Linux
wireless access point node

The ACK filtering has been pursued only in one direction from PC2 to PCI
via wireless AP, whereas in opposite direction the traffic passed through wireless
AP without any alterations. The ACK filtering was implemented on AP2 node
based on exact frame rate control with Committed Information Rate (CIR) and
Committed Burst Size (CBS = 5 KB). It has been created on Linux based (ker-
nel 2.6.32) Ethernet bridging <brct/> application like in tests before. ACK filter-
ing was made using <tc> application, which drop/policed ACK messages if it ex-
ceeds specified rate.

The theoretical throughput of TCP based on ACK message filtering value in
IEEE 802.11a network can be calculate based on (1.18) and is provided as follow:

N-8-L
Grep Z{ 8 Loata J . (1.24)

N-T, DCF DATA T T DCF_ACK

Here Tpcr pata is time the time needed to transmit one TCP data segment,
Tocr pata— time needed to send one ACK message, N — number of TCP segments
acknowledged by one ACK.
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By considering the fact that the TCP segment size is constant payload size
(1416 B) the max throughput in IEEE 802.11a links with different values of ACK
filtering is showed in Fig. 1.19.
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Fig. 1.19. Transmission control protocol throughput dependency from acknowledgment
messages rate in IEEE 802.11a network

In practice TCP throughput can and in most cases is much lower due to dif-
ferent TCP windows size value and changing #rto values or packet drops (Potorac
et al. 2015; Li et al. 2009). In Fig. 1.19 the ideal, theoretical situation is showed,
without any negative conditions.

To compare the theoretical results from (1.19) and to see how TCP work over
wireless links, a real world test was conducted with ACK messages filtering and
without it. In first test a TCP data stream from PC1 to PC2 was created, the results
are showed in Fig. 1.20. More than half all wireless frames are the IEEE 802.11a
ACK messages send for TCP data and ACK messages transmitted from Wi-Fi AP
to Wi-Fi client and back. Though the messages are short in time but it occupies
link resources and generates unneeded overhead especially in links with small
packet drops. In total the 802.11 layer 2 frame rate exceeds 600 fps from which
only the half are TCP data frames and contains information.

During all test the average TCP throughput did not exceed ~ 25 Mbit/s that is
considered the maximum practical speed for IEEE 802.11a for TCP protocol (see
Fig. 1.19). In case the ACK messages is generated for every second TCP data
segment.
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Fig. 1.20. IEEE 802.11 frame rate comparison to Transmission
Control Protocol message rate without Acknowledgment filtering enabled
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Fig. 1.21. IEEE 802.11 frame rate comparison to Transmission Control
Protocol message rate with Acknowledgment filtering enabled

In order to increase the practically useful TCP throughput over Wi-Fi two
different methods were used, which reduce the unneeded technical overhead. The
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first and most simple method is to reduce ACK message rate that in most cases,
especially in high speed TCP session, is not needed and does not have any impact
to throughput and stability of existing TCP session (Fig. 1.21).

The ACK filtering has been pursued only in one direction from PC2 to PC1,
whereas in opposite direction the traffic passed through bridge without any alter-
ations. During the testing the maximum stables ACK message rate of ~ 100 Kbit/s
was observed, with which the TCP session gained the best TCP frame rate and
sustained stabled during for all testing time (see Fig. 1.21).

The first method not only reduce the IEEE 802.11 acknowledgment rate due
to reduced ACK rate, but not eliminating IEEE 802.11 acknowledgment frames.
It allows to increase the TCP throughput up to 30 Mbit/s.
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Fig. 1.22. Transmission Control Protocol throughput with
Acknowledgment and 802.11 filtering methods

The second method is based on additionally filtering IEEE 802.11 ACK
frames for TCP acknowledgment messages. This was accomplished by <ebta-
bles> application which change the destination MAC address of Ethernet frame
from unicast to multicast of ACK messages, before leaving the PC2 NIC interface
(Wu 2012). This allows to disable the IEEE 802.11 acknowledgments mechanism
for PC2 in wireless transmission link for ACK messages.

The main difference from TCP filtering from IEEE 802.11 is that the TCP
acknowledgment messages are not filtered from TCP stream, but change the wire-
less mechanism by disabling the IEEE §02.11 acknowledgments for ACK mes-
sages.
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Of course the ACK and wireless filtering could be implied to both stream
(IEEE80.11 and ACK) to reduce the unneeded technical overhead, but in total the
difference between the ACK filtering and TCP plus 802.11 filtering is very small
and has not impact to TCP throughput (Fig. 1.22).

From results of the first method (Fig. 1.21) the reduction of ACK messages
rate not only reduces the IEEE 802.11a acknowledgment rate up to 50% but also
increased the TCP throughput up to ~30 Mbit/s. That allows us to gain 20% in
throughput or 5 Mbit/s of traffic increase. This allows reduce the IEEE 802.11a
acknowledgment frame rate and increase performance of wireless nodes due to
reduced saturation of wireless links. From test seen in Fig. 1.20 and 1.21 indicates
that ACK rate limiting has no or little impact to TCP data transmission over
IEEE802.11a links and can be used in real world wireless networks.

1.15. Conclusions of 1 Chapter and Formulation of
the Thesis Objectives

1. ACK limiting in network equipment does not significantly affect the
TCP data transfer in normal network conditions. The TCP data transfer
remains stable for up to 80% of ACK drops. However, if losses are
above 85% the ACK rate becomes less than 1/rrro and session is ter-
minating immediately.

2. The performance of router CPU depends on ACK count and can be
increased with ACK limiting is enabled. The CPU load utilization is
linear, and depends on data rate: if the TCP data rate increases, the
ACK rate is increasing too.

3. On CPU load of 25% with 80% of ACK drop, it is possible to increase
the router performance by 30%. Meanwhile, on CPU load of 60%, on
the same ACK limiting conditions, the performance can be increased
by 32%.

4. The ACK limiting on network equipment can be used not only with
single TCP session but also with concurrent sessions. Results show
that two sessions work well, without any evident signs of the instabil-
ities; although a slight unfairness among TCP sessions were observed.

5. ACK filtering in IEEE802.11b/a wireless networks can give perfor-
mance gain of 20% (in good wireless conditions). By using the same
ACK limiting algorithm for IEEE 802.11 acknowledgment frames, a
reduction of wireless saturation can be achieved and even better im-
prove throughput of other wireless nodes can be succeeded.
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The following tasks must be solved:

1. Toinvestigate TCP packet processing and main function in Linux OS
kernel for TCP overhead reduction by limiting ACK message rate.

2. Create dynamic ACK limiting method for Linux OS kernel for effi-
cient TCP overhead reduction based on TCP flow characteristics.

3. Experimentally verify the efficiency ACK limiting method in Linux
OS kernel and the impact of it to TCP data transmissions and system
stability.

4. Find the upper and lower values for efficient ACK limiting in Linux
OS kernel.



Linux Kernel Acknowledgment
Limiting

During the past decade the Internet was increasing in all directions, from PC web
browsing to embedded and mobile devices which are interconnected in global In-
ternet with wired or wireless technologies (Jacobson et al. 1992: 1-37; Kaur et al.
2010; Kotz et al. 2002). The new wave of Linux based devices is growing in num-
bers in global network every day, it generates new challenges not only for network
engineers but also to system developers. The main problem of network layer is to
provide reliable and guaranteed network service for customer as fast and as cheap
as possible. From system developers point they have to reduce the power con-
sumption and increase the performance or speed of the product.

The TCP optimization problem or performance improvements issue is sub-
stantial for low power embedded Linux based devices. The lack of CPU perfor-
mance is the main bottleneck for these devices for achieving better performance
and response time. It can have huge impact to the whole system performance if
the embedded CPU is consumed by network stack processing.

TCP optimization is also important to high-end server or clusters. By addi-
tionally optimizing or improved TCP protocol it can also improve data center per-
formance not only in service delivery layer but also reduced power consumption,
due to reduce need for computing power of CPU (Priescu et al. 2012).

In second chapter of dissertation a closer look to packet flow in Linux OS
kernel network stack will be made. Finally some modification of current Linux

43
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kernel will be made to see the impact of the ACK limiting it makes to TCP per-
formance and stability.

For TCP kernel modifications a real field test were performed. Due to com-
plexity of Linux kernel and OS, it is imported to make the testing as real as pos-
sible. Because network simulators and emulators cannot deal with such level of
complexity, which persist in real systems, the real field testing’s were performed
(Schimmel ef al. 1994).

The decision to use Linux Kernel also came from the excellent support and
community, also it has good (not excellent) documentation, what most of OS lack.
Moreover Linux kernel is used in big variety of modern devices, starting from
CPE to and android and supercomputers, and it is considered as main operating
system for Internet and communication.

The research results are published in author publications: Statkus et al.
(2013), Statkus et al. (2012). The main results are announced in scientific confer-
ence: “Electronics” (Vilnius 2010).

2.1. Data Receiving in Linux Kernel

Before explaining Linux kernel network stack, it must be stated that current Linux
kernel is not final and like real world organism it’s constantly evolving and grow-
ing, by including new features or code modifications. These changes are made
daily, starting from kernel developers to first time students and learners. Some of
these changes persist for long time and are included in next kernel release, some
code changes stay in patch state or testing kernel possibility. The following code
and procedure explanation of kernel network stack are not permanent, and will
change in time, but in general the main concept of kernel network stack should
stay the same, at least for the third release of the kernel (3.10 release) releases. In
this chapter a closer look to Linux kernel network stack procedures and functions
will be made to better understand the kernel work flows and TCP algorithms
which are used for data processing.

Linux kernel is event driven system, which start processing data after an event
or interrupt is received (Seth ez al. 2008). If the system receives a packet to NIC
interface, an interrupt is generated to CPU (for simplicity a system with one CPU
is considered). Every system interrupt come with unique interrupt number, by this
number the OS select needed driver to handle with arises interrupt (the procedure
responsible for selecting driver is called interrupt handler). In Ethernet network
example if a packet is received the system call NIC driver to handle the received
interrupt (Bhuiyan et al. 2009). The NIC driver first puts the received packet in
NIC memory, for Ethernet CRC and integrity validation checking (Parham ez al.).
If received packet is good it is moved to system memory, which was allocated by
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NIC for data receiving. In case the packet receiving rate is too fast for system to
handle or allocated system memory is too small the NIC must drop received data
messages, it also protects the system from heavy message flood (Stevens et al.
2014).

After the data is put to system memory the kernel handler takes place to pro-
cess received data, it calls napi_schedule() function for processing received pack-
ets. The napi_shecule function call software interrupt handler. This is done to
queue network hardware interrupts and allow the kernel to process the received
data, not allowing hardware interrupt to overrun the CPU.

After a packet is received the softirq call the net rx_action() function, which
pools received data from the NIC. The received data is wrapped it to sk_buff'struc-
ture and is passed to netif receive skb() function for further processing (Seth et
al. 2008; Jacobson 1990). Then the received data, based on packet type, is send to
upper layer for further processing. To process the received data packet the kernel
must know what type protocol is inside the received Ethernet data frame. This is
done by looking to 2 B Ethertype field (see Fig. 2.1) that indicates the upper layer
protocol.

Preambule Destination MAC| Source MAC |5 PayLoad CRC/FCS

Type
1]2[3]a[s5]6][7][8|1][2][3]4]5]6][7[8]1]2][3][4][5]6]7][8]1]2|1][2][3]4]..]..[..]..]..[n]1]2]3]4

Fig. 2.1. Ethernet header structure

This information is copied to sk_buff(sk—>protocol) structure field, which is
used for further packet processing in kernel. If it is an IP packet type
ip_packet type, kernel calls ip_rc() function for data processing.

Version IHL Type of Service TOS Total Length
1]2]3]a]1]2]3]a]1]2]3]a]5]6][7]8]|1]2][3]4a][5]6]7]8]9]10[11]12[13]14]15]16
Time-To-Live (TTL) Protocol Header Checksum
1]2]3]as5]6][7]8]|1]2]3]a][5]6][7]8]|1]2][3]4a[5]6[7]8]9]10[11]12[13]14]15]16
Source IP address
1]2]3]a[5]6]7]8]9]10[11]12]13[14]15]16]17]18]19]20[21]22]23]24]25]26]27]28]29]3031]32
Destination IP address
1]2]3]4a]5]6]7]8]9]10[11]12[13]14]15]16[17]18[19]20[21]22]23]24]25]26]27]28]29]30[31[32
OPTIONS

1]2]3]4]5]6]7]8]9]10[11]12[13]14]15]16[17]18[19]20[21]22]23]24]25]26]27]28]29]30[31[32

Fig. 2.2. Internet protocol header structure
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The ip_rc() function examines the structure and checks the header checksum
validation. If the packet is valid it is passed through the netfilter code, for firewall
processing, if needed the modification for packet are made depending of firewall
settings (SNAT, DNAT, etc.). If the packet destination is local system the ip lo-
cal _deliver function is called, which make final packet assembly and passes the
packet to ip_local deliver finish() function which removes IP header and finds
the upper layer protocol by looking to IP header protocol field (see Fig. 2.2).

Every upper layer protocol has its own packet procedure for packet pro-
cessing, if the value is 6 in decimal, it means that inner protocol is TCP (see
Fig. 2.3). For TCP packet processing kernel call tcp v4_rcv() function, which is
called from tcp ipv4.c file (see Fig. 2.6). As obvious the tcp v4 rcv() function
defines only IPv4 standard, and for processing IPv6 TCP header must call
tcp_v6_rev() receive function from tcp ipv6.c file, it is done because for TCP
checksum is computed from logical TCP IP header also known as “pseudo
header”, which includes IP address and protocol fields from IPv4 header (Seth ez
al. 2008; Bach 1990; Lahey 2000). The full “pseudo header” is shown in Fig. 2.4.

