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Abstract

Search and rescue (SAR) missions in disaster sites are complex operations with
the top priority of the first responders to find as many survivors as possible within
a limited time window. In these missions, autonomous robots can assist the
responder teams by providing essential information about the SAR environments
without putting human resources in danger. Thus, a robot’s ability to efficiently
explore and navigate an unknown environment is the main requirement for an
autonomous search and rescue robot. Currently, a common approach to this
problem is to incrementally increase the robot’s knowledge about the exploration
space by directing it to the regions which border currently unexplored areas, called
frontiers. However, deciding on where to move next when multiple candidates are
present introduces an additional layer of complexity as the robot must make real-
time decisions with limited and possibly inaccurate information. Also, imprecise
robot movements and imperfect input data characteristics provided by robot
sensors can impact the candidate assessment process and, therefore, should be
addressed while designing autonomous search and rescue robots.

The dissertation consists of an introduction, three main chapters, general
conclusions, and a list of references. The first chapter performs a literature review
on autonomous navigation and environment exploration strategies and formulates
the dissertation’s objectives. In the second chapter, a novel adaptive approach that
implements the fuzzy logic controller is proposed for the autonomous navigation
and environment exploration process. Also, two novel extensions are developed
for the state-of-the-art WASPAS multi-criteria decision-making method and
applied to determine the most suitable frontier considering the current robot state
and the discovered environment information. These extensions are modelled
under the interval-valued neutrosophic and m-generalised g-neutrosophic
environments and referred to as WASPAS-IVNS and WASPAS-mGNS.

The third chapter evaluates the proposed autonomous navigation strategies
and presents the results. The case study results highlight how the proposed
approach could be applied to minimise the probability to damage the robot while
maximising the size of the area searched by the robot. By addressing the estimated
inaccuracies in the input data characteristics, the proposed decision-making
framework provides additional reliability when comparing and ranking candidate
frontiers. The obtained results also indicate the increased efficiency when
comparing the proposed adaptive candidate assessment strategies to the standard
candidate assessment-based strategies.



Reziume

Paieskos ir gelbéjimo (SAR) misijos nelaimés zonose yra sudétingos operacijos,
kuriy metu pagrindiné gelbétojy uzduotimi tampa per tam tikrg laiko tarpa aptikti
ir padéti kaip jmanoma daugiau nukentéjusiyjy. Viena aktualiy moksliniy tyrimy
sritis §iame kontekste yra Zmogaus ir roboto bendradarbiavimas, nes autonominiy
roboty naudojimas SAR operacijose gali padéti gelbéjimo komandoms surinkti
nezinomos aplinkos informacija, nerizikuojant Zmoniy gyvybémis ar sveikata.
Siuo atveju, itin svarbus reikalavimas, taikomas autonominiam robotui, yra
gebéjimas efektyviai istyrinéti nezinomas ir, galimai, pavojingas aplinkas. Siuo
metu nezinomos aplinkos tyrinéjimo uzdaviniui spresti daznai yra taikoma roboto
nukreipimo | regionus tarp zinomos ir nezinomos erdvés (angl. Frontiers)
strategija. Ta¢iau sprendimas, kur robotas turéty judéti toliau, kai tyrinéjamoje
erdvéje yra keletas galimy kandidaty, yra sudétingas, nes daznu atveju robotas
privalo priimti tik pusiau optimalius sprendimus dél nepakankamy ar nepatikimy
sprendimui priimti reikalingy jvesties duomeny. Be to, netikslus roboto judéjimas
ir netobuli sensoriai sukuria situacijas, kai jvesties parametrai néra tikslas, tad j
Sig problema turéty biti atsizvelgta kuriant autonomines nezinomos aplinkos
tyrinéjimo strategijas.

Disertacija sudaro jvadas, trys pagrindiniai skyriai, bendrosios iSvados ir
literatliros sgraSas. Pirmame skyriuje atlickama literattros apie autonomines
navigacijos strategijas, grindziamas nezinomos aplinkos tyrinéjimu, apzvalga ir
suformuluojamos darbo uzduotys. Antrame skyriuje aptariama sitiloma adaptyvi
neraiskiosios logikos valdiklj naudojanti sprendimy priémimo strategija. Taip pat,
pasitlyti du klasikinio WASPAS daugiakriteriniy sprendimy priémimo metodo
plétiniai, kurie taikomi siekiant nustatyti vertingiausia kandidatg, jvertinant esama
roboto biiseng ir atrasta tyrin¢jamos vietovés informacija. Siilomi WASPAS
plétiniai sumodeliuoti taikant intervalines neutrosofines aibes ir m apibendrintas
g neutrosofines aibes, 0 nauji metodai atitinkamai pavadinti WASPAS-IVNS ir
WASPAS-mGQNS.

Treciame skyriuje jvertinama sililoma autonominés navigacijos strategija.
Tyrimy rezultatai parodo, kaip siiloma strategija gali biiti pritaikyta siekiant
sumazinti tikimybe pazeisti robota ir kartu padidinti atrasta aplinkos informacijos
kiekj. Lyginant su standartiniais metodais, sitiloma adaptyvi navigacijos strategija
suteikia galimybe jvertinti netikslius jvesties parametrus ir yra efektyvi, lyginant
ja su klasikinémis kandidaty vertinimu pagrjstomis strategijomis.
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Notations

Symbols

Py — candidate frontier set.

pr(x,y); — candidate frontier.

U — utility score of a candidate.

U(ps(x,y)") — candidate frontier with the highest utility score.

W — the set of criterion weights.

w — the criterion weight value.

w, — the criterion weight value when the membership is considered as strong.
w,, — the criterion weight value when the membership is considered as weak.
C — criteria set.

¢ — the value of a single criterion.

ST — the set of candidate assessment strategies.

St — a single candidate assessment strategy.

s; — comparative importance of average.

k; — characteristics of the comparative importance.

q; — intermediate weight.

X — a set of objects.
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x —a single object.

T (x) — truth membership.

I(x) — indeterminacy membership.

F (x) — falsity membership.

A —real number.

N, — a single-valued neutrosophic number.
N;, — an interval-valued neutrosophic number.
Nyq — M-generalised g-neutrosophic number.
N¢ —the complementary neutrosophic number.
S() — the score functions.

a() — the accuracy functions.

c() — the certainty functions.

p() — the degree of possibility.

D — The decision matrix.

[d];; —a member of a decision matrix.

[d];, — a member of a decision matrix in a neutrosophic form.

Q™™ — the first objective of the WASPAS method.

Ql.(z) — the second objective of the WASPAS method.

Q; — the joint generalised value of the first and second objectives of the WASPAS
method.

E(s) — distance to the hypothesised survivor.

E(d) — distance to the dangerous area.

R —the computed path to the candidate.

wp; — a single waypoint in the computed path to the candidate.

t — the time needed to reach the candidate.

Do — the corner between the robot and the candidate.

a — the corner between the waypoints in a planned path.

v, — the robot’s movement speed.

v, — the robot’s rotation speed.

& — the constant value representing the width of the door.

1, — width of the detected drive-through region.

P; — the sum of the penalty received by the robot for crossing dangerous regions.

d, — the partial penalty value received by the robot for crossing dangerous regions.

0, — the set of currently known dangerous areas.

o4 — the dangerous area.

d, — distance from the waypoint to the dangerous area.

d,, — distance from the waypoint to the detected survivor.

¢ — the number of sampled cells that are yet to be discovered.
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Abbreviations

ANOVA - the procedure of analysis of variance.
CF — Closest Frontier.

DA — Danger Avoidance strategy.

EU — European Union.

IG — Information Gain strategy.

IVNS - Interval-Valued Neutrosophic Set.
MCDM - Multi-Criteria Decision-Making.
mMGgNS — m-Generalised g-Neutrosophic Set.

MULTIMOORA-SVNS — Multi-Objective Optimisation by Ratio Analysis method,
modelled under the Single Valued Neutrosophic Set.

ROS — Robot Operating System.

RS — Reach Survivor strategy.

RRS — Restrictive Reach Survivor strategy.
SAR — Search and Rescue.

SIG — Standard Information Gain strategy.
SVNS — Single Valued Neutrosophic Set.
UAYV — Unmanned Aerial Vehicle.

UGV — Unmanned Ground Vehicle.

USV — Unmanned Surface Vehicle.

UUV — Unmanned Underwater Vehicle.
WASPAS — Weighted Aggregated Sum Product Assessment method.

WASPAS-IVNS — the WASPAS method, modelled under the Interval-Valued
Neutrosophic Set environment.

WASPAS-mGgNS — the WASPAS method, modelled under the m-Generalised g-
Neutrosophic Set environment.

WPM — Weighted Product Model.
WSM — Weighted Sum Model.
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Introduction

Problem Formulation

Application of autonomous and semi-autonomous mobile robots in disaster sites
for search and rescue (SAR) missions can increase the awareness of the first
responders, allowing them to collect on-scene information about the unknown
and, often, dangerous areas in the search site without putting human resources at
risk (Pfitzner & Merkl, 2013; De Cubber etal., 2017). As such, robots are
expected to accomplish multiple high-level objectives without any (or with
minimal) intervention from the robot operators (Bahadori et al., 2015; Sheh et al.,
2016). For example, robots can be tasked to explore and create a map of the
initially unknown environment, visit a number of pre-set landmarks, detect and
mark dangerous objects (e.g., radiation or fire source), detect and contact the
survivors, and deliver sustenance and medication to the trapped or injured (Jacoff
et al., 2003).

However, imprecise or incomplete information about the disaster site
introduces additional complexity to the autonomous environment exploration
problem. If no initial information about the geometrical structure of the
environment can be presented to the robot in advance, an offline route planning
approach cannot be applied, and an optimal solution cannot be found simply due
to the absence of problem-related information. This issue can be solved by
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2 INTRODUCTION

developing an efficient online navigation strategy, which enables the robot to
autonomously decide where to move next (Amigoni, Basilico & Quattrini Li,
2014).

Currently, multiple strategies can be applied in autonomous navigation and
environment exploration tasks. However, a prevalent approach to this problem is
a frontier-based approach proposed by Yamauchi (1997). This strategy can be
improved by applying the next-best candidate assessment strategy, which
considers the mission optimisation priorities modelled by weighted criteria set.
Due to the inherent multi-criteria nature of this environment exploration strategy,
the multi-criteria decision-making methods (MCDM) can be applied to solve this
next-best candidate selection problem. Thus, the main focus of this thesis aims to
improve robot decision-making capabilities in search and rescue missions when
multiple competing optimisation priorities are present, and the input data
characteristics are inaccurate.

Relevance of the Thesis

Autonomous navigation and environment exploration strategies define how robots
move and collect information in a completely unknown (or little known)
environment. The common approach to this problem is to apply the candidate
assessment-based (next-best-view) environment exploration strategies. As the
decision on where the robot should move next requires balancing multiple
competing optimisation priorities, developing a flexible, transparent and efficient
decision-making system is an important issue that should be considered.
Moreover, imprecise robot sensors and environment representation models can
provide inaccurate input data characteristics used in the candidate assessment
process. Therefore, autonomous environment exploration strategies that allow for
the possibility to address these issues and ensure the stability of the decision-
making process in SAR environments are a prominent study subject.

Research Object

The object of the thesis is autonomous robot navigation strategies based on the
candidate assessment by a multi-criteria decision-making approach.
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Aim of the Thesis

The thesis aims to improve the candidate-assessment-based navigation strategies
applied by the autonomous search and rescue robot when the decision on where
to move next is made by considering only the current state of the robot and the
environment and having inaccurate input data characteristics.

Tasks of the Thesis

To achieve the aim of the thesis, the following problems had to be solved:

1. To review common navigation and environment exploration strategies
applied by the autonomous robots and determine the shared limitations
of these strategies in search and rescue missions.

2. To develop novel candidate assessment strategies considering the
common limitations of the candidate-assessment-based autonomous
navigation strategies.

3. To develop an adaptive autonomous navigation strategy that allows
switching between the rules that govern the candidate assessment
process.

4. To develop novel extensions of the multi-criteria decision-making
methods capable of considering the inaccurate input data characteristics.

5. To evaluate the performance of the developed multi-criteria decision-
making method extensions.

6. To investigate the performance of the proposed autonomous navigation
strategies in the simulated search and rescue missions.

Research Methodology

This thesis applied literature analysis methods for the investigation of the existing
autonomous environment exploration strategies and problem formulation. Fuzzy
logic, neutrosophic set theory and multi-criteria decision-making methods were
applied to develop an adaptive online autonomous environment exploration
strategy for search and rescue missions. The quantitative and qualitative
evaluation methods were used for the assessment of the proposed autonomous
navigation strategies.



4 INTRODUCTION

Scientific Novelty of the Thesis

This thesis introduces the following scientific novelty:

1. The state-of-the-art WASPAS, multi-criteria decision-making method, is
proposed two novel extensions, which utilise the neutrosophic set logic
and enable the assessment of the inaccurate input data characteristics; i.e.,
WASPAS modelled under the interval-valued neutrosophic set
environment (WASPAS-IVNS); and WASPAS modelled under the m-
generalised g-neutrosophic set environment (WASPAS-mGgNS).

2. The novel egoistic, altruistic and impartial candidate assessment
strategies are proposed for autonomous robot navigation in the search and
rescue environments.

3. A novel adaptive approach is developed for autonomous search and
rescue robots, which combines fuzzy logic controller with multi-criteria
decision-making methods.

Practical Value of the Research Findings

The research findings can be useful when developing and extending autonomous
navigation and environment exploration strategies applied by autonomous mobile
robots. Practical application of the proposed strategies can be valuable in
collecting on-scene information about dangerous search and rescue sites without
putting humans at risk. The proposed method allows robots to make decisions in
real-time and choose different rules of operation, depending on the dynamic
environment information. For example, while navigating, robots can apply an
egoistic behaviour model and avoid danger, an altruistic model and prioritise
reaching survivors, or an impartial behaviour model that could be useful in
situations where area mapping is the most important task. The proposed criteria
set that define distinctive navigation strategies are flexible and not exhaustive.
Therefore, by introducing new criteria or adjusting the weights of the applied
ones, the proposed strategies can be easily extended to consider new navigational
requirements and, thus, be adjusted to specific real-world situations. The results
also include the developed WASPAS extensions under the interval-valued
neutrosophic environment (WASPAS-IVNS) and the m-generalised g-
neutrosophic environment (WASPAS-mGQNS). These modern methods can be
applied to consider vague input data characteristics that are often present in real-
world situations due to the imprecise sensor readings and various measurement
errors in the criteria assessment process. Therefore, these MCDM method features
can be applied not only in the context of autonomous robot navigation tasks but
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can also be applied in multiple decision-making problems where there is a
possibility of uncertain criteria values.

Defended Statements

The following statements based on the results of the present investigation may
serve as the official hypotheses to be defended:

1. The developed WASPAS method extensions under the interval-valued
and m-generalised g-neutrosophic sets are stable and capable of
considering the inaccurate input data characteristics.

2. The developed autonomous navigation and environment exploration
strategies that consider the issues of robot safety, visitation of the detected
survivors, exploration around the priority locations of the autonomous
robot, define different egoistic and altruistic robot behaviour models and
are more effective when compared to the baseline strategies that assess
only the common cost—benefit models.

3. The developed adaptive autonomous navigation and environment
exploration strategy that combines the fuzzy logic controller and MCDM
methods enables the robot to effectively switch between the rules that
govern candidate assessment strategies and increase the performance of
the autonomous robot.

Approval of the Research Findings

Research results on the dissertation topic were published in six scientific
publications. Four were published in the reviewed scientific journals, which are
indexed in Web of Science databases (Semenas & Bausys, 2022; Semenas, Bausys
& Zavadskas, 2021; Semenas & Bausys, 2020; Bausys, Cavallaro & Semenas,
2019); and two were published in proceedings of international conferences
(Semenas & Bausys, 2021; Semenas & Bausys, 2018).

The author made three presentations at international scientific conferences:

— 2nd International Conference on Communication and Intelligent Systems
(ICCIS 2020), India, 26-27 December 2020.

— 10th International Workshop Data Analysis Methods for Software
Systems (DAMSS 2018), Druskininkai, Lithuania, 29 November - 1
December 2018.

— Open Conference of Electrical, Electronic and Information Sciences
(eStream), Vilnius, Lithuania, 26 April 2018.
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The Structure of the Dissertation

The scope of the dissertation consists of an introduction, the three main chapters,
general conclusions, a reference list, and the list of publications by the author. The
scope of the thesis is 121 pages, 57 equations, 23 figures and 22 tables. A total of
126 thesis-related research references are made.



Overview of the Autonomous Robot
Navigation Strategies

This chapter reviews the autonomous navigation and environment exploration
strategies applied by autonomous search and rescue (SAR) robots. It discusses
common applied autonomous navigation strategies and issues that must be
considered when designing entirely autonomous SAR robots. The presented
approach centres on the online candidate assessment strategy by multi-criteria
decision-making methods (MCDM). This chapter concludes by formulating the
main objective and tasks of the present investigation.

Parts of this chapter were published in articles (Semenas & Bausys, 2018;
Bausys, Cavallaro & Semenas, 2019; Semenas & Bausys, 2020; Semenas &
Bausys, 2021; Semenas, Bausys & Zavadskas, 2021; and Semenas & Bausys,
2022).

1.1. Search and Rescue by Autonomous Robots
The level of real-world disasters can vary from small and localised (such as fires

in an industrial complex) to large-scale and covering vast habitable areas (e.g.,
earthquakes, floods and tsunamis) (Memon et al., 2016; Nagatani et al., 2013).
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Disasters usually result in human casualties, health risks in affected communities,
and economic and environmental damages (Jorge et al., 2018).

However, the introduction of autonomous search and rescue robots in such
events can help to mitigate some of the mentioned problems by providing the on-
scene information to responder teams, enabling them to react faster and make
better decisions. By increasing the situational awareness of the first responders,
more tasks can be accomplished in a shorter span of time. Also, the high-risk areas
that need to be avoided or require more safety precautions before sending humans
to such locations can be determined in advance (De Cubber et al., 2017).