Source IP address
1]2]3]4]5]6]7]8]9]10/11[12]13[14]15[16][17[18]19]20[21]22]23]24]25]26[27]28 29]30]31]32
Destination IP address
1]2]3]4]s5]6]7]8]9]1011[12]13[14]15[16]17[18]19]20[21]22]23]24] 25| 2627]28] 29]30]31]32
OPTIONS
1]2]3]a]s5]6]7]8]9]10[11]12[13]14]15[16]17]18]19]20][2122]23]24]25]26]27]28]29]30]31]32

Fig. 2.3. Internet protocol logical header structure

The reserved fields in most cases it is set to 0 and not used, and only four
fields: source, destination address, protocol and TCP segment length (header and
data length) fields are needed to make TCP checksum (Fig. 2.4).

During the TCP checksum calculation the CRC fields is left empty (field with
zero), after checksum calculation the field is filled with value, then the packet is
created (Parham ez al.). After the packet is validated it goes for further processing
depending from the state of TCP stats and packet type (in example if RST or FIN
fields are marked). Then the kernel tried to find the socket it belongs by calling
tep v4_lookup/inet lookup skb function, it looks to hash tablet packet new (no
active session).



2. LINUX KERNEL ACKNOWLEDGMENT LIMITING 47

Check
Pseudo Header TCP Headerl—s“‘"‘ TCP DATA

/

Fig. 2.4. Transmission control protocol cyclic redundancy check calculation

After connection state is check inet lookup skb the kernel executes the
tcp_v4_rev function for further packet processing (see Fig. 2.5). If connection is
established and no conditional state occurs (timeout, out of order packet) the con-
nection goes to “Fast Path”, by calling tcp_rcv_estableshed function. The function
goes through the TCP header, by checking the sequence number and putting the
received data to the socket buffer for application processing and sending the ac-
knowledgment packet to the data sender (Unzner ef al. 2014; Beekmans 2010).

tcp_va_rec()

v

tcp_va_lookup()

v

TCP LISINING TCP ESTABLISHED
#‘ tcp_v4_do_rcv() ﬁ
tcp_va_do_rcv() tcp_v4a_search_req()

v

tcp_check_req()

Fig. 2.5. Linux kernel transmission control protocol packet processing
algorithm based on session status

2.2. Linux Kernel Transmission Control Protocol
Acknowledgment Generation

After the TCP data is processed by fcp rcv_established function and is validate
the kernel calls tcp_ack snd check function (see Fig.2.6) for checking if acknowl-
edgment sending is need (Seth er al. 2008).
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net/ipv4/tcp_input.c

4796 static void _ tcp ack snd check(struct sock *sk, int ofo possible)
4797 |

4798 struct tcp_sock *tp = tcp_sk(sk);

4799

4800 /* More than one full frame received... */

4801 if (((tp->rcv_nxt - tp->rcv_wup) > inet csk(sk)-
>icsk_ack.rcv_mss &&

4802 /* ... and right edge of window advances far enough.
4803 * (tcp_recvmsg() will send ACK otherwise). Or...
4804 */

4805 __tcp_select window(sk) >= tp->rcv_wnd) |

4806 /* We ACK each frame or... */

4807 tcp_in quickack mode (sk) |

4808 /* We have out of order data. */

4809 (ofo_possible && skb peek(&tp->out of order queue))) {
4810 /* Then ack it now */

4811 tcp send_ack(sk);

4812 } else {

4813 /* Else, send delayed ack. */

4814 tcp send delayed ack(sk);

4815 }

4816 }

Fig. 2.6. Linux kernel input packet processing in C code

The tcp_ack snd_check function receives two arguments, the packet sk struc-
ture of packet and ofo_possible variable, the ofo_possible is 1 or 0, showing if out
of order segments were received (in case of one) (see Fig 2.6).

The fcp_ack _snd_check function decides if TCP acknowledgment must be
send now, execute fcp send ack() function or can be delayed tcp send de-
layed _ack() based on four if conditions:

1.

The received data segment or unacknowledged data must by more than
one maximum segment size for defined in session icsk_ack.rcv_mss var-
iable. This comes from RFC 1122 or STDO003 specification (section
4.2.3.2), saying that “an ACK SHOULD be generated for at least every
second full sized segment” (Berkeley ef al. 2011; Bott 2014) showed in
Fig. 2.6 line 4801. From the logical condition seen in first part of code,
the unacknowledged data must be more than
inet_csk(sk)— >icsk_ack.rcv_mss value. Theoretically it is not according
the RFC, but in practice this condition is met after receiving the second
TCP segment. That is very important to note here is that the RFC define
that the ACK should but not must be generated. So basically RFC allows
us to generate the ACK more rarely (see Fig. 2.6 line 4805).

The TCP receive window or usable buffer space must be bigger than the
receive windows or advertised TCP window by the server to the client.
This is done to overcome the Silly Window syndrome (SWS) problem,
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which was first defined in RFC 813. It occurs due the bad system imple-
mentation of TCP flow control or due to the slow system, which consumes
data slowly or can not handle the received information. In such conditions
the receive windows rcv_wnd variable is filled with data much faster than
it can handle it (clean up the receive buffer). In such condition the kernel
must reduce the advertised window, by sending the update size to the cli-
ent. This condition would go on until the receive window is set to minimal
allowed size, making the data transmission ineffective. By forbidding the
server to send ACK messages, the kernel reduces the packet flow rate, the
client must wait for ACK for sending more data and reduce the server
load. This condition also satisfies the RFC 5681 that “an ACK SHOULD
be generated for at least every second full sized segment” (Bott 2014)
seen in Fig. 2.6 line 4807.

3. The third condition check if fcp_in_quickack mode(sk) any data are send
back to TCP client, in such case the TCP connection in interactive state
and an ACK packet must be send immediately (like telnet or remote data
access information applications). In the other way the kernel would wait
up to 500 ms before sending an ACK message (Seth ef al. 2008) (see Fig.
2.6 line 4809).

4. The final conditions check if the server receives out of order data, by
checking the ofo_possible variable and the looking to receive queue
tp— >out_of order gqueue, to see if any out of order packet are received.
This must be done for faster data recovery and improves TCP recovery
time after a loss RFC 5681 — “A TCP receiver should send an immediate
duplicate ACK when an out of order segment arrives” (Bott 2014). The
purpose of this ACK is to inform the sender that a segment was received
out of order and which sequence number is expected. This condition usu-
ally happens if packet loss or corruption occurs in the link between the
client and server.

After checking these conditions (the first and second are in conjunction), ker-
nel can send ACK message immediately if one of three conditions are true, else
the sending of ACK message must be delayed, by calling the fcp send de-
layed ack function, which adjust the sending time based on RTT value and system
minimum and maximum delay values. In case where is no data send back over the
same TCP session and push bit is not set, the TCP acknowledgment generation
must be done on two first conditions (if more than one full size segment is received
and kernel has enough space in receive buffer) (Nagle 1984; Stevens et al. 1990).
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2.3. Acknowledgment Sending Function

As it was shown in previous chapter (how ACK limiting impact network device
performance), the TCP acknowledgment messages in high rate can directly influ-
ence network equipment, connection links and network endpoints. Also in high
speed links, the bottleneck can becomes one of the TCP sender or receiver, not
able to handle high ACK message rate. By reducing the TCP acknowledgment
rate the system can significantly reduce network load and increase TCP perfor-
mance in embedded or low CPU power device.

In Linux OS kernel ACK generation for not interactive data transfer, depends
mainly from two conditions: icsk_ack.rcv_mss and if the system has enough free
memory in receive buffer (of course if the system does not encounter any network
issues like packet drops or reordering) showed in Fig. 2.6.

As the second variable plays important role in system load control on heavy
loaded systems with high TCP rate, it is easier to change icsk_ack.rcv_mss var-
iable value to control ACK rate. By changing Linux kernel code it is important
to note that most of the code and variables are reused in other parts of kernel
code and in most cases will have negative impact to system stability or perfor-
mance.

To change ACK message or icsk_ack.rcv_mss variable an additional C var-
iable (tp—> ftcp_ack rate) must be included. Which will increases the
icsk_ack.rcv_mss size by factor and should not impact any other system code.
By doing it the system could easily reduce or increase ACK generation rate
without impacting other kernel code and check current ACK generation rate. A
negative factor of it that kernel will have to store more TCP state system varia-
bles and use system resource to calculate or change its value during the TCP
session.

2.4. Start of Acknowledgment Rate Limiting

The biggest issue of ACK rate limiting and TCP in general is that the operating
system running TCP server or client does not know anything about network
condition (link throughput, delay, transport technologies) and how it is chang-
ing during the time. Meaning that TCP must adapt and change conditions after
disorder arise in network or remote system. In addition the TCP receiver does
not know in what state of TCP (slow start, congestion avoidance, fast recovery,
etc.) is the data sender. In example if ACK rate limiting is activated to early the
system will have negative impact to TCP data transmission speed ant TCP sta-
bility due to the fact that the TCP sender is still in Slow Start and CWND is
increasing. If it is activated to late, most sessions will have no positive impact
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to TCP performance or the TCP session will ended without reach the point
when ACK limiting should be activated (system would consume CPU cycles
but not use the algorithm).

As explained before the TCP client sending speed basically depends from
CWND size which is controlled by Slow Start congestion window algorithms and
also delay (Jacobson 1988). To get best TCP performance using the ACK rate
limiting first operating system must allow the TCP session to fully open the
CWND (to reach the maximum allowed size RWND) and TCP session must be in
congestion avoidance phase. After it the ACK rate limiting algorithm can be acti-
vated, by reducing ACK rate in small fractions over the time. A big reduction of
ACK could lead to NDP increased or the new RTT could be bigger than RTO and
TCP session would got to slow start phase.

The problem with TCP receiver is that it does not get any information or in-
dications about client side TCP status like CWND size (is it in maximum or not).
In addition the TCP receiver does not know when the Slow Start phase stops and
congestion avoidance start on TCP sender. The only information the system can
rely is the RFC condition that the sending window increase must not be bigger
than 1 SMSS per RTT in congestion avoidance phase (RFC 5681) and in Slow
Start the sending window is increased by most SMSS bytes for each ACK received
(RFC 5681). As the Slow Start is more exponential function and the Congestion
Avoidance is more linearly (Bott 2014), it is clear that more time is spent in grow-
ing the same delta CWND size. So this presupposition allows us to calculate the
worst case scenario, if the TCP data sender (client) starts from congestion avoid-
ance phase. By calculating the time or packet count needed for the TCP sender to
fully open the CWND to max allowed size the kernel can tell when ACK rate
limiting must be enabled. The CWND growth function is defined equation below
(Bott 2014):

2
SMSS @1

Wewno =Wewnno W
CWND

Where Wewnp is new TCP congestion window, Wewnno is the TCP congestion
windows before and SMSS is the sender maximum segment size in byes.

In Linux kernel TCP stack this growth function is replaced with a loop func-
tion which increased the CWND no more than one SMSS per RTT showed in
Fig. 2.7.

From code example above the snd cwnd (congestion window) is increased in
loop after snd cwnd cnt (the number of data segments have been transmitted in
the current congestion window) becomes bigger then w variable (current conges-
tion windows value). The function is activated after ACK is received, indicating
that the send data has been successfully received.
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net/ipv4/tcp cong.c

395 {
396
now.
397
398
399
400
401
402
403
404
405
406
407
408
409
410 }

394 void tcp_cong avoid ai(struct tcp_sock *tp, u32 w, u32 acked)

/* If
*/

if (tp->snd_CWND _cnt >= w)

}

tp->snd_cwnd_cnt += acked;
if (tp->snd_cwnd _cnt >= w) {

}

tp->snd_cwnd = min(tp->snd cwnd, tp->snd_cwnd clamp) ;

credits accumulated at a higher w, apply them gently

{
tp->snd_cwnd cnt = 0;
tp->snd_cwnd++;

u32 delta = tp->snd _cwnd_cnt / w;

tp->snd_cwnd cnt -= delta * w;
tp->snd_cwnd += delta;

Fig. 2.7. Linux

kernel congestion function growth algorithm source code

RFC congestion function (2.1) and the Linux kernel stack code is approxima-
tion of conditions that the CWND must increase by one full sized segment per
RTT (Touch 2007). The difference between two equations is minimal and can be
equated and written in simple logical loop showed in Fig. 2.8.

=i+l
CWND = CWND + SMSS
YES», n=CWND /SMSS
NO
\ 4
n=n-1
A

Fig. 2.8. Congestion windows calculation
based on received acknowledgments
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In Fig. 2.8 i is the received ACK packets, » is the number of acknowledged
packets after last CWND increase.

To solve the problem and to find the number of ACK message count (due to
fact that the CWND is increased based on received ACK) first the value of i must
be found. From logical loop (see Fig. 2.8), which is expressed as number of se-
quence representing the i growth depending from CWND size (for simplicity the
SMMS is set to one and CWND is set to zero), the number of ACK needed to get
the CWND can be found, showed in table 2.1.