Therefore, in search and rescue missions, autonomous robots are expected
not only to create the representative map of the disaster site but are also tasked to
complete a set of other high-level objectives of varying complexity, such as safely
navigating in disaster sites with complex terrain and multiple obstacles (Luneckas
et al., 2021b), finding and contacting survivors, visiting specific landmarks or
locating dangerous objects and events (Jacoff et al., 2003). These high-level
objectives and the assumed space of operation are the defining factors that
influence the autonomous robot design (e.g., it can be an autonomous flying aerial
vehicle (Kikutis, Stankiinas & Rudinskas, 2019) or a walking hexapod robot
(Luneckas et al., 2021a), just to name a few). Thus, search and rescue robots can
be classed as:

— Unmanned Aerial Vehicles (UAVSs) (San Juan et al., 2018) that can be
used for aerial-based search in harsh or vast environments, such as
mountains (Silvagni et al., 2017; Karaca et al., 2018) or above the bodies
of water (Zheng, Hu & Xu, 2017);

— Unmanned Surface Vehicles (USVs) that operate above the surfaces of
water bodies to assist water-stranded boats or people (Jorge et al., 2018);

— Unmanned Underwater Vehicles (UUVs) that operate in deep-sea
missions or are applied in flooded environments.

— Unmanned Ground Vehicles (UGVSs) that are used in many situations,
such as exploring disaster sites after an earthquake and assisting detected
survivors (Sahashi et al., 2011; Kruijff et al., 2012) or operating in mining
site disasters (Murphy et al., 2009; Reddy, Kalyan & Murthy 2015);

Although autonomous robots in search and rescue missions can provide

many benefits, their application in real-world tasks is currently limited due to the
high robustness and stability requirements. Thus, it is more common for SAR
robots to perform alongside humans, forming human-robot teams (Sheh et al.,
2016) and leaving the important decisions (e.g., confirmation of the detected
survivor) to the human operators. Currently, there is no globally-recognised
standard that describes how the decision-making modules of such robots should
be designed.
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Many initiatives have been taking place around the globe to address this
problem and to establish globally-recognised guidelines for SAR robot
development (performing autonomously or in human-robot teams). For example,
the Center for Robot-Assisted Search and Rescue (CRASAR) was established in
the United States of America. The main mission of this organisation is not only to
support and promote the development and application of autonomous robots in
disaster response but also to prepare trained specialists capable of working
together with autonomous robots in search and rescue scenarios (CRASAR,
2020). It is also worth noting that this organisation has participated in the 9/11
response, providing on-the-ground assistance by rescue robots.

The European Union (EU) has also supported many initiatives related to the
use of autonomous robots in search and rescue operations (De Cubber et al.,
2017). One of such EU funded efforts was the NIFTi project which was active for
four years starting in 2010 and focused on human-robot interaction in search and
rescue missions (Kruijff et al., 2014). By focusing on the aspects of optimisation
and separation of human and robot task loads, forms of communication and
alignment with human rescue teams, NIFTi aimed for stronger robot cooperation
with human rescue teams. The results of this project were successfully applied
after the 2012 earthquake in Northern Italy (Kruijff et al., 2012).

Another EU funded project — TRADR — is a direct successor of NIFTi.
The project was active for four years, starting in 2013 and focused on human-—
robot team interaction and cooperation in search and rescue scenarios (Kruijff-
Korbayova et al., 2015). TRADR’s main goal was to develop robust user-centric
strategies for long-term SAR missions involving UAVs and UGVs with different
levels of autonomy.

INACHUS was one more EU project that could be considered a successful
investment. It has been active since 2015 and has also continued for four years.
This project was directed at developing solutions for urban search and rescue
missions, enabling the rapid assessment of structural damage to the disaster site
and providing tools to efficiently plan the actions of the first responders. The
project includes modern sensor systems and communication solutions for survivor
localisation (e.g., mobile phone signals, chemical sensors etc.) (Rigos et al., 2018),
a snake-type robot design, which can navigate through rubble and other small
spaces, decision and planning strategies for casualty and damage estimation.

In Asia, Japan and South Korea are also working on search and rescue robots.
For example, in the 2011 Fukushima Daiichi event, robots were used to inspect
structures with high collapse risk and to search for tsunami victims (Nagatani
etal., 2013). Motivated by this event, the 2015 DARPA Robotics Challenge
presented similar disaster site conditions to provide a platform for testing robots
in performing common SAR objectives. In this event, the South Korean team won
first place by developing a search and rescue robot capable of performing all of
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the required tasks of driving a vehicle, opening doors, climbing ladders and other
challenges important in real-world SAR missions (De Cubber et al., 2017).

One notable global event that provides a testing ground for new autonomous
robot design and environment exploration strategies for search and rescue
missions is RoboCup Rescue Robot League (Akin et al., 2013; Sheh et al., 2016;
RoboCup Rescue, 2020). This competition provides a testing ground suitable for
the assessment of the robot’s ability to navigate and explore disaster sites, create
representative environment maps, locate the survivors and assess their condition,
and deliver or extract various objects. Such an annual competition-based approach
enables the modelling of good robot design practices, identification of effective
navigation and environment exploration strategies, creating a globally-recognised
approach (Aghababa et al., 2019) for testing autonomous robot capabilities, and
measuring the overall progress of autonomous search and rescue robots and
strategies throughout the years.

The autonomous navigation and environment exploration strategies applied
by the SAR robots are affected by many different factors, including how the
underlying high-level objectives are modelled. And the modelling of these
objectives can involve many different stakeholders, such as medical staff, police
officers, firefighters, disaster survivors, local authorities and journalists, just to
name a few. Each of these stakeholders can have a set of unigque expectations or
requirements for the deployed autonomous robot, introducing value tensions that
should be addressed to achieve not only the given mission goals (Harbers et al.,
2017) but also to create a transparent and trusted autonomous system.

For example, in search and rescue missions, firefighters can prioritise the
robot to construct a map that represents the layout of the disaster site and mark
the locations of dangerous events that may hinder the rescue process. Medical
staff can prioritise the monitoring of the detected survivors, and survivors can
prioritise their own well-being. Also, robots are expensive tools that could be
modelled to egoistically protect themselves from harm instead of achieving some
of the given short-term goals.

As autonomous SAR robots can be involved in decision-making situations
that directly affect humans, an efficient robot decision-making strategy must
balance the set stakeholder requirements while also addressing real-world
legislative and ethical design requirements (Veruggio & Operto, 2008) applicable
to the intelligent systems. Therefore, several papers have emerged to address these
issues. For example, Murphy and Woods (2009) addressed the inherent flaws of
the fictional Asimov laws (Asimov, 1950) and proposed three laws of responsible
robotics. Amigoni and Schiaffonati (2018) considered the application of an ethical
framework to search and rescue robot design and development. VVanderelst and
Winfield (2018) tested an ethical behaviour model in physical robots, providing
proof of the concept that robots can be enforced to behave socially acceptably.
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Bogue (2014) reviewed the ethical and legal issues of several existing and
emerging classes of robots, and Alaieri and Vellino (2016) published a paper
discussing the issue of unpredictable robot behaviour and the liability transferring
from the robot to its designers and users (although it should be clarified that in
SAR scenarios, important decisions that impact the survivors are currently always
entrusted to the humans). Boddington et al. (2017) discussed a collection of recent
works that tackle ethical concerns in artificial intelligence.

Several global initiatives have also been started to develop a globally-
recognised standard for the development of intelligent autonomous systems. IEEE
has recently launched its global initiative on the ethics of autonomous and
intelligent systems to advance the public discussion by proposing the concept of
ethically aligned design (Chatila & Havens, 2017). The European Union
institutions addressed the rising concerns by preparing a legislative analysis for
devising civil law rules regarding the smart autonomous systems (Nevejans, 2016)
and, in 2019, presented ethical guidelines for trustworthy artificial intelligence
(Al HLEG, 2019), which can also be applied when designing autonomous SAR
robots. However, the discussed research initiatives do not define exact operative
rules to follow but rather provide abstract guidelines that should be considered
when practically designing autonomous robot systems. Therefore, the practical
development of a decision-making strategy, including how the criteria and their
relative importance are determined, is still an immense challenge due to the
complexity of real-world situations. Moreover, the incomplete information about
the environment and uncertainty that is associated with such information (Yager,
2020) introduce additional complexity to the task, requiring a flexible approach
for modelling robot navigational behaviour in SAR missions.

The strategies that enable the flexible adjustment of autonomous SAR robot
navigational behaviour could be based on the ethically adjustable desigh model
proposed by Contissa et al. (2017). In general, by extending this design, the robots
can be dynamically adjusted to adopt different behaviour models and, therefore, a
more flexible approach can be exploited to solve complex navigational problems.
This behaviour-based approach was somewhat indirectly tested in the research by
Roesner et al. (2019), which proposes a controller for UAV-type swarms. In this
research, agents either assist a detected survivor (act in an altruistic manner) or
prioritise exploration and increase the robot’s operational time enabling it to act
in an egoistic manner, highlighting the possibility of different robot behaviour
model development. Also, if the previously discussed EU guidelines for
trustworthy intelligent systems are considered (Al HLEG, 2019), the approach of
modelling explicit altruistic and egoistic navigation strategies can provide a solid
foundation for flexible, autonomous navigation strategy due to the inherent
transparency of this approach.
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1.2. Environment Exploration Strategies for
Autonomous SAR Robots

As a robot must navigate in an unknown environment, an important factor
becomes not how the robot moves between the spatial targets (specifically, not
how the concrete movement trajectories are planned (Ning et al., 2012)), but rather
where it moves (what spatial targets the robot should select and reach) considering
the high-level objective (Amigoni, Basilico & Quattrini Li, 2014). One can define
the two common objectives given to the autonomous mobile robots as the
coverage and the exploration of the environment. In coverage objectives,
autonomous robots are required to navigate so in a known environment that would
allow them to observe (or physically visit) all of the available locations within
(Choset, 2001; Galceran & Carreras, 2013), whilst in the environment exploration
tasks, autonomous robots are required to explore the initially unknown
environment by discovering its features.

In general, environment exploration strategies define how autonomous
robots navigate and gather information within the given operating environment.
The main factors that define the complexity of these strategies are the amount of
the initially available information, the success conditions of the high-level
objective, and the additional requirements that the robot must address during the
exploration process (e.g., to create a representative map of the exploration
environment, visit specific locations or landmarks, detect a number of task-related
objects, deliver items to specified locations, etc.). It is also important to note that
if search and rescue missions are considered, the primary objective is usually not
to build an accurate environment map but rather to find as many survivors as
possible within a limited time (Basilico & Amigoni, 2011).

One of the main factors that define the applicability of autonomous
navigation and environment exploration strategy is the amount of initially
available information that could be provided to the exploring SAR robot.
Depending on this parameter, the applied strategy can either be classed as offline
or online (Amigoni, Basilico & Quattrini Li, 2014).

In situations where the layout of the environment and other objective-related
information is known in advance, global optimisation (offline) path planning
strategies can be applied to find the optimal or near-optimal solution to the
exploration process (Amigoni, Basilico & Quattrini Li, 2014). These methods can
include classical approaches, such as A* or Dijkstra, sampling-based methods or
bio-inspired neural networks (Kulvicius et al., 2021). Certainly, there are cases
where path planning methods can compute every possible outcome for a finite
number of actions and determine the optimal path. However, this depends on the
complexity of the high-level objective and the supplementary tasks that the
autonomous robot must complete. According to Galceran and Carreras (2013),
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even the simplest path planning tasks for coverage objectives are related to the
covering salesman problem and, therefore, are NP-hard. This means that in many
scenarios, only the near-optimal solutions to the exploration problem can be
achieved if the autonomous robot system is required to perform in real-time
(online).

Considering the environment coverage tasks, the computation of guided
paths is a fast and simple framework that can be applied by the robot designer to
enable autonomous robots to systematically cover the exploration environment by
following pre-computed paths (e.g., spirals with an increasing radius (Choi et al.,
2009)). Some other examples of path planning methods can include strategies that
define a set of priority locations (Roa-Borbolla et al., 2017) to be visited or
avoided and strategies that implement wall following (Gonzalez et al., 2005;
Katsev et al., 2011). Although strategies that apply guided coverage paths are
moderately easy to implement, their efficiency is arguable in situations where
none or only partial information about the environment and its conditions can be
presented to the robot in advance. In such cases, hybrid frameworks that
incorporate environment exploration methods or a multiple robot cooperation
approach can be applied to achieve better results. Several examples of such terrain
coverage strategies can be found in the research of Zheng et al. (2005) and
Senthilkumar and Bharadwaj (2008).

However, in many real-world navigation and environment exploration
scenarios, the application of offline global path planning and optimisation
strategies is hardly possible. Due to the lack of initial information, the complete
set of possible candidate locations for the robot to visit is unknown in advance,
meaning that the decision-making module cannot optimise the robot’s path.
Nevertheless, autonomous SAR robots are expected to explore the unknown
environment and complete the given high-level objective without any (or only
with minimal) intervention from human operators (Calisi et al., 2007; Akin et al.,
2013). To solve this problem, robot designers can utilise a variety of online
autonomous navigation and environment exploration strategies, in which the
initially unknown environment features are discovered by iteratively directing the
autonomous robot to visit and observe the unknown portions of the search space.

These online environment exploration strategies are commonly based on the
greedy next-best-view approach, which interprets the robot-constructed map to
determine a set of candidate locations within the partly explored search space and
choose the one that should be visited by the robot (Basilico & Amigoni, 2011).
By applying these strategies, the decision on where the robot should move next is
made on the go and therefore depend only on the current state of the robot and the
known environment information. In other words, instead of trying to optimise the
exploration path globally by considering every possible outcome, the next-best-
view analysis and decision-making approach tries to optimise short-term
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decisions by searching for the local maximums that best correspond to the given
high-level objective at each decision-making step. The underlying idea of such
navigation strategies is to increase the robot’s partial knowledge about the search
space to make better decisions on where to move next. The general concept of
such environment exploration strategies can be defined as provided in Fig. 1.1.

Stﬁ T\ Collect sensor d’_“a Determine the set of Select the next-best
ar/'f » and acquire partial [~ reachable candidates » observable candidate
— map information
A
No
- Ves A;N Reach the selected
End /4 termination conditions > i candidate
met?

Fig. 1.1. Schematical representation of a common autonomous robot navigation strategy

At the start of autonomous navigation, the robot utilises the environment
perception sensors and collects information about the environment features, such
as physical obstacles and structures in its field of view. The newly acquired data
is then stitched to the robot-constructed environment representation model. The
robot applies self-localisation techniques and determines its position on the
constructed map. This partial environment map is also used to determine a set of
candidates that could be reached from the robot’s current position. The candidates
are then compared based on the given high-level optimisation requirements. The
highest-ranked is then chosen as the next goal for the robot to reach. Then, the
autonomous robot moves to the selected candidate by applying path-planning and
obstacle avoidance algorithms. This process is repeated from the first step until
the mission termination conditions are met, e.g., there are no more unvisited
candidate locations left, the robot battery is depleted, or the high-level objective
is completed.

In the context of this thesis, the most important segment of the online
environment exploration process can be identified in the second and third steps of
the navigation loop. To make an effective decision on where to move next, the
robot has to build a list of reachable candidates, compare these candidates with
each other and choose the most valuable one.

Many different strategies can be applied to assess the candidate locations.
For example, Yamauchi (1997) proposed a popular and easy-to-implement
approach commonly used as a baseline for algorithm improvement and testing
(Gomez, Hernandez & Barber, 2019; Julia, Gil & Reinoso, 2012). It is based on
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determining the distance to the frontier (the boundary region between the already
explored and unknown space) and selecting the closest one. By following this
approach, every time the robot reaches the selected frontier, newly discovered
environment information is added to the robot-constructed map. Then, the list of
available frontiers is updated, and the process of decision-making and moving to
the selected goal is repeated.

In theory, the simple approach of leading the robot to the closest frontier
would be sufficient in eventually covering the whole exploration space. However,
as the complexity of the task increases, so does the complexity of the candidate
frontier assessment. For example, in tasks where the exploration speed and the
size of the robot-observed environment are important conditions for the overall
success of the high-level objective, the robot operators could prioritise visiting
candidates that are expected to provide more information about the environment
while also minimising the time needed to reach the candidate frontier. Therefore,
in such cases applying a single criterion to determine where to move next is not
sufficient when considering the complexity of these tasks. A more efficient
approach could be assessing candidate locations by balancing several competing
criteria that define the underlying high-level objective. In other words, multiple
and often competing criteria can be applied to assess the candidate frontiers.
Therefore, this problem can be viewed as a multi-criteria problem, where each
candidate is evaluated by combining a set of task-related criteria to determine the
one with the highest utility. This candidate frontier is then chosen by the robot as
the next-best location that the exploring robot should reach.

Several papers address this problem by introducing varying strategies for
assessing the candidates. For example, Gonzalez-Bafios and Latombe (2002)
proposed to assess the utility of a candidate location by measuring the distance
between it and the robot while also estimating how much new information would
be gained by reaching it. Makarenko et al. (2002) proposed to assess the candidate
locations by the sum of the three utilities: the information gain utility, which is
measured by estimating the amount of free grid-map cells around each candidate
frontier; the utility of the cost of driving from the robot’s current location to the
candidate location; and the localisation utility, which defines the expected
precision of robot localisation in the candidate location. Amigoni and Gallo
(2005) proposed considering the map overlap parameter, and Visser and Slamet
(2008) also proposed expanding the criteria list for candidate assessment by
considering the probability of communication. DasGupta et al. (2006) introduced
an aggregation/refinement-based object search approach in which the exploration
space is divided into a finite number of regions. In this strategy, each region is
treated as a graph vertex with a set cost and reward value. A strategy on criteria
value assessment for evaluating candidate locations is discussed by Potthast and
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Sukhatme (2014), who proposed a probabilistic method to estimate the
information that could be gained in extremely cluttered environments.