Table 2.1. Acknowledgment sequence numbers

Wewso | 1234 |5 (6 |7 (8 |9 | 101112 |13 14
ACKx 2519|1420 |27 (35|44 |54 (65|77 |90 | 104 | 119
Diff 314516 |7 (8 |9 (10|11 (12|13 |14 |15 16

So if the CWND is number of the sequence ACKy , shown as subtraction field
Diff. The sequence is quadratic sequence, which can be written as following func-
tion:

Wewnp ‘(WCWNDin + 1)
2

Where ACKy is the number of ACK messages must be send to reach CWND

value, Wewnp is current TCP congestion window size in bytes, Wepnp « is the

congestion window size after ACKy received ACK messages. The Wewwp o value-
can easily found using following equation:

34 9+8-ACK
W VT N 2.3)

CWND n —
- 2

ACK = -1, (2.2)

By knowing the TCP receiving or advertised TCP window size value
(Wrwnp)), which must be less or equal to Wewn, the number of ACK messages can
be found after which ACK rate limiting must start:

(WCWND +2)- (WCWND_n + 1)
2

In (2.4) defined above the SMSS 1, so in real world calculation should be
replace the CWND, by division of CWND and SMSS:

ACK , = -1. 2.4)
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Wewso +2 . Wewsp +1
SMSS SMSS _1 2.5)
5 . .

To reduce the load to CPU the (2.5) can be optimized of efficiency by elimi-
nating division operation, which is more CPU demanding compared to multipli-
cation or sum and allow the system performance the operation faster:

3 o )

(2SM®S
ACKy = (2.6)

ACKN:(

But as the variable calculation is carried out on after TCP window update, in
reality it will not have any affect to system performance.

One significant thing is that the equations for calculating the ACKy represent-
ing sequence value is based on the logical loop showed in Fig. 2.8. But in RFC
documentation the defined equation responsible for congesting window is in-
creased by one if delta increase is less than one:

SMSS’*
< S

1 2.7

WCWND

] —— RFC function (SMMSS 1460)
1 —— Loop function (SMSS 1460)
3.0M4 —— RFC function (SMSS 1280)
{ —— Loop function (SMSS 1280)
] RFC function (SMSS 1000)
2.5M- —— Loop function (SMSS 1000)

]
/
e

A

2.0M-
] A

1.5M ////
1.0M§ //

500.0k|

TCP congestion window, B

0 500.0k 1.0M 1.5M 2.0M 2.5M
ACK count

Fig. 2.9. Proposed congestion window growth comparison
with different sender maximum segment size values
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This allowing faster function growth with higher ACKy value. The difference
between the RFC define and proposed in (2.6) and is showed Fig. 2.6.

From the results of (2.6) and RFC functions showed in Fig. 2.9 the function
growth of (2.6) is more aggressive with lower N values, but the N increases the
Wecwnp increase slows downs. This is due to fact that the delta increase of RFC
defined equation is replaced with constantan after limit value (2.7) is reached, the
RFC function becomes liner function. This allows the RFC function to growth
faster, compared to the loop function. Also a big impact to the functions is the
SMSS value, the less the value, the slower is the growing of the function and the
RFC function start to overcome the loop function earlier.

Although the RFC growth function overcomes the loop function in some
point but due to high value of ACKy or the sequence number the TCP CWND
windows mostly will be fully opened. So if the TCP sending side is using default
RFC suggested congestion avoidance growth algorithm for CWND increase the
start of ACK rate limiting should not have any impact to TCP session CWND
growth. And more, during the proposed calculation, the slow start phase was elim-
inated.

2.5. Upper Limit of Acknowledgment Rate Limiting

The second problem with ACK rate limiting is that the client receiving less ac-
knowledgments will reduce the sending speed of TCP data segments, if CWND
is near or less then BDP (bandwidth delay product). It happens due to fact that the
sender can send more data only after CWND window is freed (Nagle 1984). Like
in rate limiting _tcp_ack snd _check function the receiving data rate can be mod-
ified by reducing ACK sending rate _ fcp slect widow(sk) >= tp— >rcv_wnd in
condition then system is overloaded with received data and cannot clean up the
receive buffer fast enough (Seth et al. 2008). In such case by reducing ACK mes-
sage rate it should reduce the TCP data sending rate to the server. To overcome
this problem, the following condition must be met. The RWND variable
tp— >rcv_wnd (which is advertise to CWND) and maximum system allowed
CWND must be large enough to store more than BDP (bandwidth delay product)
of data in CNWD. Both TCP windows (CWND, RWND) must be monitored, due
to fact that the RWND is advertised to the client and from RWND value the max-
imum allowed CWND window is set. Also the CWND also depends from system
settings and it is allowed maximum CWND value. In some cases this value can
be less than advertised RWND window. In addition to performance degradation
TCP can face jitter problem, then client starts sending data in more jittering way.
This can occur when the CWND size is smaller than the BDP value and ACK rate
reduction can cause this behaviour. Also the problem the jitter problem can occur
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also in the sending system due to heavy system load NIC settings (TSO, GSO,
and GRO) or system workload.

In case the RWND and CWND is big enough and RTT time is low the ACK
sending rate can be reduced significantly without losing performance or seeing
receive traffic jittering. But if the ACK limiting value ack rate val will not stop
growing and continue to increase. At some point the same problem of performance
and jittering will be encounter, and the increase of RWND and CWND will be
needed in the system.

The ACK limiting rate reduction will stop (will grow more slowly) in some
point due to fact the main function (logical condition) has additional conditions
build in, which will delay sending TCP acknowledgment for some time period
(but not discard it). The tcp _send delayed ack(sk) function based on RTT will
calculate the timeout value for sending the TCP acknowledgment. If the time is
close to expire, the ACK message must be sent. After the new value of timeout
will be recalculated based on change conditions of the network (even if the ACK
limiting rate value was reduced). It will surpass/eliminate icsk_ack.rcv_mss (the
first logical condition) value and send ACK message immediately, by not allow-
ing to reduce the ACK rate to minimum (Seth et al. 2008; Bhuiyan ef al. 2009).

By making the ACK limiting value too high will lead to degradation of per-
formance and increase jittering. The main sign of too high ACK rate limiting value
is the reduction of throughput. If TCP data throughput is depredating after ACK
limit increase, it must be considered that the ACK limiting algorithm has reached
the maximum value. The second condition which can indicate the maximum ACK
limiting value is the jitter increase in RTT measurements. But as the jitter is harder
to measure and it also depends from network and sender side conditions also, it
should not be used to indicate the upper limit of ACK limiting. The jitter variable
can be used in conjunction with throughput variable for more accurate detection
of upper limit of ACK limiting. In the dissertation only the change of TCP data
throughput is considered an indicator for to high ACK limiting value.

Based on BDP (2.8), the needed RWND value for the sender to have can be
calculated (ip— >rcv_wnd), the only difference is that the server (TCP ACK
sender) will reduce the ACK rate and additional delta time to RTT must be in-
cluded. To do this the default equation (2.8) must by modifying with additional
variables for BDP or RWND calculation of Wrwnp.

BDP =Ty, - BW . (2.8)
Tarr = 2T, + T, + 2T, - (2.9)

BDP = (2T, +T,)- BW :(2Td +MJ~BW = 2T, - BW +SMSS-N. (2.10)
BW



2. LINUX KERNEL ACKNOWLEDGMENT LIMITING 57

Where Trrr is the collective round trip time, 74 — delay of the network, 7, —
time needed to send the packet to the network. 7}, — is calculated by dividing the
SMSS by BW. Tcpy — time needed to process the packet (see Fig. 2.10).

TCP TCP
client server
Q TCP DATA
TCPDATA_____ |

)

Tesule TCP ACK
i ~~~~~~ - TCPDATA T
TCPDATA____ | Tepu
— — ——Tcp DATA____ .. I
TCPDATA____  ————af ...
o TCPACK—
AAAAAA ol

,,,,,, *TW

Fig. 2.10. Transmission control protocol messages processing delay in
network and remote system

In modern system with high CPU power the Tcpy is very small compare to
network delay and message sending time and can be eliminated from our equa-
tions. So basically the BDP is linearly function which is connected to ACK mes-
sage rate. The issue with real world TCP session is that the real value of Trrr can
deviate due to 7cpy value or due to changing conditions of the data transmission
network. By leaving the RWND variable Wrwnp undefined, even if the link utili-
zation was full at used Wrwnp value, the system would not know if the ACK mes-
sage reduction is the cause TCP session to stop.

So in real world the system can’t calculate the needed RWND variable
Wrwnp, but by knowing if the link fully utilized (physical link speed is reached,
or the sending system overloaded) the system can reduce the ACK message rate
and see if it has affect to TCP performance.

The simplest way to measure data receiving rate to calculate the received TCP
data segments in time period. The delta time for measurement must be at least two



58 2. LINUX KERNEL ACKNOWLEDGMENT LIMITING

or more times of advertised RWND (or even more to allow RTO and the
tep_send _delayed ack function to recalculate the timeout values).

If the packet rate/count does not change during delta time period conclusion
can be made that the ACK message rate reduction did not impact the sending
speed of TCP data message rate (by comparing the new value with old one). If it
does the system must fall back to old value, and put this value as new minimum
for ACK message rate (until new Wrwnp is advertised or network condition
changes).

The testing and results will be made in the third chapter of the dissertations.

2.6. Linux Kernel Transmission Control Protocol
Stack Modification for Acknowledgment Limiting

In this section we will show and explain the modification change in Linux kernel
and how it will work. The basic concept of ACK message rate limiting was ex-
plained before, and the rate of ACK can be changing easily by increasing the
icsk_ack.rcv_mss value.

Default code of Linux kernel is show in Fig. 2.11. The code is modified by
adding additional variable tp—> tcp _ack rate, seen in Fig. 2.12.

net/ipv4/tcp_input.c
4796 static void _ tcp ack snd check(struct sock *sk, int ofo possible)
4797 |

4798 struct tcp_sock *tp = tcp_sk(sk);

4799

4800 /* More than one full frame received... */

4801 if (((tp->rcv_nxt - tp->rcv_wup) > inet csk(sk)-

>icsk ack.rcv mss &&

Fig. 2.11. Linux kernel default tcp_input.c source code of
__tep_ack_snd_check function

net/ipv4/tcp_input.c
4796 static void _ tcp ack_snd_check(struct sock *sk, int ofo possible)
4797 |

4798 struct tcp sock *tp = tcp_sk(sk);

4799

4800 /* More than one full frame received... */

4801 if (((tp->rcv_nxt - tp->rcv_wup) > inet csk(sk)-
>icsk_ack.rcv_mss * tp-> tcp ack rate &&

4802 /* ... and right edge of window advances far enough.

Fig. 2.12. Linux kernel modified tcp_input.c source code of
__tep_ack_snd_check function
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The tcp_ack rate variable defines the needed number of TCP data seg-
ments which must be received before allowing to send ACK message. In default
or initial state of TCP session the value is equal to 1, so the number of ACK
must be at least two. If no TCP data packet drop occur during period of time
(or after receiving WIN/SMSS TCP data packet) the value can be increased.

The tcp_ack rate value, as it was define before must not only be activated
after the client side CWND fully opened, but do impact other TCP functions
like fast retransmit or recovery after packet loss. To do so the system must also
track if any packet loss did not occurred.

The ACK rate limiting implementation is showed in flow graph (Fig 2.13).

To existing Linux kernel code additional TCP state variables are added for
TCP sessions tracking. After packet drop or after receiving out of order TCP
data segments the ACK limiting values must be reset and TCP session must be
allowed the recover after packet drop, even if one segment is lost the ACK
limiting algorithm must be disable and fast retransmit is allowed restore TCP
session flow.

First the system must reset the tp—>init pkt cnt variable which is used in
the initial stage of TCP session, it is compared to tp—>start ack Imt which de-
fines the end of the first stage.

During this phase system also defines the new maximum allowed ACK
message rate or (p—>ack rate_max variable. It is used stop the ACK rate lim-
iting after reaching it and preventing of packet drop. It is set to one thirds of
tp—>rcv_wnd value divided by receive MSS. In addition checking of new #p—
>ack_rate_max is made to see if it is not more than 64 segments. Finally delta
time values are resetted, the system uses them for time calculation needed to
learn if the new tp—>ack rate cnt can be increased or not.

In second stage the algorithm looks if the TCP session is in the initial state
or not, if so algorithm proceeds to third stage and ACK limiting algorithm
starts, it is define in Fig. 2.14 in the first else statement of C code.

In the third stage the function goes in the loop, increasing the
tp— >ack pkt cnt (increased in end third stage) after every TCP segment is
received. If the new tp—>ack pkt cnt value is bigger the tp—>start ack Imt2
value. The algorithm has to reach the end of the loop and the decision of new
ACK limit tp—>ack_rate_val must be made. It is done only after knowing if the
old value the algorithm used had increased the TCP throughput or did it de-
claimed. It’s done by calculating delta time needed for second stage loop to
process tp—>start _ack Imt2 TCP data segments. If the value is smaller the al-
gorithm increases the tp—>ack_rate_val, else the value must be reduced
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Fig. 2.13. Acknowledgment limit algorithm
flow graph for Linux kernel
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net/ipv4/tcp_input.c

4796 static void _ tcp ack snd check(struct sock *sk, int ofo possible)
4797 |

4798 struct tcp sock *tp = tcp_sk(sk);

4799

4800 if ( ofo _possible && skb peek(&tp->out of order queue) ) {
4801 tp->init pkt cnt = 0;

4802 tp->ack _pkt cnt = 0;

4803 tp->ack_time_tl = 0;

4804 tp->ack rate val = 0;

4805 tp->ack_rate max=tp->rcv_wnd/(3*inet_csk(sk)->icsk_ack.rcv_mss);
4806 if (tp->ack_rate_max > 64 ) {

4808 tp->ack rate max = 64;}

4809 tp->ack_time_t2 = 0;

4810 tp->ack_time delta = 0;

4811 tp->tcp_delayed snd = 0;

4812}

4813 if ( tp->init pkt cnt < tp->start ack Imt ) {

4814 tp->init_pkt_cnt += 1 ;

4815 } else {

4816 if (tp->ack_pkt cnt > tp->start _ack Imt2 ) {

4817 tp->ack pkt cnt = 0;

4818 tp->ack time t2 = jiffies;

4819 if (tp->ack_time t2 - tp->ack time tl <= tp->ack time delta ||

tp->ack_time tl == ) A

4820 tp->ack rate val+=1;

4821 tp->ack time delta = tp->ack time t2 - tp->ack time tl;
4822 tp->ack _time tl = tp->ack time t2 ;

4823 } else {

4824 tp->ack time delta = tp->ack time t2 - tp->ack time tl;
4825 tp->ack time tl = tp->ack time t2;

4826 if ( tp->ack_rate_val > 4) {

4827 tp->ack_rate_val-=1;

4828 }}}

4829 tp->ack pkt cnt +=1;

4830 }

Fig. 2.14. Linux kernel modified tcp_input.c source code of
__tep_ack snd_check function for checking transmission control protocol
state

If new delta time value is smaller than before the algorithm must to reduce
the ACK limit value tp—>ack _rate val once more, but additionally the new value
must not be smaller than the initial value. If system does not check it, the variable
could go end at zero and start generating ACK messages for every received data
segment. The upper limit of ACK limit algorithm is defined in variable #p—
>start_ack Imt which is calculate via initial tcp_ack limit init function showed
in Fig 2.15.

For proc directory kernel variable were created in sysctl net ipv4.c file (see
Fig. 2.16), which can be changed during runtime, by entering new ACK limit
value.
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include/net/tcp.h
01 static inline int tcp_ack limit init(const struct sock *sk)
02 {

03 if ( sysctl_tcp_ack_limit > 1 ) {

04 return sysctl tcp ack limit;

05 } else {

06 return ((rwind/ad mss + 2)*(rwind/ad mss + 1))/2 -1;
07 }

Fig. 2.15. Linux kernel tcp.h source code addition for new
tep_ack limit_init function changes

net/ipv4/sysctl net ipv4.c

01 {

02 .procname = "tcp_ack limit",

03 .data = &sysctl tcp_ack limit,
04 .maxlen = sizeof(int),

05 .mode = 0644,

06 .proc_handler = proc_dointvec

07 1},

Fig. 2.16. Linux kernel tcp.h source code addition for new proc
file variable tcp_ack limit

The defined source code (see 2.16) allow to change the upper and lower limits
of ACK rate limiting via the tp—>start ack Imt and tp—>ack pkt cnt variables,
without going to int tcp_ack limit_init function. The function calculates the
worst case in which TCP CWND can grow and also the longest period of time
will be need to get the first and second stage loops go pass. The new variables can
be passed, modified or disabled in Linux OS kernel in real time via Linux pseudo
file system proc, without modifying Linux kernel source.

2.7. Conclusions of Chapter 2

1. A new proposed method, for calculating the TCP congestion window size
on the remote node, can be used to find the ACK message packet count,
which is needed to be pass before ACK rate limiting can start. This allow
a new TCP session to compete with other TCP data stream and get into
congestion avoidance phase.

2. The new method was proposed and explained for calculating the upper
ACK rate limiting value, for this the TCP inter packet delay is used. Pro-
posed method allow dynamically adjusting the upper limit of ACK rate
limiting based on the receiving speed of data packets on the TCP receiver
side.
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3. A new proposed algorithm can dynamically monitor and adjust ACK lim-
iting values based on current TCP session status, network or system con-
ditions. It allow dynamical back off and recovery after TCP session
packet drops or session restart. This algorithm can be easily implemented
and used in current Linux OS kernel without any major impact to the sys-
tem stability and performance.






Experimental Investigation of
Acknowledgment Limiting in
Heterogeneous Networks

To evaluate the TCP changes made in Linux OS kernel code test were conducted.
The results from testing were compared with the default TCP behaver of default
Linux OS kernel. In addition to this an investigation of the new code and its impact
to system load and system stability were made. For this several test setups were
made to see how the Linux OS kernel patch effect whole system and TCP and
TCP stack. It is hilly important to note that most of TCP code are related with
other kernel code and changes in one part of Linux OS kernel can effect hole
system stability.

The research results are published in author publication: Pavilanskas et al.
2010

3.1. Experimental Investigation of Acknowledgment
Limiting on Virtual Machine

Before the impact of ACK limiting to TCP throughput and system load can be
estimated, the testing of modified system must be made.

65
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To reduce the impact of hardware and reduce testing time all the test were
done using virtual machines (running on KVM virtualization program) with de-
fault configuration set (no major changes to image or its components were not
made). For testing an open source OpenWRT Linux distribution was used. The
distribution is mainly used in low power and embedded devices (Dutt et al. 2012;
Maxim ef al. 2012). Also all OpenWRT image (including Linux kennel and soft-
ware packages) are made during compilation process allowing use easily export
OpenWRT images to other architecture (automatically including needed modules
and packages).

For virtualization x86 architecture with one dedicated CPU was selected and
512 MB RAM was allocation for OpenWRT system. The only significant change
was NIC device, which was changed from default NIC device virtio, which use
packet segmentation in driver. It was changed to Intel e1000 device which was
connected to physical server NIC via Network Bridge. Also on KVM server and
remote side TCP NIC offloading features were turned off (Zhang et al. 2010;
Tafa et al. 2011; Rathore et al. 2013). The full configuration setup with connected
device is shown in Fig. 3.1.

Kernel-based
Virtual Machine

TCP messages with data
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I B | “
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Fig. 3.1. Acknowledgment limiting test setup running
Linux in virtual environment

The testing network was made from three PC’s connected via copper 1 Gbps
Ethernet link, for TCP packet capturing and analysing dedicated PC was used. All
hardware NIC TCP oftloading features will were turned off for more accurate
measurements. This is done due to fact that in most cases this features can and
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will influencing the TCP behaviour. The only limiting factor or bottleneck in the
test setup was the KVM server CPU computing power.

As it was explained before, the new kernel TCP stack modification consists
of two main parts. The first part of code is responsible for ACK limiting values,
which are changing during the runtime depending from TCP packet flow per delta
time. And the second one is deciding if ACK message must be send. It’s important
to note that ACK sending can be invoked without reaching the defined ACK lim-
iting value after TCP acknowledgment timeout value expiration or etc.

To evaluate the code and the calculated variables the ACK limiting algorithm
was outputted to Linux OS kernel system logging facility <dmsg>. For this addi-
tional Linux kernel printing functions were added. By printing the existing Linux
kernel variables of maximum allowed ACK limit value allowed for better TCP
sessions tracking in time or after packet drops occurs.

As shown in Fig. 3.2 ACK rate value starts to increase at ~10 s, values
changes over the time, from zero on the session start up to 20-25 s. At ~30 s. A
first reduction off ack rate val is seen, indicating that the ACK limiting code is
working. The same reduction of ack rate val value is seen at ~ 50 s and ~ 80 s,
indicating that the TCP sending speed in decreased in all cases. The results were
collected via <dmesg> application. Also TCP and ACK messages rates were mon-
itored with <wireshark> to see the impact of ACK filtering algorithm.
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Fig. 3.2. Linux kernel ack rate max and ack rate val during transmission
control protocol data transmission
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During the testing smaller ack_pkt cnt value was used, which correspond to
the number of TCP segment must be passed to allow the increase of ACK limiting
value. This makes the ACK limiting algorithm to behave more aggressively, by
increasing the value more frequently to see the impact of it to TCP stability in
short TCP sessions.
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To compare the ACK limiting algorithm with default TCP behaver an identi-
cal OpenWRT image was compiled without the Linux kernel modification. All
the test were performed on the same system only by changing the virtual machines
images. The network traffic results we collected and analysed using <wireshark>
application on dedicated network monitoring PC (Fig. 3.1).

To test the TCP throughput <iperf> application was used. TCP traffic was
generated at maximum speed for 100 s. The same tests were conducted on both
system in identical network configuration.

The results of both systems were compared and analysed in <wireshark> ap-
plication to see the impact of ACK filtering. The TCP packet per second rate or
throughput are showed in Fig. 3.3 and 3.4, and the TCP RTT measurement of
modified and default Linux kernel in Fig. 3.5 and 3.6.

In TCP throughput results seen in Fig. 3.3 and Fig. 3.4, the modified TCP
stack is performing much better compared to default system in virtual environ-
ment. In average the TCP data throughput is up to 30% higher with ACK filtering
enabled. Also the modified systems has much smaller RTT value compared to
default system. The TCP RTT value is reduce almost twice compared to default
system (Fig. 3.5 and 3.6).

By looking to Fig. 3.4 a big slump of throughput every 10-20 s can be seen,
it correlates with TCP RTT results in Fig. 3.6 and is caused by high ACK rate
limiting value. This can be controlled be reducing the growth function of ACK
rate limiting algorithm. For experimental setup a faster ack rate val growing
functions was used. It increased the ACK limiting value to obtain needed network
conditions and get needed results in more hostile network environments.
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Fig. 3.5. Round trip time deviation during Transmission Control Protocol
data transmission with default Linux kernel
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Fig. 3.6. Round trip time (RTT) deviation during Transmission Control
Protocol data transmission with modified Linux kernel with small
ack _pkt cnt value

From results of TCP RTT seen in Fig. 3.5 and 3.6, a round trip time histo-
grams was generated (Fig. 3.7 and 3.8). It showed a big shift of RTT values to the
left (lower values). In default system configuration (system running default Linux
OS kernel) a much higher RTT values are seen, and average values are distributed
between 10-20 ms.

In modified Linux OS kernel, the RTT histogram results are distribution be-
tween the 1-10 ms, which is much smaller and can have substantial effect to mul-
timedia and real time application. Also the periodic RTT increase (peaks) seen in
seen in the Fig. 3.6 (modified Linux OS kernel) happened due to high CPU utili-
zation and it correlates with the peaks of TCP throughput Fig. 3.4. By making the
ACK limiting more conservative the system could reduce the TCP RTT even more
and sustain the RTT distribution in lower values for longer time could be seen.

It is important to notice that even in default Linux OS the ACK message rate
(Fig. 3.3) is much smaller than it should be according the RFC 1122 and RFC
5681 (“should be generated for every second full size segment”). The ACK mes-
sage rate is almost equal to system with ACK rate limiting enabled. It happened
due to the fact that the system was under the heavy CPU load (due to high TCP
data message rate). To reduce the load the kernel function reduces the ACK mes-
sage rate, and this reduces the TCP throughput and TCP data and ACK message
rates.
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Fig. 3.7. Round trip time histogram running default Linux kernel for 100 s
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During the testing both system had identical system resources and the only
significant difference was ACK message rate limiting function in Linux OS ker-
nel, as seen from the results, the new modified TCP kernel stack performance
much better compared to default kernel system. Even in high CPU load the ACK
rate limiting function can reduce the ACK rate more than half. By including the
ACK limiting code to Linux OS kernel the system can not only reduce the ACK
message rate but also skip unneeded kernel function checking and further pro-
cessing of ACK messages (Fig. 3.9).

net/ipv4/tcp_input.c

4796 static void _ tcp ack_snd_check(struct sock *sk, int ofo possible)

4801 if (((tp->rcv_nxt - tp->rcv_wup) > inet csk(sk)-
>icsk_ack.rcv_mss * tp-> tcp ack rate &&

Fig. 3.9. Source code of modified Linux kernel tcp_input.c file

From the tests made on KVM platform it is clearly seen that the new TCP
Linux kernel patch helps to reduce ACK rate so it allows the system under heavy
load achieve much better performance in TCP data messages per second through-
put and RTT values.

In addition the ACK message rate reduction also reduces the load to the TCP
sender, as the end system will receive less ACK messages from the receiver and
less CPU power will be needed to process them.
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Fig. 3.10. Acknowledgment messages rate comparison between default and
modified Linux kernel with small ack pkt cnt value
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Both system TCP throughput and ACK message rates results displayed in
Fig. 3.11 and 3.10. The system with ACK limiting enabled has much better TCP
throughput, in average ~ 30% increase is seen on modified system compared to
default one. The performance spikes can get up to 40% for short period of time.
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Fig. 3.11. Transmission control protocol throughput in Mbits comparison
between default and modified Linux kernel with small ack pkt cnt value

The changes in TCP throughput and RTT (see Fig. 3.3, 3.6 and 3.11) in mod-
ified system happened more dynamically, and more rapidly during the test time.
The results of throughput and PPS correlates with ACK limiting value (seen in
Fig. 3.10). By analysing the RTT and RTO values it Linux OS kernel, it was found
that the drops in TCP throughput flow happed due to frto time is expiration. By
reducing the RTT time the system reduces the tr1o value, and increase the possi-
bility of TCP segment retransmission if the sender does not receive ACK message
in frto time.