Basilico and Amigoni (2011) implemented a frontier-based environment
exploration strategy and proposed to assess the utility of a candidate by estimating
a set of commonly applied criteria, i.e., the distance to the candidate frontier, the
estimated information gain, the probability of the robot to communicate (send
information) after reaching the candidate frontier. Gomez et al. (2019) also
introduced a frontier-based approach that incorporates semantic (transit area
importance), geometric (size of the frontier) and topological (the distance that the
robot has to travel) criteria for selecting the next candidate frontier.

Strém et al. (2017) proposed a prediction-based exploration approach for
autonomous navigation in enclosed environments, and Wang et al. (2018)
proposed a collaborative environment exploration approach, in which aerial and
ground robots are deployed for fast environment mapping objectives. However,
the latter researchers applied a standard candidate frontier assessment
methodology for evaluating the expected information gain versus the cost needed
to obtain this information.

Although different candidate assessment strategies can be employed in
autonomous navigation and environment exploration tasks, the expectations
triggered by autonomous systems and their applicability in no-win situations (that
are typical in search and rescue missions) highlight that a clash of prioritisation
ordering between competing options is inevitable in some real-world situations
(McGrath and Gupta, 2018). In other words, the decision-making process is
dependent on the assessment of multiple competing technical, social, economic,
environmental, cultural, and religious belief-based criteria. As such, in the context
of autonomous robot systems, candidate assessment problems can be thought of
as multi-criteria decision-making problems that involve several competing
optimisation priorities set by the robot designers or operators.

In this thesis, the exploration of the search and rescue environments is
considered when the environment information, such as the location of survivors
and the current state of the exploration space, is unknown in advance. By
considering the commonly applied next-best-view approach for exploring initially
unknown environments and the criteria-based nature of the candidate assessment
and selection problem, it can be argued that multi-criteria decision-making
methods can be applied as an effective way of combining and comparing
competing criteria sets that correspond to the underlying high-level objective.
Therefore, the application of MCDM methods in autonomous navigation and
environment exploration tasks is discussed next.
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1.3. Multi-Criteria Decision-Making Approach for
Autonomous Environment Exploration

Considering decision-making problems typical in the real world, there can be an
essentially unlimited number of competing criteria with different levels of
importance that need to be assessed to make an optimal (or, in many real-world
cases, just near-optimal) decision (Aruldoss et al., 2013). In other words, it is
common that the dominant solution to the problem does not exist, and one must
choose the best alternative from the available list while assessing the set of
preferences and their importance to the high-level objective.

With a finite number of alternatives to choose from and each alternative
assessed by a finite number of task-related criteria, the problem can be simplified
to the selection of the best alternative. In this sense, some assessment problems
can be solved by linearly combining a set of criteria and assigning a crisp score
value to each alternative. However, when the complexity of the task increases and
the number of competing criteria is too big to handle, multi-criteria decision-
making methods come into the spotlight. And throughout the years, many
different MCDM methods and their extensions were proposed (Mardani et al.,
2017), such as AHP, TOPSIS, ELECTRE, PROMETHEE, WPM, WSM,
WASPAS, MULTIMOORA, COPRAS, VIKOR (Aruldoss et al., 2013; Kumar
et al., 2017; Mardani et al., 2017; Zavadskas et al., 2012), just to name a few.

Multi-criteria decision-making methods are exceptional tools that are
commonly applied when aiming to model and solve complex decision-making
problems in the economic, social, energy and engineering fields. For example, the
problem of selecting a location for the waste incineration plants by the WASPAS
MCDM method is discussed by Zavadskas et al. (2015a). The design selection
problem of lead-zinc flotation circuits is considered by Zavadskas et al. (2016).
The MULTIMOORA method was applied to a house-shape evaluation problem
by Juodagalviené et al. (2017). Stoji¢ et al. (2018) proposed a methodology for
supplier selection for manufacturing chains, and more recently, an MCDM-based
safety evaluation methodology for urban parks was introduced by Zavadskas et al.
(2019). The industrial robot selection problem was discussed by Keshavarz
Ghorabaee (2016). Chandrawati et al. (2020) proposed to apply the WASPAS
MCDM method to determine the most efficient evacuation route in the case of
flooding disasters.

As the MCDM methods are extremely flexible tools, there are also MCDM
method application examples when considering real-world problems in the field
of robotics and autonomous mobile systems. For example, a method for selecting
an automatically guided vehicle for warehouse automation is proposed by
Zavadskas et al. (2018). The problem of selecting the most appropriate manoeuvre
for autonomous city vehicles is considered by Furda and Vlacic (2010) and solved
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by applying the Simple Additive Weighting Method. Martin Ramos et al. (2010)
applied MCDM methods for path selection for an autonomous mobile robot.
Similarly, Jeddisaravi et al. (2016) proposed to utilise the ELECTRE | framework
for time-limited environment coverage and exploration task. The proposed
approach utilises the multi-criteria decision-making methods to select the pre-
computed route that maximises area coverage and minimises the visibility field
overlap of the waypoints. However, the latter approaches by Martin Ramos and
Jeddisaravi are a bit different in the sense that the decision-making method is
applied for selecting the path that was computed by the offline strategy, rather
than proposing the online autonomous navigation and environment exploration
strategy.

The explicit navigation strategy for the autonomous robot by multi-criteria
decision-making methods for criteria combination and deciding on where to move
next is proposed by Amigoni and Gallo (2005). Basilico and Amigoni (2011)
propose to extend this research by applying the Choquet fuzzy integral for criteria
combination to determine the best position to move to in search and rescue
missions. The candidates are assessed by applying the standard criteria set of the
expected information gain, the ability to communicate after reaching the candidate
location, the distance to the candidate location, and the time that is needed to reach
the candidate. The results of this research highlight the efficiency of MCDM
methods when applied in the online decision-making approach compared to the
standard ad hoc strategies.

Following this research, a PROMETHEE Il outranking method is proposed
by Taillandier and Stinckwich (2011) to improve the robot’s decision-making
ability. As in the previous research, the standard criteria of the distance to the
candidate location, the ability to transmit information and the estimated amount
of new information that would be gained after reaching the candidate were applied
in the assessment process. In the recent research, the author of this thesis
introduced several strategies for candidate frontier assessment by also considering
robot safety-related criteria for the assessment of the candidate locations in the
robot’s local space (Bausys, Cavallaro & Semenas, 2019). Polvara et al. (2020)
proposed a strategy that, along with the set standard criteria, also considers battery
status, sensing time and radio frequency identification (RFID) tag information
gain. However, the latter method is created specifically for environment coverage
problems for the discovery of RFID tags. Lastly, Zagradjanin et al. (2022) applied
TOPSIS, SAW and COPRAS MCDM methods for selecting a candidate to be
reached by the robot next.

Although online next-best-view environment exploration strategies allow for
the possibility to balance criteria that support the given high-level objective, the
multi-criteria decision-making method application capabilities in complex
scenarios are yet to be exhaustively studied, especially if search and rescue
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missions are considered. Another prominent issue is unstable robot navigation and
path planning performance, computation of the imperfect environment
representation model and inaccurate robot sensors. Thus, the ability to consider
the uncertain or imprecise input data characteristics applied to decide where the
robot should move next in a partially explored environment is a prominent issue
that prompts researchers to look for modern techniques when modelling such data
in complex decision-making problems.

1.4. Conclusions of Chapter 1 and the Formulation of
the Thesis Tasks

The key observations and conclusions were formulated following the literature
review:

1. Search and rescue missions are complex tasks in which autonomous
robots can be used to collect on-scene information and reach additional
objectives (e.g., establish communication with the detected survivors or
mark dangerous events in the area) to increase the safety and efficiency
of rescue teams, enabling them to make more informed decisions.
However, it is common that in real-world situations, none (or little) a
priori information about the environment can be provided to the robot,
meaning that only the near-optimal solutions to the autonomous
navigation and environment exploration problem can be achieved. Thus,
a popular approach to this problem is the application of online candidate
assessment strategies.

2. The candidate assessment problem can be viewed from the multi-criteria
decision-making perspective. Specifically, the competing optimisation
priorities (or high-level objectives) that define the core of the candidate
assessment strategy can be modelled by a group of maximised and
minimised criteria. Then, the multi-criteria decision-making methods can
be applied to assess the utility of each candidate. However, generally
applied candidate assessment strategies fail to address the issues of the
inaccurate input data characteristics when deciding on where the robot
should move next. Therefore, effective methods that can consider this
decision-making issue are needed.

3. Presently, common candidate assessment strategies are based on the cost—
benefit approach that considers mainly the technical environment
exploration parameters, including the distance from the robot to the
candidate, the time needed to reach the candidate, the ability to transmit
information after reaching the candidate, and the estimated amount of new
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information that could be discovered. However, these strategies fail to
consider the safety, social and other factors of the autonomous SAR
missions. Also, as international organisations require to ensure the
transparency and flexibility of autonomous systems, novel autonomous
navigation and environment exploration methods that would consider
these requirements are needed.

Additionally, commonly applied candidate assessment strategies are
modelled on the notion that the rules governing the decision-making
process do not change throughout the environment exploration.
Therefore, an adaptive autonomous navigation strategy capable of
switching between the rules that govern the candidate assessment process
could show potential in SAR missions.

Based on the performed literature survey, the following tasks were
formulated to achieve the aims of the study:

1.

To develop novel candidate assessment strategies considering common
limitations of the candidate-assessment-based autonomous navigation
and environment exploration strategies.

To develop an adaptive autonomous navigation strategy that allows
switching between the rules governing the candidate assessment process.
To develop novel extensions of the multi-criteria decision-making
methods, able to consider the inaccurate input data characteristics.

To evaluate the performance of the developed multi-criteria decision-
making method extensions.

To investigate the performance of the proposed autonomous navigation
strategies in simulated search and rescue missions.



Neutrosophic Multi-Criteria Decision-
Making Methods for Autonomous
Robot Navigation

This chapter discusses the environment exploration strategy based on multi-
criteria decision-making (MCDM). It defines the candidate assessment problem
and introduces novel extensions for the state-of-the-art WASPAS MCDM
methods, i.e., the WASPAS-IVNS method modelled under the interval-valued
neutrosophic set environment, and the WASPAS-mGgNS method modelled under
the m-generalised g-neutrosophic set environment. Also, the chapter introduces
the approach for switching between the strategies governing the candidate
assessment process and, finally, offers conclusions.

Parts of this chapter were published in articles (Bausys, Cavallaro &
Semenas, 2019; Semenas & Bausys, 2020; Semenas & Bausys, 2021; Semenas,
Bausys, & Zavadskas, 2021; Semenas & Bausys, 2022).
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2.1. Autonomous Robot Navigation using
Multi-Criteria Decision-Making Approach

As motivated in the previous section of this thesis, the proposed autonomous
navigation and environment exploration strategy is based on the robot’s ability to
make an effective decision on where to move next. This decision is made by
applying an online approach to evaluate the discovered environment information,
robot state and the candidate’s performance according to the considered
optimisation priorities. Thus, the preliminaries of the proposed environment
exploration strategy are presented, and the approach to the candidate assessment
is discussed from the theoretical perspective. As the considered environment
exploration approach extends the frontier-assessment-based strategy (Yamauchi,
1997), the candidates the robot can reach can also be referred to as frontiers.

Considering the developed environment exploration strategy, the decision on
where to move next is made by measuring the utility U of each candidate frontier
ps(x,y). This value is computed by applying a group of unique, problem-related
criteria € = {cy,¢3,... ,cy} and their relative weights W = {w,w,, ..., w, },
corresponding to the optimisation priorities given to the autonomous search and
rescue robot. In other words, the optimisation priorities can be defined by a
collection of competing functional, economic, social, ethical, environmental or
other requirements, which are either maximised or minimised. By measuring the
utility of each candidate, the robot can then choose the next short-term goal.

A group of candidate frontiers P = {ps(x,¥) 1,05 (X, ¥)2, 0, D (X, ¥)m} 1S
determined in the proposed approach whenever new environment information is
added to the partial environment representation model. Thus, each time the robot
discovers new information (e.g., a new frontier, a survivor or a dangerous object),
criteria values are recalculated, and the utilities of candidate frontiers are re-
assessed. As the map is updated once every second by attaching newly discovered
information, new frontiers may be discovered at this frequency. Therefore, in this
thesis, frontier detection and utility assessment processes are performed at
persistent time intervals. This approach helps to reduce the number of
computations during runtime, to prevent indecisive robot behaviour, and also
enables the robot to change its movement direction if a frontier with higher utility
is detected while moving to the previously selected candidate.

Throughout the frontier assessment process, a vector of optimisation-related
criteria values ¢ € C is mapped to the candidate frontier ps(x,y); as py =

{er(pr e, 3):), c2(pr (6, )i, v s cn(Pr (x, %))} Then, by applying multi-criteria
decision-making methods, utility U(ps (x, y);) of a candidate frontier p;(x,y); €
Pf is assessed, and the one with the highest utility U(pf(x,y)") is selected as a
new goal for the autonomous robot to reach.
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2.2. Criteria Weight Assessment by SWARA Method

In general, criteria weights indicate the direction of optimum prioritisation and
showcase how the importance of one criterion is compared to another. Thus, the
deliberate criteria weight assessment is essential to efficiently solve the given
decision-making problem (in the context of this thesis, deciding where the robot
should move next). As different stakeholders can prioritise different criteria
(Harbers et al., 2017) in these scenarios, the Stepwise Weights Assessment Ratio
Analysis (SWARA) method can be applied to normalise tensions between the
stakeholders and determine criteria weights. This process can be defined by the
six following steps (Kersulien¢ et al., 2010):

1. The list of objective-related criteria is constructed.

2. The criteria are ranked by their significance in descending order.

3. The comparative importance of the average value s; is measured.

4. The characteristics of the comparative importance are determined by

5. Then, intermediate weights are determined by q; = q;:f :
]
6. The final weights are determined by w; = %_
j=19j

2.3. Proposed WASPAS Method Extensions for
Candidate Assessment Task

The original Weighted Aggregated Sum Product Assessment method, namely
WASPAS, was first proposed by Zavadskas et al. (2012). This state-of-the-art
multi-criterion decision-making method aggregates the Weighted Product Model
(WPM) and the Weighted Sum Model (WSM) to construct a universal decision-
making strategy. However, as researchers pushed to develop new methods for the
assessment of incomplete or uncertain input data characteristics, the original
WASPAS method was extended several times by applying fuzzy sets, as the fuzzy
set theory (Zadeh, 1965) is considered an efficient method to model input data
characteristics and found many applications in practical and theoretical studies
(Kalibatiene & Miliauskaite, 2021). In fuzzy sets, a single input data object x is
modelled as a value u(x) € [0,1] that represents its membership degree in the
object universe X (Wang et al., 2005). However, the classical fuzzy sets are
limited when the decision-making problems with the inaccurate input data
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characteristics are considered, as the input values can be modelled not only by
membership and non-membership degrees.

The intuitionistic fuzzy set was introduced by Atanassov (1986) as the
generalised fuzzy set incorporating the hesitation degree. This approach allows
considering situations in which the sum of membership and non-membership
degrees are unequal to one. Methods that are based on the fuzzy set theory were
further extended when Pythagorean fuzzy sets were introduced by Yager (2013)
to address the issue of imprecise membership degrees in the decision-making
problems, and the g-Rung orthopair fuzzy sets (Yager, 2017) were introduced to
increase the space of the acceptable values in membership degrees of the input
data characteristics.

The neutrosophic sets and the neutrosophic set logic were first proposed by
Smarandache (1999) as the generalisation of fuzzy and intuitionistic fuzzy sets. In
neutrosophic set logic, the input data characteristics are defined by the truly
independent truth membership degree, T, indeterminacy membership degree, I,
and falsity membership degree, F. The inclusion of the indeterminacy membership
degree and the ability to model these memberships independently differentiates
the neutrosophic set from other fuzzy sets. Due to these advantages, neutrosophic
sets and neutrosophic set logic were successfully applied in multiple real world
decision-making problems, where the ambiguity and inaccuracy of the input data
characteristics are considered (e.g., Zavadskas et al., 2015; Zavadskas et al.,
2020b; etc.). However, as argued by Smarandache (2019), the neutrosophic set
also generalises the intuitionistic fuzzy set, spherical and n-hyperspherical fuzzy
sets, the Pythagorean fuzzy set, and the g-rung orthopair fuzzy set. Therefore, it
is possible to unite these fuzzy sets under the m-generalised g-neutrosophic set
(mGgNS) and implement all the benefits of the generalised fuzzy sets. This
generalisation could then be applied to model flexible strategies for real-world
decision-making problems (Saha et al., 2020; Zavadskas et al., 2020a).

As neutrosophic sets (Wang et al., 2005) allow to deal with incomplete or
uncertain input data characteristics in a more flexible way, and the membership
degrees can be modelled independently, two novel state-of-the-art WASPAS
method extensions that include these modern neutrosophic sets are proposed for
the considered candidate assessment task. The WASPAS method is chosen as a
base for the proposed improvement due to the stability and wide application of
this MCDM method in multiple real-world decision-making tasks (e.g.,
Zavadskas, Kalibatas & Kalibatiene, 2016; Zavadskas, Dali¢ & Stevi¢, 2021).
Further sections of this thesis discuss the preliminaries of the proposed WASPAS
extensions by the interval-valued neutrosophic set (IVNS) (Zhang et al., 2014)
and the m-generalised g-neutrosophic sets (mGgNS). Also, the state-of-the-art
WASPAS method, modelled under the single-valued neutrosophic set (SVNS), is
presented.
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2.4. Single-Valued Neutrosophic WASPAS Method

In 2014, the WASPAS extension modelled under the interval-valued intuitionistic
fuzzy sets was developed by Zavadskas et al. (2014) and referred to as WASPAS-
IVIF. Zavadskas et al. (2015b) also proposed an innovative approach to consider
the uncertainties in the input data characteristics and improve the accuracy of a
decision-making process by introducing the Weighted Aggregated Sum Product
Assessment method with grey attribute scores, namely WASPAS-G. In the same
year, Turskis et al. (2015) proposed a fuzzy multi-attribute performance
measurement method allowing to naturally model the qualitative parameters
under uncertainty. Lastly, a novel extension to the WASPAS method, modelled
under the single-valued neutrosophic environment (WASPAS-SVNS), was
proposed by Zavadskas et al. (2015a) to provide the tools for modelling the
uncertain input data characteristics.