The last ACK limiting test was made to see how reduction of ACK message
rate affects the TCP sending side congestion window growth. By using <tcp-
probe> in Linux OS kernel, the TCP sender side congestion window (CWND)
and slow start threshold (SSTRESH) values and how it changes during the time
and after packet drop. As in test before, all tests were performed on the same sys-
tem with identical configuration. By default TCP Cubic congestion function was
selected. As the TCP CWND is directly related to ACK message rate, after reduc-
tion of ACK messages rate a slowdown of growth of CWND window was ex-
pected. The results of CWND and SSTHRSH values are showed in Fig. 3.12
and 3.13.
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Fig. 3.12. Congestion window and slow start threshold function garth with
default Linux kernel during data transmission
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Fig. 3.13. Congestion window and slow start threshold function garth with
modified Linux kernel during data transmission

In both cases (see Fig. 3.12 and 3.13) with and without ACK limiting, the
TCP congestion window growth and recovery functions perform similarly and no
big difference in TCP Cubic function is seen. Most importantly the Cubic function
behaves the same like in congestion avoidance phase, which is very important to
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TCP recovery process. ACK limiting does change TCP session behaver or growth
functions (see Fig. 3.13) and allows TCP session to compete for network resources
with other TCP sessions. The only noncable difference was that modified system
has slow start threshold (SSTRESH) value a little smaller and the CWND Cubic
function in most cases does not enter exponential growth phase as in default sys-
tem. It can be explained due to smaller RTT value which causes high TCP segment
rate. So packet drop (frto time expiration) happens in smaller SSTRESH and
CWND values. From results seen in Fig. 3.13 with modified Linux kernel CWND
value is more constant and small during the test time. This indicates that TCP
sending speed is more constant and the RAM usage is more stable due to more
stable system RTT value.

3.2. Acknowledgment Limiting on Physical Machine

As it was described in previous chapter, the TCP performance (RTT, throughput,
etc.) is mostly impacted from hardware performance. To limit virtual system per-
formance a CPU limitation was made, not allowing virtual system to consume all
physical CPU. In real or physical servers more complicated conditions can arise.
The physical server performance can depend from different system components
and the bottleneck can be not only the CPU.

To test ACK limiting algorithm in in real environment the same OpenRTW
image was used, only the build was made for MIPS based CPU architecture sys-
tem. In our tests an Ubiquiti RouterStationPro router was used. It was running
MIPS based architecture CPU and had limited amount of RAM of 128 MB. The
image for testing was identical to one which was used in virtual system test (con-
taining the same prebuild packets and system component) (see Fig. 3.14).

For comparing the impact of ACK limiting on system and TCP throughput
two identical routers with OpenWRT images with ACK limiting enabled and
without were used. In addition a separate network traffic capture PC for inspecting
the communication traffic was used. The routers were connected via 1 Gbps links
with NIC offloading disabled (which has big impact to TCP behaver).

The tests were conducted in TCP client to server scenario, when the client is
sending the data to server, and comparing it with default TCP stack. The import
note here is that bottle neck in such configuration is becoming the sending system
or the TCP client, which is under the higher load compared to the server. In such
scenario the TCP throughput gain by using ACK limiting is due to reduced load
on the TCP sending system.

Like in tests before, the TCP throughput was tested using <iperf> application
for TCP traffic generation for up to 100 s time period. The same tests were done
on both system in identical network configuration.
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The results of TCP packet per second and RTT are showed in Figs 3.15 and
3.16.
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Fig. 3.14. Acknowledgment limiting test setup running Linux machine
running on embedded RouterStatio Pro device
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Fig. 3.16. Impact of acknowledgment limiting to transmission control
protocol packet with small ack _pkt cnt value

From results of Fig. 3.16 the TCP throughput starts increasing at 20 s from
the start of the TCP session. At this point the ACK limiting starts limiting the
outgoing ACK messages rate. As the upper limit of ACK limit was set to 2000
(the packet count after which ACK message rate must be reduced by one). The
ACK rate goes down quit fast and stop after seeing the increase of RTT in TCP
data stream (Fig. 3.16). At ~45 s ACK limiting stops due to multiple TCP data
messages drops. The TCP sessions enters slow start phase and ACK limiting re-
starts by disabling and resetting the ACK limiting algorithm values. After ~5 s at
~51 s ACK limiting starts again (Fig. 3.16) and grows up to the older value of
ack rate val. The results were collected via <dmesg> application.

In out testing network an increase of TCP throughput can be observed up to
60% in average during 100 s data transfer compared to default TCP behaver. But in
different configurations and systems the increase of TCP throughput can deviate
due to many factors, like CPU, memory 1/O, etc. performance. In most cases this
value will deviate especially in system were TCP offloading is enabled and the send-
ing and receiving nodes are in different configuration or hardware specifications.

By joining both TCP throughput graph (see Fig. 3.16 and Fig. 3.16) in one
Fig. 3.17, it is clearly seen that TCP throughput of modified TCP stack is identical
to default one at the start of TCP sessions and when a TCP packet drop occurred
(at 45 s). This shows that the TCP modifications made to Linux kernel code does
not impact the TCP performance and works if packet drop occur. The spikes and
peeks are seen the Fig. 3.17 and Fig. 3.16 are due to smaller ack pkt cnt value
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used in testing environment for ACK limiting algorithm. This was used for faster
ACK limiting function grow and to emulated situations with small TCP RWND
used by the receiver.

350
] —— TCP Limit enabled
1 TCP default
3004
n ]
2 250
‘S ]
= 1
S 200
Q_' -
= i
) ]
2 150
= Tl g TSR SRR 1 =
= i
S ] \
= 100 :
] Same TCP throughtput (no
50 ACK limiting)
o S ——
0 20 40 60 80 100

Time, s

Fig. 3.17. Transmission control protocol data packet throughput
comparison of default and modified Linux kernel
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Fig. 3.19. Round trip time deviation during data transmission with modified
Linux kernel running on RouterStation Pro device

By comparing TCP RTT results seen in Fig. 3.18 and 3.19, an increase of
RTT is seen in modified systems after the ACK limiting algorithms is activated.
The increase is seen at the point when ACK limiting start increasing, until a packet
drop happens. After it the RTT decreases and is the same as in not modified TCP
system (see Fig 3.19). This can be explained via differences that the bottle neck
in this case is not the receiving end but the TCP sending end. So by reducing the
ACK message rate the system increase the performance not for the TCP receiver
but for TCP sender.

To eliminate the impact, of possible slow TCP sender (due to low efficiency
CPU node) a modern PC with higher CPU efficacy was used in this testing’s. The
new TCP sender’s performance was much higher compared to RouterStatioPro
embedded device. The test setup looked the same like in the test before in Fig. 3.14
only the TCP sending node was a PC having Intel 2 GHz CPU with 3 GB of RAM.

In this testing scenario the TCP sending node was PC, which was able to send
or receive TCP data up to 1Git/s to embedded RouterStationPro Pro device, due
too much faster CPU. For TCP data generation a Linux testing application <ip-
erf> application was used.

By comparing testing results of default and modified systems, the TCP
throughput (in Fig. 3.21) of default Linux kernel stack with default TCP imple-
mentation is performing a little better and TCP data throughput is higher com-
pared with modified TCP stack.
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These testing results can be explained by looking to ACK message rates of
default and modified TCP Fig. 3.22. In testing the ACK message rate changes in
both TCP sessions over the testing time and the ACK message rate is not one half
of TCP data PPS rate according the RFC documentations (Berkeley ef al. 2011;
Bott 2014). This happens due the reduced receive window size RWND or to be
more correct due to heavy system load, as it was described in previous chapter in
TCP acknowledgment generation and SWS part (Clark 1982).

net/ipv4/tcp_input.c

4796 static void _ tcp ack_snd_check(struct sock *sk, int ofo possible)

4805 __tcp_select window(sk) >= tp->rcv_wnd) |
4806 /* We ACK each frame or... */
4816 }

Fig. 3.20. Linux kernel acknowledgment
messages sending source code

In condition then system is overloaded with received data and cannot clean
up the receive buffer fast enough. In such case by reducing ACK message rate
will reduce the data sending rate to the server. It is controlled by
__tep_ack snd check function defined in tcp input.c file (see Fig. 3.20 line

4805).
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Fig. 3.21. Default and modified Linux kernel data transmission
performance of transmission control protocol running with high central
processor unit load
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In both cases (with and without ACK limiting), a similar ACK message flow
graph is seen (Fig. 3.22). The only noticeable difference is that the default system
ACK rate is controlled by receive window (tp—>rcv_wnd), or in modified version
of TCP it’s done be received TCP data over RTT time and receive window algo-
rithm. In this situation the performance of TCP decreases due to add additional
computing load which is added to modified system and bigger ACK messages rate
deviation over the testing time. As the final ACK message sending decision is
made by {p—>rcv_wnd variable value.

In both testing results of TCP seen in Fig. 3.21 and 3.22 at the beginning of
TCP session from 0 — 5 s, a noticeable performance gain on modified system is
seen. Showing that modified system is performing better than default system and
sending ~ 100 TCP data messages more. Also the ACK messages rate is ~150 less
compared to default system. At this point the ACK sending rate is controlled by
ACK limiting algorithm, which allows to reduce CPU load and increase the TCP
performance like in virtual systems testing scenario.

The same testing results can be observed also in TCP RTT graph, (Fig. 3.23
and 3.24). The default stack in overall is performing better and having the average
RTT a bit smaller compared to modified version. It is also noticeable that the RTT
spikes are bigger and the higher almost by 1 ms, but in the start of TCP session
the same RTT values are observed. This indicates that ACK limiting algorithm
has no negative impact to TCP RTT value when running in alone.
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The given result were made in directly connected devices with a network
switch with minimal network latency. In case of bigger delay (due to networks
equipment or due transmission delay) the difference of throughput and RTT can
be even smaller.
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Fig. 3.23. Round trip time deviation with default Linux kernel running on
RouterStation with high central processor unit load
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Fig. 3.24. Round trip time deviation with acknowledgment limiting enabled
running on RouterStation with high central processor unit load
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By comparing the result of ACK message rates which were received during
the tests with default Linux OS configuration, the observation are seen that the
both graph (Fig. 3.25) share similar curves of how ACK rate changes during test-
ing time. In case of default TCP stack the ACK rate changes happen more fre-
quently and are from ~ 400 to ~200. The modified system ACK messages rate
reductions starts from ~800 to ~100 and is linear at the end, before the reset hap-
pens. By eliminating the upper limit ack rate_max in ACK limiting algorithm the
system would end by decreasing the TCP throughput due to small ACK message
rate. This can be used to replace the default kernel rate limiting algorithm.

In both cases the system which is running the default or modified TCP stack
is reducing the load to the main CPU by limiting the ACK message rate. The only
difference that the ACK limiting algorithm start to reduce system load from the
beginning of TCP session compared to default method which only start at critical
point.

3.3. Conclusions of Chapter 3
The experiments were performed to find how significantly ACK limiting algo-

rithm effects real system and Linux kernel packet flow and processing algorithms.
The conclusion are:
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ACK limiting algorithm does not significantly affect systems or the TCP
data transfer in not congested network links. In this condition when the
network or operating systems are not under heavy load the ACK limiting
has no effect to TCP session stability. However, the packet drop can be
caused by expiration of #rto in same cases. This is easily seen when test-
ing systems are under the heavy load and fluctuation of RTT can easily
cause of TCP packet retransmission on system using modified Linux ker-
nel and session is terminating immediately.

ACK limiting algorithm can increase RTT deviation several times, de-
pending from CPU load and CWND size, causing the system exceeding
the trto time value. This is mostly to happen in the systems with heavy
CPU load. Even with this disadvantage the results in virtual environment
shows much better average performance of TCP throughput compared to
default system.

By using different ACK limit variable values (using virtual Linux file
system to access kernel variables) it is possible dynamically adjust the
ACK limit function and change the ACK limiting update period manu-
ally, so changing the behaver of the ACK limiting growth function.

The ACK message limiting has a big impact (up to 32%) not only to the
CPU load network equipment or TCP receiving system but also to the
CPU load of the TCP sending system. In case then the TCP data sending
node is a lower power embedded device, the observed TCP data through-
put gain can by up to 50%, by using ACK limiting algorithm on TCP data
receiver.

The degradation of TCP data throughput can be observer in case the TCP
receiver is the bottle neck (the CPU load of TCP receiver was limiting the
receiving speed). In this case the TCP throughput can depredate due to
additional system load of ACK limiting algorithm and correlation of two
algorithm running same time. In such case ACK limiting and default ker-
nel system algorithm tries to reduce the ACK rate.

The experimental results show that ACK limiting work in practical situa-
tions allowing to increase the TCP throughput in tested system and reduce
unneeded CPU load up to 50%. As seen from tests the ACK limit upper
limit should be carefully selected based on CWND value and network
conditions. If ACK limiting value is too high, the TCP packet drop can
happened more frequently due to RTO time expiration. Also in different
systems configurations and network conditions the TCP performance gain
can change and even in some cases a little degradation of TCP perfor-
mance can happen. But in most cases TCP throughput and goodput can
be increased by using proposed ACK limiting algorithm.



General Conclusions

In the dissertation the investigation of TCP functions and ACK limiting was pre-
sented. The following significant results in dissertation were obtained:

1.

ACK filtering in heterogeneous network layer does not significantly af-
fect the TCP data transfer in normal network conditions. The TCP data
transfer remains stable for up to 80% of ACK drops.

The performance of router CPU depends on ACK message rate and the
performance can be increased with ACK filtering. The CPU load utiliza-
tion is linear, and depends on TCP data and ACK message rate. With 80%
of ACK drop, the performance can be increased by 32% with CPU load
of 60%.

The ACK filtering in Linux OS kernel and network equipment can be
used not only with single TCP session but, also with concurrent sessions.
Results show that two data TCP sessions can work without any evident
signs of the instabilities, although a slight unfairness among TCP sessions
were observed.