2.4.1. Preliminaries of the WASPAS-SVNS Method

First, the definitions of neutrosophic set logic applied by the WASPAS-SVNS
method are presented:

Definition 1.1. The neutrosophic set NS is defined by the three independent
membership functions: truth membership function, T, indeterminacy function, I,
and the falsity function, F.

Definition 1.2. Let the set of objects in the decision-making problem be
denoted by X, where x € X is a single object. Specifically, X defines a set of
criteria applied for candidate frontier assessment and x is a measure of a single
criterion. Thus, the single-valued neutrosophic set (SVNS) is defined as:

SVNS = {{Tsy (%), I (x), s (x)) = x € X}, (2.1)

where the three membership functions follow the conditions of:
0 < T (%), Isp (%), Fey (X) < 1 (2.2)
0 < Ty (x) + I, (x) + F5p(x) < 3. (2.3)

Definition 1.3. The single-valued neutrosophic number (SVNN) is defined
as follows:

Ng, = (tsv: isv:fw)- (2-4)

Definition 1.4. In this thesis, the neutrosophication of sensor input data is
achieved by applying the methodology defined by Zavadskas et al. (2015a).
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Definition 1.5. If Ny, = (tsp, isvys fovq) AN Ny, = (tspy) sy, fov,) A€
two single-valued neutrosophic numbers, then the summation operation between
them can be defined by:

Nsv1 S Nsvz = (tsvl + tsvy — tsvltsvzrisvlisvzrﬁsvlfsvz)- (2.5)

Definition 1.6. If Ny, = (tsy,isvys fovq) AN Ny, = (tspy) sy fov,) A€
two single-valued neutrosophic numbers, then the multiplication operation
between them can be defined by:

Nsv1 1Y Nsvz = (tsvltsvz: lsvq + lspg — lsvllsvzwﬁsvl + fsvz -

fsvljgvz)- (26)

Table 2.1. Neutrosophication grades applied in this thesis (Zavadskas et al., 2015a)

Crisp normalised terms

SVNNs

Extremely good (EG) / 1.0
Very very good (VVG) /0.9
Very good (VG) /0.8
Good (G) /0.7
Medium good (MG) / 0.6
Medium (M) /0.5
Medium bad (MB) / 0.4
Bad (B) /0.3
Very bad (VB) /0.2
Very very bad (VVB) /0.1
Extremely bad (EB) /0.0

(1.00, 0.00, 0.00)
(0.90, 0.10, 0.10)
(0.80, 0.15, 0.20)
(0.70, 0.25, 0.30)
(0.60, 0.35, 0.40)
(0.50, 0.50, 0.50)
(0.40, 0.65, 0.60)
(0.30, 0.75, 0.70)
(0.20, 0.85, 0.80)
(0.10, 0.90, 0.90)
(0.00, 1.00, 1.00)

Definition 1.7. If N, = (tsy,, lsvy, fsvg) 1S @ single-valued neutrosophic

number and A is a real number that follows the condition of 1 > 0, then the
multiplication operation between them can be defined by:

Ngy - A= (1-1- tsv))l: i?vrfs%)- (2-7)
Definition 1.8. If Ny, = (fsy,, isvq, fsvq) 1S @ single-valued neutrosophic

number and A is a real number which follows the condition of 1 > 0, then the
power operation between them can be defined by:

Ne* = (8,1 — (1 — i)t 1— (1= fi)H). (2.8)
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Definition 1.9. If N, = (tsy,, lsvq, fsvg) 1S @ single-valued neutrosophic

number, then the complementary neutrosophic number component can be defined
as follows:

Nsvc = (fovr 1 — ispr tsp)- (2.9)
Definition 1.10. The score value S(N) is determined by:
S(Nyy) = Hrm2late (2.10)

2.4.2. Formulation of the WASPAS-SVNS Method

Following the general form of the original WASPAS method, the WASPAS-
SVNS method can be defined by the following seven steps (Zavadskas et al.,
2015a):

Step 1. The decision matrix D, is constructed from a set of available
candidate frontiers in accordance with the criteria set by the high-level objective.
Members of this matrix can be denoted as [d,];;, where i = 1,2, ..., n are indexes

of the candidate frontier and j = 1, 2, ..., m are the indexes of the criteria.

Step 2. To compare different input data objects, one must first normalise the
members of the decision matrix by applying the vector normalisation approach as
follows:

[dsv]ij

[dSU]i T e

Step 3. The members of the decision matrix are converted to the neutrosophic
form by applying the conversion table presented in definition 1.4. After this step,
matrix members obtain the general SVNN form of [dsv]ij = (ts,,ij, is,,l.].,fs,,ij) as

presented in definition 1.3.

Step 4. Values of the first objective of the m-generalised g-neutrosophic
WASPAS method are determined for each candidate frontier by applying the
following equation:

0 = (51l )+ (Emlaal, w). 1

Here, Op,qx @nd 0,,,;, represent the set of maximised and minimised criteria,
respectively. And c represents the complementary set member.
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Step 5. Values of the second objective of the m-generalised g-neutrosophic
WASPAS method are determined for each candidate frontier by applying the
following equation:

— . — Cc
o = Mz (ldso) ™ ) - (NPT (] ) ) - (213)
Here, the equation definitions correspond to the ones presented in Step 4.

Step 6. The joint generalised value that incorporates the results obtained from
steps 4 and 5 is determined by the following equation:

Q; = 050 +0.50%. (2.14)

Step 7. The final rankings of candidate frontiers are assessed by applying the
score function presented in definition 1.10. The candidate frontier with the highest
utility is then considered as the next location the robot should visit.

Next, the developed extensions of the state-of-the-art WASPAS MCDM
method are discussed.

2.5. Interval-Valued Neutrosophic WASPAS Method

One of the major issues in the decision-making process by autonomous robots is
the incomplete and imprecise sensor data (e.g., measurement errors introduced by
the sensors or errors in the environment representation model) used to determine
the utility of candidate frontiers. The proposed WASPAS extension modelled
under the interval-valued neutrosophic set environment, namely WASPAS-IVNS,
enables the robot to consider the inaccurate input data characteristics. By
considering this issue, the proposed WASPAS extension is expected to provide
additional reliability when comparing similar candidates.

2.5.1. Preliminaries of the WASPAS-IVNS Method

The definitions of the applied interval-valued neutrosophic logic (Zhang et al.,
2014), applied to model the WASPAS-1VNS method, are presented:
Definition 2.1. Following the properties of the single-valued neutrosophic
set, the interval-valued neutrosophic set IVNS is defined as:
IVNS = {(T;, (%), [;1,(x), Fi, (%)) : x € X}, (2.15)

where the three membership functions follow the conditions of:
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Tiw (%) = [T ()7, Ti () *] € [0,1]; (2.16)
Iy (%) = (1o ()7, I ()] € [0,1]; (2.17)
Fiy () = [Fiy (1) 7, Fip ()] € [0,1]; (2.18)
0< Ty +Ip(0)' + Fpy (0O < 3. (2.19)

Definition 2.2. The interval-valued neutrosophic number (IVNN) is defined
as follows:

Nip = ([tip ti ] liey, 051, [fi, fin])- (2.20)

Definition 2.3. If Ny, = ([tip, th | [ipy i) vy fin 1) @nd Ny, =
([tivy tiv, ) Lty i, | [fiw s fiv, 1) @re two interval-valued —neutrosophic
numbers, then the summation operation between them can be defined by:

- - - - + + o+
<[tiv1 + tivz - tivltivz' Lvl + th - tlvlth )

[ii;lii_vz' ll-'l-)lll-’;iz]' [fw 1fiv 2’ fiv 1fi17 2]

Definition 2.4. If Ny, = ([t tih ] [itoyr idy, ] [fiwyr fin 1) @nd Ny, =
([tivy tiv, ) [iwy iy | [fiv o fi, 1) @re two interval-valued neutrosophic
numbers, then the summation operation between them can be defined by:

Ny, © Ny, = (2.21)

[ti:uth' tl-rqtlriz
Nivl ® Nwz ( [lwl + lwz lwllwz' w1 + le lwl wz] ) (2-22)
[fiv1+fiv2_fiv1fivz'ﬁ'v1+ﬁ'v2 fivlfivz]
Definition 2.5. If Ny, = ([t ti5], lis, it [fim, fix]) is an interval-valued
neutrosophic number and A is a real number that follows the condition of 4 > 0,
then the multiplication operation between them can be defined by:

[1-a-)h1-a -,
(™ G [ ()]
Definition 2.6. If Ny, = ([t7, t1]), lim, 5], [fin, fit1) is the interval-valued
neutrosophic number and A is a real number which follows the condition of 1 >
0, then the power operation between them can be defined by:

()", )" [1 = A= i)% 1= A = i)',
[1--fidt1- - £

Ny A= ( ). (2.23)

N;,* = (2.24)
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Definition 2.7. If Ny, = ([t;,, ti5], lim, i1, [fim, fib]) is an interval-valued
neutrosophic number, then the complementary neutrosophic number component
can be defined by:

Ni® = lfip, fiol [1 = i, 1 = i ] [t 1) - (2.25)

Definition 2.8. The interval-valued neutrosophic numbers are compared by
applying comparison functions: the score function denoted as S(Q), the accuracy
function denoted by a(Q), and the certainty function denoted as c(Q). These
functions are defined as follows:

S@ =[tp+1—i, +1—flth+1—i, +1—-f3]; (2.26)
a(Q) = [min{ty, — fiy, ti, — fiw b max{ty, — fiy, ti, — fi}]; (2.27)
c(Q) = [ta tip). (2.28)

Then, the comparison between the two IVNNs by score function can be
completed by applying the following rules:
- Ifp(§(Qq) = S5(Qz)) > 0.5, then Q; > Q,, or Q, is superior to Q..
= If p(S(Q1) =25(Q2)) =05 and p(a(Qr) =a(Qz)) > 05, then
Q1 > Q,, 0r Q is superior to Q,.
= If p(S(Q) =5(Qx)) =05 and p(a(Q1) =a(Qz)) =0.5 and
p(c(Qq) = ¢(Q,)) > 0.5, then Q; > Q,, or Q4 is superior to Q.