ACK filtering enabled on network equipment does not affect TCP session
stability or TCP throughput and can work with multiple TCP sessions in
not congested networks environments. But in more dynamic networks
with higher RTT deviation and packet drop the initial values must be re-
calculated for better performance and stability.
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GENERAL CONCLUSIONS

By using ACK filtering in asymmetric high speed non homogenies net-
works the TCP protocol ACK overhead several time and reduce the total
network of PPS (packet per second) up to 30%. By reducing the network
utilization we not only reduce the system load to network devices, but
also can increase the network capacity up to 10% in asymmetric networks
(IEEE 802.11).

Dynamic ACK limiting implementation is Linux OS kernel has not affect
systems stability or the TCP data transfer in normal network. In normal
condition when the network or operating systems are not under heavy load
and TCP RWIN is bigger than BDP the ACK messages limiting has no
effect to TCP session stability.

Too high ACK limiting value can cause increase and jittering of RTT
value, causing the system exceeding the frro timer and data resending.
This is mostly to happen in the systems with high CPU load.

The dissertation results show that ACK limiting, in network devices and
Linux OS kernel TCP stack work in practical situations, allowing to in-
crease the TCP throughput up to 50% in tested system and reduce un-
needed CPU load up to 32%. The upper ACK limit value should be care-
fully selected. If it is set to high TCP packet drop (expiration of trto timer)
could happened more frequently causing TCP session distortions and
TCP performance degradation.
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Summary in Lithuanian

Jvadas

Problemos formulavimas

Siandien vis spar¢iau augant duomeny srautams, itin svarbu valdyti duomeny perdavimo
kanalo pralaida, siekiant kuo efektyviau i§naudoti duomeny perdavimo kanalus bei tinklo
jrenginius. Siuo metu pagrindinis duomeny apsikeitimo protokolas tiek Internete, tiek vie-
tiniam tinkle (ang. Local Area Connection — LAN) tinkluose yra transporto valdymo pro-
tokolas (angl. Transmission Control Protocol — TCP) protokolas. Tai vienas i§ pagrindiniy
duomeny apsikeitimo protokoly Internete, kurio pagrindu veikia didzioji dalis kity, auks-
tesnio lygio, protokoly. Tai j ry$j orientuotas duomeny perdavimo protokolas, garantuo-
jantis patikima duomeny perdavima tarp dviejy nutolusiy tinklo tasky ar vidiniy kompiu-
terio programy.

Mazy greitaveiky duomeny tinklai vis dar placiai paplite ir sudaro didele dali duo-
meny perdavimo tinkly. Ta¢iau nuolat besipleciantys didelés spartos tinklai, per kuriuos
perduodama didzioji dalis informacijos, darosi vis populiaresni ir labiau pasiekiami pap-
rastiems vartotojams. Nuolat augant perduodamos informacijos kiekiui bei jos perdavimo
greitaveikai, esamas TCP protokolas tampa ne toks efektyvus ir generuoja ne tik didelj
duomeny pertekluma, bet ir reikalauja didesniy centrinio procesoriaus (angl. Central Pro-
cessing Unit — CPU) resursy. Sis TCP informacinis perteklumas kuria ir papildoma apk-
rova ne tik tinklo elementams bet ir TCP klientui bei mazina serveriy naSuma (Nagle 1984;
Paxson et al. 1999; Garsva et al. 2014).
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Nors §iy dieny elektronika nuolat tobuléja ir tampa vis efektyvesne energijos suvar-
tojimo atzvilgiu, taciau vidutinis TCP pakety apdorojimas vis dar sukuria apie 4—13 %
sistemos apkrovos (Seth ez al. 2008; Vahalia 1995).

Siekiant i§spresti minétas problemas disertacijoje iskelta ir jrodyta hipotezé: TCP
perteklumo mazinimas filtruojant patvirtinimo (angl. Acknowledgment — ACK) paketus
sumazina tinklo ir jo elektroniniy jrenginiy apkrova bei padidina jais perduodamy TCP
duomeny pralaida nesukuriant neigiamos jtakos TCP sesijos stabilumui ir jos atsistatymui
po nutriikimo.

Darbo aktualumas

Pastaruosius metus stebimas pastovus Interneto duomeny srauto didéjimas. Labai svarbu,
kad dabar naudojamas transporto valdymo protokolas (TCP) nebiity Interneto ir duomeny
perdavimo tinkly tolesnés evoliucijos trukdziu, o leistu lengviau ir efektyviau iSnaudoti
esamas duomeny ry$io linijas ir elektronines sistemas.

Nors pastoviai tobuléjanti elektronika ir efektyvesni energijos taupymo metodai lei-
dzia sumazinti energijos suvartojima, taciau vis didéjantys duomeny srautai suvartoja vis
daugiau centrinio procesoriaus resursy, kurie gali bati panaudoti kitiems sisteminiams pro-
cesams ar programoms.

Tyrimo objektas

Tyrimo objektas — transporto valdymo protokolo (TCP) taikymas $iuolaikiniy elektroniniy
ry$io sistemy programinéje jrangoje.

Darbo tikslas

Disertacijos tikslas — padidinti transporto valdymo protokolo (TCP) nasuma heterogeni-
niuose tinkluose ir elektroniniy tinkly jrenginiuose, sumazinant TCP patvirtinimo pakety
kiekj operacinése sistemose ir tinklo jrenginiuose.

Darbo uzdaviniai

1. I$analizuoti transporto valdymo protokolo efektyvuma ir veikima operacinéje
sistemoje, duomenis perduodant nehomogeniniais duomeny tinklais ir asimetri-
némis rysio linijomis.

2. I8analizuoti TCP patvirtinimo pakety filtravimo elektroniniuose tinklo jrengi-
niuose ribas ir taisykles ir sukurti TCP patvirtinimo pakety perteklumo mazinimo
metoda Linux operacinei sistemai.

3. Eksperimentiskai istirti sukurto TCP patvirtinimo pakety perteklumo mazinimo
metodo daroma jtaka TCP efektyvumui, kuomet duomenys perduodami nehomo-
geniniais tinklais.
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Tyrimy metodika

Darbe taikomi §ie moksliniai metodai: literatiiros apzvalga, saugumo ir rizikos analizé,
dirbtiniy kompiuteriniy tinkly su kintamu vélinimu ir duomeny pralaidumu charakteriza-
vimo metodika, programinio kodo optimizavimo ir veikimo analizé, statistinés analizés,
duomeny perdavimo charakterizavimo metodai ir statistiné analizé, patikimumo ir gauty
duomeny patvirtinimo metodai.

Mokslinis naujumas

Darbo metu pasiekti $ie mokslui reik§mingi rezultatai:

1. Pasitlytas naujas dinaminis TCP patvirtinimo pakety ribojimo metodas skirtas
Linux operacinés sistemos branduoliui, kuris efektyviai sumazina ir valdo TCP
patvirtinimo pakety (ACK) pertekluma.

2. Pasitilytas naujas patvirtinimo pakety (ACK) filtravimo riby nustatymo algorit-
mas nehomogeniniams tinklams.

3. Sukurtas patvirtinimo pakety (ACK) perteklumo mazinimo algoritmas IEEE
802.11 belaidziame tinkle ir jy jrenginiuose.

Darbo rezultaty praktiné reikSmeé

Sukurti du TCP perteklumo maZzinimo algoritmai. Pirmasis algoritmas jgyvendina ACK
filtravima tinklo jrenginiuose. Jis leidzia sumazinti TCP pertekluma ir nereikalauja galinés
tinklo sistemos jrenginiy keitimo. Tinklo apkrova ACK duomeny paketais yra sumazi-
nama iki 80 %, o tinkle marSruty parinktuvy na§umas padidéja iki 32 %.

Antrasis algoritmas, jgyvendintas modifikuojant Linux OS branduolj, leidzia ne tik
sumazinti TCP pertekluma ir reikiamus tinklo resursus, ta¢iau kartu dinamiskai mazina
tinklo ir jo elektroniniy jrenginiy apkrova, padidindamas TCP naSuma tiek kliento, tiek
serverio puséje.

Abu sukurti TCP perteklumo mazinimo algoritmai gali btti naudojami IP tinkluose
siekiant sumazinti tinklo jrenginiy apkrova ir padidinti asimetriniy rySio linijy pralaida.
Algoritmas jgyvendintas Linux OS iki 50 % sumazina galinés ry$io sistemos apkrova ir
padidina jos naSuma.

Ginamieji teiginiai

1. ACK ribojimas tinklo jrenginiuose iki 80 % sumazina ACK pakety skaiciy bei
pacia tinklo apkrova ir iki 32 % padidina tinklo marsruto parinktuvo nasuma,
nedarant jtakos uzmegztos TCP sesijos stabilumui.

2. ACK ribojimas tinklo jrenginiuose ir ACK ribojimas Linux OS branduolyje ne-
turi jtakos uzmegztos TCP sesijos nasumui ir jos efektyviam atsistatymui po duo-
meny pakety praradimo.

3. Dinaminis ACK ribojimas Linux OS branduolyje sumazina tinklo jrenginiy CPU
apkrova ir iki 50 % padidina TCP pralaida iterptinése sistemose.
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Darbo rezultaty aprobavimas

Pagrindiniai disertacijos rezultatai buvo paskelbti 4 mokslo straipsniuose jtrauktuose i
Thomson Reuters Web of Science duomeny baze ir turin¢iuose citavimo indeksa: 2 straips-
niai uzsienio Zurnaluose ir 2 straipsniuose vietiniame Zurnale.
Disertacijoje atlikti tyrimai ir jy rezultatai buvo aprobuoti 4 mokslinése konferencijose:
1. Evaluation of TCP Acknowledgment Mechanism Influence on Router Perfor-
mance. 14 ELECTRONICS’2010 , 2010, Lietuva, Vilnius.
2. Vilniaus miesto bevieliy tinkly statistiniai tyrimai. Jaunujy mokslininky konfe-
rencija ,,Elektronika ir elektrotechnika 2011, 2011, Lietuva, Vilnius.
3. Analysis of Home WiFi Internet Access Networks Situation in Vilnius City. 15
tarptautiné konferencija ELECTRONICS 2011, 2011, Lietuva, Vilnius.
4. Analysis of Home WiFi Access Networks Situation in City Area. ICCCISE 2013:
International Conference on Computer, Communication and Information Scien-
ces and Engineering, 2013, Ispanija, Barselona.

Disertacijos struktiira

Disertacija parengta angly kalba ir sudaryta i$ trijy skyriy, bendrujy i§vady, literatiiros
saraso ir santraukos lietuviy kalba. Darbo apimtis — 93 puslapiy be prieduy, tekste panau-
dota 63 paveikslai, 2 lentelés, 35 formulés. Rasant disertacija panaudotas 91 literatiiros
Saltinis.

1. Transporto valdymo protokolo perteklumas
heterogeniniuose duomeny tinkluose

TCP Siuo metu yra vienas i§ pagrindiniy duomeny perdavimo protokoly, naudojamy In-
ternete. Sio protokolo pagrinding paskirtis yra patikimas duomeny perdavimas tarp dviejy
nutolusiy taSky per duomeny perdavimo tinkla ar kompiuterio viduje. Siekiant patikimo
duomeny perdavimo TCP naudoja ACK paketus (duomeny gavimo patvirtinimas), kuriy
pagalba yra uztikrinamas patikimas ir vientisas duomeny pristatymas i$ siuntéjo gaveéjui.
Tam tikslui TCP pakete yra i$skirti du laukai: patvirtinimo (angl. Acknowledgment) ir ei-
liskumo (angl. Sequence). Abu TCP antrastés laukai yra 32 bity ilgio ir yra naudojami
patvirtinti gautos informacijos kiekj baitais ir siun¢iamos informacijos vientisumui islai-
kyti duomeny gavéjo puséje (Socolofsky et al. 1991; Bott 2014).

Pagal RFC 813 duomeny gavéjas siunc¢ia TCP patvirtinimo paketa ACK su patvirti-
nimo numeriu. Paketas nurodo sékmingai gauta paskutinj duomeny skai¢iy baitais ir yra
generuojamas po kiekvieno antro sékmingai gauto TCP duomeny paketo. Kadangi ACK
pakety generavimas reikalauja ne tik TCP siuntéjo sistemos resursy, bet ir sukuria papil-
doma apkrova tinklo elementams, ACK pakety siuntimo daznumas turi atitikti §iuos rei-
kalavimus (Bott 2014; Stevens 1997; Berkeley ef al. 2011):

1. ACK paketas turéty biity siunc¢iamas po kiekvieno antro sékmingai gauto TCP

duomeny paketo (RFC 5681).

2. ACK paketas turéty biti siun¢iamas gavus TCP paketa su nustatytu PUSH para-

metru.
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3. Pasikeitus TCP duomeny siuntimo lango dydziui.
4. Virsijus laukimo laikui (kai daugiau néra gaunama jokiy papildomy TCP duo-
meny pakety i§ siuntéjo).

TCP | Duomeny tinklas serveris |
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S.1.1 pav. Transporto valdymo protokolo veikimas ir duomeny
apsikeitimas procesas

Be duomeny patvirtinimo funkcijos ACK paketai vaidina labai svarby vaidmenj re-
guliuojant siun¢iamy duomeny greitaveika (S.1.1 pav.). Norint efektyviai i$naudoti duo-
meny perdavimo kanala TCP turi dinamiSkai prisitaikyti prie pasikeitusiy tinklo para-
metry. Tam TCP naudoja keturis pagrindinius srauto kontrolés algoritmus: léto starto
(angl. slow start), persipildymo vengimo (angl. congestion avoidance), greito persiuntimo
(angl. fast retransmit) ir greito atsistatymo (angl. fast revovery). I§vardinti algoritmai yra
atsakingi uz TCP sesijos veikima bei atsistatyma po pakety praradimy ir remiasi ACK
patvirtinimo paketais.

Nuolat augant duomeny perdavimo kanaly greitaveikai ir mazéjant klaidy tikimybei
juose, ACK pakety perteklumo problema darosi vis aktualesné.

Disertacijoje yra nagrinéjama ACK pakety perteklumo mazinimo problema, atlie-
kant ACK filtravima. Metodas yra paremtas tuo, kad TCP duomeny gavéjas siysdamas
ACK paketa informuoja TCP duomeny siuntéja apie sékmingai priimta bendra informa-
cijos kiekij, siun¢iant paskutiniy sékmingai gauty duomeny patvirtinimo numerj. Jei duo-
meny perdavimo kanale jvyksta pakety praradimas ir dingsta vienas ar keli ACK paketai,
sekantis siystas ACK patvirtina visus iki tol gautus TCP duomeny paketus (S.1.2 pav.).
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S.1.2 pav. Transporto valdymo protokolo perteklumo mazinimas atsisakant
nereikalingy patvirtinimo pakety

Pagal RFC 5681 dokumenta TCP duomeny gavéjas turi siysti ACK paketus kiekvie-
nam antram sékmingai gautam TCP duomeny segmentui. Jei dingsta vienas i§ ACK pa-
kety TCP sesija gali toliau sekmingai veikti ir perduoti duomenis, be jtakos TCP sesijos
stabilumui ir greitaveikai (1.2S pav.). Taciau jei TCP sesija yra realaus laiko ar vyksta
abipusis, nedidelés apimties duomeny apsikeitimas su mazais siuntimo TCP langais, ACK
paketai gali biiti siun¢iami dazniau. Siuo atveju bent vienas ACK pakety praradimas gali
sukelti TCP duomeny sesijos sustojimg ir padidinti duomeny perdavimo laika bei sukelti
nepageidaujama vélinima.

Pagrindiné ACK filtravimo veikimo salyga: TCP duomeny i$siuntimo langas (angl.
congestion window — CWND) yra didesnis uz tinklo duomeny tinklo vélinimo dydj (angl.
bandwidth delay product — BDP), o TCP sesija yra persipildymo vengimo fazéje. Per
anksti aktyvavus ACK filtravima ar esant nepakankamam TCP iSsiuntimo langui, ACK
ribojimas gali ne tik sumazinti ty perdavimy greitaveika, bet ir sukurti papildoma vélinima
bei TCP sesijos nutriikima. Per vélai aktyvuotas ACK ribojimas dazniai neturi teigiamo
efekto TCP duomeny perdavimo greitaveikiai ir tinklo elementams.

Norint nustatyti kokia jtaka turi ACK pakety ribojimas TCP sesijoms bei tinklo jren-
giniams buvo atlikti eksperimentiniai tyrimai realiame tinkle. Tiriamasis tinklas buvo su-
darytas i TCP kliento kompiuterio (PK 2) ir TCP serverio (PK 1), sujungty per tinklo
jrenginius (R1, R2). Viso tinklo jrenginiai ir kompiuteriai buvo sujungti 100 Mbit/s Ether-
net duomeny perdavimo prieiga.
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Tyrimo metu buvo generuojamas 400 MB dydzio duomeny failas ir perduodamas per
tinkla. Duomeny srautas buvo siun¢iamas naudojantis <fip> programa, perduodant faila
i§ TCP serverio TCP klientui (S.1.3 pav.).

FTP TCP duomLenL; pakiat_al' FTP
serveris . 2 Kientas
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S.1.3 pav. Patvirtinimo pakety filtravimas tinklo jrenginyje

Eksperimento metu ACK filtravimo jrenginys (PK 4) buvo pajungtas iskart po TCP
kliento (PK 2), taip ribojant ACK pakety skai€iy j kitus tinklo jrenginius. Esamo kompiuterio
Linux OS ACK filtravimo ribiniai eksperimento nustatymai pateikti S.1.4 paveiksle.

0l tc gdisc add dev ethl ingress

02 tc filter add dev ethl parent ffff:0
protocol all prio 1 u32 match u32
O0xaff0001 Oxffffffff at 16 classid
ffff:0 police index 2 rate 12500bps
burst 102400 mpu 0 action drop/pass

03 tc filter add dev ethl parent ffff:0
protocol all prio 1 u32 match u32
0x0 0x0 at 0 classid ffff:0 police
index 3 rate 1lbps burst 1 action
drop/drop

S.1.4 pav. Linux OS <fc> programos patvirtinimo pakety filtravimo kodas

Pirmo eksperimento metu buvo atliktas TCP sesijos stabilumo tyrimas su skirtingomis
ACK filtravimo reik§mémis. Siekta nustatyti poveiki TCP stabilumui ir perduodamy duo-
meny greitaveikai. ACK filtravimo verté buvo didinama nuo 0 % (be ACK filtravimo) iki
80 % ir stebima jtaka TCP sesijos stabilumui, duomeny perdavimo greitaveikai bei tinklo
elementy apkrovai. Tinklo jrangos stebéjimui buvo naudojamas paprastasis tinklo valdymo
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protokolas (angl. Simple Network Managment Protocol — SNMP) protokolas, kuriuo perio-
diskai buvo surenkami tinklo elementy apkrovos parametrai, nesukuriant papildomos apk-
rovos tinklui ir jo jrenginiams.
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S.1.5 pav. Transporto valdymo protokolo duomeny pakety perdavimo sparta
su skirtingomis patvirtinimo pakety filtravimo vertémis

I8 eksperimento metu surinkty duomeny pateikty S.1.5 paveiksle pastebima, kad visos
tirtos TCP sesijos su skirtingomis ACK filtravimo vertémis islaiké vienoda ir pastovy duo-
meny perdavimo greitj be didesnés jtakos TCP sesijos stabilumui. Maksimali stabili ACK
filtravimo verté buvo pasiekta ties 85 %. Padidinus daugiau buvo stebimas TCP sesijos vei-
kimo nestabilumas ir TCP sesijos nutriikimai. I$ atliktos statistinés analizés pastebéta, kad
didzioji dalis TCP sesijos veikimo sutrikimy buvo sukelti dél per daug iSaugusiy pakety uz-
laikymo (angl. round-trip time — RTT), kurios virsijo leisting pakety persiuntimo laika (angl.
retransmission timeout — RTO).

Atlikus SNMP tinklo jrenginiy apkrovos analize (1.6S pav.) buvo istirta TCP ir ACK
pakety daroma jtaka jiems. I§ tyrimo metu gauty duomenu, pateikty S.1.6 ir S.1.7 paveiks-
luose, pastebéta, kad tinklo lementy apkrova yra tiesiogiai proporcinga TCP ir ACK pakety
skai€iui. Nors ACK ribojimas neryskiai sumazina duomeny srauta tinklo jrenginiuose, taciau
del sumazinto ACK pakety skaiciaus, kurj apdoroja tinklo jrenginiai, matomas ryskus apk-
rovos sumazéjimas. 1§ gauty duomeny, pateikty S.1.7 paveiksle, stebimas tinklo marsruto
parinktuvy CPU apkrovos priklausomybé nuo skirtingy ACK filtravimo verc¢iy. Tyrimo
metu pateikti tik Cisco 881 ir 1841 tinklo mar$ruty parinktuvy CPU apkrovos duomenys,
nors panasios apkrovos tendencijos buvo stebimos ir su kitais tinklo jrenginiais. Naudojant
80 % ACK filtravimo verte marsruto parinktuvy CPU apkrova buvo sumazinta daugiau nei
25 % arba duomeny perdavimo greitaveika padidéjo ~30 %.
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S.1.7 pav. Marsruto parinktuvo centrinio procesoriaus apkrova
prie skirtingy patvirtinimo pakety filtravimo verciy
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S.1.8 pav. Dviejy transporto valdymo protokolo srauty pakety perdavimo
sparta su patvirtinimo pakety filtravimu
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S.1.9 pav. Dviejy transporto valdymo protokolo srauty su ir be
patvirtinimo pakety filtravimo
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Atliekant dviejy, vienu metu veikian¢iy TCP sesijy, su ir be ACK filtravimo, veikimo
tyrima (S1.8 pav.) nustatyta, kad TCP sesijos greitaveikos ir augimo algoritmai, kurie tiesio-
giai priklauso nuo gaunamy ACK pakety skai€iaus, mazai priklauso nuo ACK filtravimo ir
gali efektyviai konkuruoti ir veikti viename duomeny perdavimo tinkle. Net esant 80 %
ACK filtravimo vertei nebuvo pastebéta didesniy TCP sesijos veikimo sutrikimy. I§ tyrimo
metu gauty duomeny nustatyta, kad TCP sesija su ir be ACK filtravimo mazai skiriasi. Abi
TCP sesijos beveik tolygiai pasidalino duomeny perdavimo kanala. Nors filtruojama TCP
sesija ir gauna maziau tinklo resursy, taciau tai yra dalinai dél didesnio filtruojamos TCP
sesijos vélinimo, kurj sukuria papildomas tinklo jrenginys.

Atlikus pakartotinj eksperimenta, dviejy vienu metu veikian¢iy TCP sesijy, tik su ne-
dideliu pakety praradimu tinklo jrenginiuose, buvo istirtas ACK filtravimo ir TCP atsista-
tymo algoritmy veikimas esant duomeny praradimui (S.1.9 pav.). Eksperimento metu abi
TCP sesijos patiria pastovy duomeny siuntimo sutrikima, po kurio ivyksta TCP atsistatymo
procesas. Kaip ankstesniame tyrime (S.1.8 pav.), filtruojama TCP sesija i§licka konkuren-
cinga ir yra tolygi lyginant su nefiltruojama TCP sesija. Nors ACK ribojimas néra i§jungia-
mas TCP sesijos atsistatymo metu, naudojamo filtravimo metodas (S.1.4 pav.) leidzia nedi-
delius ACK pakety srauto padidéjima ju nefiltruojant. Dél to TCP sesija grei¢iau atsistato po
pakety praradimy (S.1.9 pav.).

2. Transporto valdymo protokolo patvirtinimo pakety
filtravimas Linux branduolyje

Nors ACK filtravimo metodas tinklo jrenginiuose yra paprastas ir lengvai jgyvendinamas,
taciau tai labiau tinka pastoviy parametry tinkluose su zinoma tinklo pralaida ir vélinimu.
Esant kintanciam vélinimui ar nepastoviems tinklo parametrams ACK ribojimas tinklo
irenginiuose gali veikti neefektyviai ir sukelti papildomus TCP duomeny pakety persiun-
tima.

Viena esminiy ACK filtravimy problemy yra tai, kad TCP duomeny siuntéjas ir gavé-
jas nieko nezino apie duomeny perdavimo tinklo parametrus ir kito TCP sesijos nario esama
biisena. TCP duomeny siuntéjas gali biiti léto starto fazéje ar persipildymo vengimo stadi-
joje. Norint optimaliai i8naudoti ACK filtravima, bitina leisti TCP duomeny siuntéjui pa-
siekti savo maksimaliai stabily i$siuntimo langa (CWND) ir biti persipildymo vengimo
biisenoje. Esant $ioms salygoms galima aktyvuoti ACK filtravima TCP duomeny gavéjo
puséje. ACK filtravimo reik§meé turi bati didinama palaipsniui Af periodais. Staigus ACK
filtravimo vertés padidéjimas gali sukelti rySky TCP vélinimo padidéjima, dél ko gali bati
vir§ytas persiuntimo laikas (RTO). Kai kliento nepatvirtintas duomeny kiekis tinkle priartéja
prie duomeny tinklo vélinimo dydzio (BDP) ar TCP duomeny i$siuntimo lango vertés
(CWND), stebimas TCP pakety uzlaikymo tinkle ver¢iy (RTT) padidéjimas ir duomeny
srauto greitaveikos sumazeéjimas.

Esamas TCP standartas neturi specifinio lauko ar kito btido informuoti duomeny siun-
téja apie TCP sesijos biisena bei esama duomeny issiuntimo lango (CWND) dydj. TCP per-
sipildymo algoritmai skiriasi nuo operacinés sistemos, todél darbo metu buvo pasiremta
RFC standartais, kurie apraso kaip turéty kistis i§siuntimo langas (CWND) dydis léto starto
ir persipildymo vengimo metu. I$siuntimo lango dydis negali didéti daugiau nei 1 leidziamas
siuntéjo maksimalus segmento dydis (angl. sender maximum segment size — SMSS) per viena
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TCP pakety apsikeitimo perioda, TCP persipildymo vengimo fazéje (RFC 5681). Ir ne dau-
giau kaip SMSS baity po kiekvieno gauto ACK Iéto starto fazéje. Persipildymo vengimo fazé
apraSoma pokyc¢io funkcija (Bott 2014; Stevens 1997; Floyd et al. 2000; Alrshah et al. 2014):

__ tep_ack_snd_check

Prarastas paketas

Nunulinti TCPACK
ribojimo
kintamuosius

Taip9»

TCP in Init state
CWND < RWND

Padidinti TCP AC
iltravimo reikSm

A

Taip

Padidinti INT

kinta majj

Ar naujas
tarpaketinis
élinimas mazesnu

Padidinti TCP ACK
filtravimo limita,
naujas tarpaketinio
vélinimo reiksmé

Nustayti naujg
tarpaketinj vélinima

Ar TCP ACK
filtravimo reikSmé

Sumazinti TCP ACK
Filtravimo reiksme

TCP ACK send

A

S.2.1 pav. Patvirtinimo pakety filtravimo algoritmo jgyvendinimas
Linux branduolyje
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SMSS - SMSS ’ (S2.1)

Wewno = Wewsn
WCWND
¢ia Wewnp — siuntimo lango dydis baitais, o SMSS — didZiausias leidziamas TCP segmento
dydis. Linux OS branduolyje lango didéjimo funkcija aprasyta pasikartojancia funkcija, kuri
yra tik aproksimacija RFC 5861 funkcijai (Bott 2014; Started ef al. 2001; Bhuiyan et al.
2009; Socolofsky et al. 1991).

Zinant Wewnp it ACK generavimo daznj ir pritaike Linux OS branduolio Wewxp di-
déjimo funkcija galime surasti ACK pakety skai€iy, po kurio TCP siuntéjas pasieks mak-
simalig leidziama Wewnp verte ACKw. Sj pokytj apraso sekos funkcija:

Wewnp + j( CWND . lj
SMSS SMSS _1. (8.2.2)
2

Cia ACKy yra ACK pakety skaicius, reikalingas norint pasiekti leidziama Wewnp verte.

Zinant ACKN verte ir Wewsp augimo greitj Linux OS branduolyje buvo pasitilytas
naujas ACK filtravimo algoritmas, pateiktas S.2.1 paveiksle. Naujas ACK filtravimo algo-
ritmas dinami$kai kontroliuoja ACK pakety skai¢iy, pagal kintamus duomeny perdavimo
tinklo ir TCP sesijos parametrus, didindamas ar mazindamas ACK filtravimo verte. Prie§
kiekviena Linux operacinés sistemos ACK siuntimo procesa yra atliekamas papildomas tik-
rinimo veiksmas, kuris tikrina esamg ACK filtravimo verte bei atlieka ACK filtravimo vertés
korekcija.

Persipildymo vengimo fazé yra labiau tiesiné funkcija ir uztrunka daug ilgiau nei léto
starto fazé. Zinant TCP gavéjo lango dydj RWND (angl. TCP Receiver Window — RWND)
vertes arba maksimaly leidziama TCP serverio i$siuntimo lango (CWND) dydj galima aps-
kai¢iuoti laiko perioda, kuris yra biitinas norint pilnai iSnaudoti TCP duomeny siuntéjui is-
siuntimo langa. Zinant gavéjo lango dydj (RWND) lango dydj, kurj perduodam TCP duo-
meny siuntéjui, TCP duomeny gavéjas gali surasti ribines ACK filtravimo vertes.

ACK, = (

3. Patvirtinimo pakety filtravimo heterogeniniuose tinkluose
eksperimentiné patikra

Norint nustatyti Linux branduolyje atlikty pakeitimy jtaka sistemos veikimui bei jos sta-
bilumui, buvo atlikti TCP spartos ir OS stabilumo tyrimai virtualiose sistemose. Tyrimo
metu buvo pasirinkta virtuali aplinka dél lankstesnés testavimo sistemos sukiirimo gali-
mybés. Tai leido gauti daug identisky sistemy, su minimaliais poky¢iais, naudojant skir-
tingus Linux OS branduolius.

Pirmo tyrimo metu buvo pasirinkta Linux branduolio virtualizavimo jrankis (angl.
Kernel based Virtual Machine — KVM) su OpenWRT Linux OS distribucija. Jis naudoja-
mas mazos galios jrenginiuose (Dutt et al. 2012; Maxim et al. 2012; Rathore et al. 2013;
Tafa et al. 2011).
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Tyrimo metu Linux virtualizavimo jrankyje buvo iSskirtas vienas fizinis centrinis
procesorius (CPU) su ribotu sisteminiy resursy kiekiu ir 512 MB darbinés atminties. Vir-
tualios sistemos tinklo nustatymams buvo parinktas Intel 1000 tipo valdiklis, su i§jungtu
TCP automatiniu klaidy skaic¢iavimu (angl. Cyclic Redundancy Check — CRC) tinklo a-
dapteryje.

Patvirtinimo pakety filtravimo Linux branduolyje tyrimui buvo sukurtas duomeny
perdavimo tinklas sudarytas i§ TCP serverio, veikian¢io Linux virtualioje aplinkoje
(KVM), ir TCP kliento. Duomeny srauto ir tiriamuyjy sistemy steb¢jimui bei gauty duo-
meny analizavimui prie duomeny tinklo buvo prijungtas didesniy sisteminiy resursy kom-
piuteris PK 3.

Norint istirti Linux OS branduolyje jdiegto ACK filtravimo algoritmo veikima buvo
stebima ACK filtravimo verté tp->ack pkt cnt ir jos kitimas laike (S.3.1 pav.). Taip pat
stebéta ar ACK filtravimo atsitraukimo algoritmas veikia padidéjus TCP duomeny tarp-
paketiniam vélinimui (sumazéjus TCP perdavimo greitaveikai). Norint paspartinti ACK
filtravimo atsitraukimo algoritmo veikima ACK filtravimo greitis buvo padidintas naudo-
jant statine algoritmo augimo tp->ack rate val verte.

I§ eksperimento metu gauty duomeny nustatyta, kad ACK filtravimo ir atsitraukimo
algoritmas kinta priklausomai nuo tinklo ir TCP sesijos parametry vertés. ACK filtravimo
algoritmo kintamuyjy verciy pokytis laike buvo stebimas naudojant <dmesg> programa.
Tyrimo metu nustatyta, kad pasitlytas ACK filtravimo augimo ir atsitraukimo metodas
veikia ir nesukuria TCP sesijos ar sistemos veikimo nestabilumo.

Lyginat eksperimentiskai gautus rezultatus su nemodifikuota Linux OS sistema buvo
matomas rySkus TCP greitaveikos padidéjimas. TCP greitaveika su ACK filtravimu buvo
vidutiniskiai 30 % didesné, o trumpais laiko tarpais ji virijo 40 % (S.3.2 pav.).
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S.3.1 pav. Patvirtinimo pakety ACK filtravimo veikimas Linux branduolyje
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S.3.2 pav. Duomeny siuntimo greitaveikos kitimas jjungus
patvirtinimo pakety filtravimo algoritma

Papildomai atlikus TCP pakety vélinimo analize, pastebéta, kad virtualioje aplinkoje
modifikuotos Linux OS sistemos vélinimas yra Zenkliai mazesnis lyginant su nemodifi-
kuota ir buvo ~ 10 ms vertés. Tuo metu standartinés sistemos vélimas buvo 20 ms ir dau-
giau. Naudojant ACK filtravima buvo gaunamas iki ~ 50 % vélinimo sumazéjimas, kas
ne tik padidino duomeny perdavima, taciau ir sumazino sistemos apkrovima dél mazesnio
naudojamo TCP duomeny i$siuntimo lango (CWND)vertés.

Norint jvertinti fiziniy komponenty (centrinio procesoriaus, operatyvinés atminties
greitaveikos, Ethernet tinklo valdikliy) poveikj ACK filtravimo tyrimas buvo atliktas
virtualias sistemas pakei¢iant fiziniais jrenginiais. Kaip ir ankstesnio eksperimento metu
TCP klientas ir TCP serveris buvo sujungti per Ethernet duomeny tinkla, 1Gbit/s spartos
jungtimi, o juy perduodami tinklo duomenys buvo nukreipiami analizei j tre¢ia kompiuter;j.
TCP klientui ir serveriui buvo i§jungti automatiniai klaidy aptikima (CRC) bei pakety ap-
jungimo funkcijos. Vienintelis esminis skirtumas yra tai, kad $io tyrimo metu sisteminis na-
Sumas buvo maZesnis serverio puséje, tai yra TCP perduodamy duomeny greitaveika ribojo
tik TCP serverio sisteminiai parametrai ir centrinio procesoriaus pajégumas. Kadangi didé-
jant perduodamy duomeny kiekiui proporcingai auga ir gaunamy TCP pakety skaicius, pa-
siekus tam tikra riba yra stebimas siuntimo greitaveikos sustojimas, dél per didelio centrinio
procesoriaus apkrovimo.

Atlikus pakartotinj bandyma su Linux operaciné sistema, kurioje nebuvo naudojamas
ACK ribojimas, matyti zenklus i§siun¢iamy TCP duomeny greitaveikos padidéjimas. I§ eks-
perimento gauty duomeny, pateikty S.3.2 paveiksle pastebima, kad TCP sesijos pradzioje
(iki 20 s) yra toks pat TCP issiun¢iamy duomeny greitis. Po ~ 20 s stebimas i§siunc¢iamy
duomeny padidéjimas iki 60 %. Iki ~ 20 s ACK filtravimo algoritmas laukia kol pilnai atsi-
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darys iSsiuntimo langas TCP serveryje, po kurio yra aktyvuojamas ACK filtravimo algorit-
mas TCP duomeny gavéjo puséje. Tyrimo metu ACK filtravimo algoritmas sustoja kai duo-
meny siuntéjas vél pasiekia maksimalia i§siun¢iamy duomeny greitaveika dél centrinio pro-
cesoriaus apkrovos, o padidéjes vélinimas priver¢ia sumazinti ACK filtravimo vertg.

PrieSingai nei virtualioje aplinkoje yra stebimas vélinimo padidéjimas (nuo 0,2 ms iki
2,5 ms), kuris yra susietas su didéjancia tp->ack rate val verte. Nors atsirades vélinimo
padidéjimas yra zenklus, taciau jis neturi didelés neigiamos jtakos duomeny perdavimo grei-
taveikai ir TCP sesijos stabilumui (S.3.3 pav.).
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S.3.3 pav. Pakety uzlaikymo tinkle kitimas duomeny
siuntimo metu su patvirtinimo pakety filtravimu

Atlikus eksperimentus su sistema, kurios neriboja sisteminiai resursai, o centrinio pro-
cesoriaus naSumas yra daug didesnis, buvo gauti duomenys, kurie patvirtino, kad ACK ri-
bojimas neturi didelés jtakos TCP sesijos stabilumui, nors ir buvo gauti mazesni TCP grei-
taveikos rezultatai. Trumpais laiko tarpais pastebimas neryskus sistemos su TCP filtravimu
pranasumas, taciau vidutingje greitaveikoje pastebima, kad nemodifikuotas Linux OS bran-
duolys islaiko geresnge duomeny perdavimo greitaveika. Tai paaiskinama tuo, kad TCP duo-
meny gavéjas nesugeba apdoroti gaunamy duomeny ir mazina priémimo greitaveika didi-
nant RTT laika. Tokiomis salygomis ACK filtravimo algoritmo veikimas neturi teigiamos
jitakos TCP sesijos greitaveikai arba stebimas neryskus jos sumazéjimas.

Bendrosios iSvados

Disertacijoje pristatytas transporto valdymo protokolas patvirtinimo pakety ribojimo tyri-
mas. Gautos iSvados:
1. ACK ribojimas, atlieckamas tinklo jrenginiuose, neturi neigiamos jtakos TCP se-
sijos stabilumui ir greitaveikai, o TCP sesija i$lieka stabili ACK pakety skaiciy
sumazinus iki 80 %.
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2. Tinklo marSruty parinktuvy apkrova tiesiogiai priklauso nuo ACK pakety skai-
¢iaus. Augant TCP duomeny perdavimo greitaveikai did¢ja ir TCP ir ACK pa-
kety skaicius. Su 80 % ACK filtravimu, esant marsruty parinktuvy centriniy pro-
cesoriy apkrovai 60 %, naSuma galima padidinti iki 32 %.

3. ACK ribojimas, atliekamas tinklo jrenginiuose ir Linux operacinés sistemos
branduolyje, gali sékmingai veikti ir konkuruoti dél tinklo resursy su kitomis
TCP sesijomis, veikian¢iomis tame pa¢iame duomeny perdavimo kanale kaip ir
nefiltruojama TCP sesija nors buvo pastebétas ne visai tolygus duomeny kanalo
pasidalinimas.

4. ACK ribojimas, atliekamas tinklo jrenginiuose, neturi neigiamos jtakos TCP se-
sijos stabilumui ir veikimui esant pastovioms tinklo salygoms. Taciau kintant
TCP sesijos parametrams ir pakety uzlaikymo laikams (RTT) biitinas ACK filt-
ravimo verciy perskai¢iavimas.

5. Naudojant ACK filtravima IEEE802.11a nevienaly¢iuose duomeny perdavimo
tinkluose ACK skaic¢iy galima sumazinti iki 30 %, taip sumazindami duomeny
perdavimo tinklo jrangos apkrova ir padidina duomeny tinklo pralaiduma iki
10 %=

6. Dinaminio ACK filtravimo algoritmo jdiegimas Linux operacinés sistemos bran-
duolyje neturi neigiamos jtakos TCP sesijy stabilumui bei sistemos veikimui, kai
yra i§laikomos ribinés veikimo salygos ir TCP priémimo lango verté yra didesné
uz tinklo duomeny vélinimo rodiklj.

7. Esant ribinéms ACK filtravimo vertéms ar padidéjusiai sistemos apkrovai stebi-
mas rySkus TCP RTT veélinimo deviacijos padidéjimas, kuris gali virSyti frro
laika ir sukelti TCP duomeny pakety persiuntima ir siuntimo laiko pailgéjima.

8. Patvirtinimo pakety ribojimas tinklo jrenginiuose ir Linux OS branduolyje lei-
dzia padidinti TCP duomeny pralaiduma iki 50% ir sumazinti nereikalinga cent-
rinio procesoriaus apkrova iki 32% tinklo jrenginiuose. Pasirinktos ACK filtra-
vimo vertés neturi vir§yti nustatyty ribiniy verciy, nes tai gali sukelti nereikalinga
TCP duomeny pakety persiuntimo laika ir TCP na§umo sumazéjima.
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