— If p(S(@) =S(Q)) =05 and p(a(Qy) = a(Q) =05, and
p(c(Qq) = c(Q,)) = 0.5, then Q; ~ Q,, or Q, isequal to Q,.

Here, p represents the degree of possibility, determined by the following
equation:
p(S(Q1) 2 5(Q) =

S(Q)*-S(Q1)”
S-S+ T-5(@)7)’ O) ’ 0}'

The comparison by accuracy and certainty functions are completed by
applying an identical approach.

(2.29)

max {1 — max (

2.5.2. Formulation of the WASPAS-IVNS Method

Following the general form of the original WASPAS method, the proposed

WASPAS-IVNS method is defined by the previously introduced seven steps:
Step 1. The decision matrix D;, is constructed from a set of available

candidate frontiers in accordance with the criteria set by considering the strategy
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optimisation priorities. Members of this matrix can be denoted as [d;,];;, where
i=1,2,..,n are indexes of the candidate frontier and j = 1,2,...,m are the
indexes of the criteria.
Step 2. The members of the decision matrix are normalised by applying the
following normalisation approach:
[div]j; [di]i;

. = —_— 1 =Y
[diwlsj = max[dylijvm’ [dw]; max[djp]ijvm’ (2.30)

Step 3. The members of the decision matrix are converted to the neutrosophic
form by applying the conversion table presented in definition 1.4. After this step,
matrix members obtain the general IVNS form of [cii,,]l,j =

([t th] lim, i), [fins fib]) as presented in definition 2.2.

Step 4. Values of the first objective of the m-generalised g-neutrosophic
WASPAS method are determined for each candidate frontier by applying the
following equation:

(1) (ZOmax[dw] ) (ZOmm[dw]U j)c. (2.31)

Step 5. Values of the second objective of the m-generalised g-neutrosophic
WASPAS method are determined for each candidate frontier by applying the
following equation:

0® = (Myme((din] )™ ) - (M (di] "1 ) (2:32)

Step 6. The joint generalised value that incorporates the results obtained from
steps 4 and 5 is determined by the following equation:

Q; = 050 +0.50%. (2.33)

Step 7. The final rankings of candidate frontiers are assessed by applying the
IVNN comparison methodology presented in definition 2.8. The candidate
frontier with the highest utility is then considered as the next observation location.

2.6. m-Generalised g-Neutrosophic WASPAS Method

Next, the discussion focuses on preliminaries for m-generalised g-neutrosophic
sets that are relevant to the proposed WASPAS-mGgNS method. The m-
generalised g-neutrosophic set environment enables the robot operator to flexibly
apply a number of different fuzzy sets for the assessment of candidate frontiers.
This adjustment is made by defining m and q parameters. For example, the m
value of 3 and g value of 1 define a classic fuzzy set (when I membership is
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disregarded), but m value of 1 and g value of 1 define the standard neutrosophic
set.

2.6.1. Preliminaries of the WASPAS-mGgNS Method

Definition 3.1. Following the properties of the neutrosophic sets, the m-
generalised g-neutrosophic set mGgNS is defined as:

MGNS = {< Tig (%), Imgq (%), Fpg (x) >: x € X}, (2.34)

where the three membership functions follow the conditions:
Ting (%), Lng (%), Fpg(x): X > [0,7], (0 <7 < 1); (2.35)
0= (Tng()? + (Iing ()T + (Fg ()7 < = (2.36)
m=1or3;q=1. (2.37)

Definition 3.2. The m-generalised g-neutrosophic number (MGgNN) is
defined as:

qu = (tmq' imq;fmq)- (238)

Definition  33. If  Npg = <tmq1'imq1'fmq1> and  Npg, =

(tqu,iqu, fqu) are two single-valued neutrosophic numbers, then the
summation operation between them can be defined by:

1

_ _+4 _+4 4
gy © gy = (17 (17 ) (1= 60) ). (2:39)
imqliqu'fmqlfqu

Definition  3.4. If  Npg = <tmq1'imq1'fmq1> and  Npg, =
(tqu,iqu,fqu) are two single-valued neutrosophic numbers, then the
multiplication operation between them can be defined by:

1

. a )
tmq,tma (1 —(1-he,) (2~ lgmu)) '
Ning, ® Nng, = Py (2.40)

(1 B (1 B frng) (1 B frng))q
Definition 3.5. If Nppg = (ting, lmgqs fmq) iS @n m-generalised g-neutrosophic

number and A is a real number that follows the condition of A > 0, then the
multiplication operation between them can be defined by:
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Npg 2= (1= (1= the)" )" g fiig) - (2.41)

Definition 3.6. If Ny, = (tmgq,img fmgq) 1S @ single-valued neutrosophic
number and A is a real number that follows the condition of A > 0, then the power
operation between them can be defined by:

Nimg" = (the, (1 - (1- imq)l)é (1-(1- fmq)l)%), (2.42)

Definition 3.7. If Ny, = (tmgq,img fmgq) 1S @ single-valued neutrosophic
number, the complementary neutrosophic number component can be defined as:

Nmg© = {fng: 1 = imq tmg)- (2.43)
Definition 3.8. The score value S(N;,4) for mGgNS is determined by:

538821818
S(qu) = 2 6l - - (2:44)

generalised g-neutrosophic numbers, the ranking of them is performed by:

If S(qul) > S(quz)v then qul > quz; (2-45)

If S(qul) = S(quz)v then qu1 = quz- (2.46)

2.6.2. Formulation of the WASPAS-mGgNS Method

Following the general form of the original WASPAS method, the proposed
WASPAS-mGgNS method is defined by the previously introduced seven steps:

Step 1. The decision matrix D,,, is constructed from a set of available
candidate frontiers in accordance with the criteria set by the high-level objective.
Members of this matrix can be denoted as [qu]ij, where i = 1,2,...,n are

indexes of the candidate frontier and j = 1, 2, ..., m are the indexes of the criteria.

Step 2. The members of the decision matrix are normalised by applying the

vector normalisation approach:
[qu]ij
[qu]ij =

gl([qu]u) ( )
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Step 3. The members of the decision matrix are converted to the neutrosophic
form by applying the conversion table presented in definition 1.4. After this step,
matrix members obtain the general mMGgNN form of [cfmq]ij =
<tmqij' imqij'fmqij) as presented in definition 3.2.

Step 4. Values of the first objective of the m-generalised g-neutrosophic
WASPAS method are determined for each candidate frontier by applying the
following equation:

Qi(1) _ (Z]Q;nlax[&mq]ij ) Wj) + (Z]Q;nlin[(zmq]ij . Wj)c' (2.48)

Step 5. Values of the second objective of the m-generalised g-neutrosophic
WASPAS method are determined for each candidate frontier by applying the
following equation:

0 = (M ([dmq], )" ) - (97" [dimg] )™ )

Step 6. The joint generalised value that incorporates the results obtained from
steps 4 and 5 is determined by the following equation:

c

(2.49)

Q; = 050" +0.50%. (2.50)

Step 7. The final rankings of candidate frontiers are assessed by applying the
score function presented in definition 3.8. The candidate frontier with the highest
utility is then considered the next observation location.

2.7. Adaptive Environment Exploration by Fuzzy
Logic Controller

The proposed WASPAS-IVNS and WASPAS-mGQgNS multi-criteria decision-
making methods define only one part of the proposed environment exploration
strategy. Differently weighted criteria groups can essentially define different
optimisation priorities and, with this, different candidate assessment strategies
(e.g., enable more altruistic or egoistic robot behaviour in SAR missions). Thus,
a set of strategies that govern the proposed adaptive autonomous environment
exploration approach can be denoted as ST = {St,(Cy, W;), St,(Cy, W5), ...,
St (Cr, Wi)}. Here, St;(C;, W;) defines a single candidate frontier assessment
strategy and k is the number of strategies in the ST set. The decision on which
strategy St to apply from the ST set is made by applying the fuzzy logic controller.
The selected ST strategy is then applied by the designated decision-making
method to assess the utility of currently available candidate frontiers. The
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proposed adaptive autonomous navigation and environment exploration strategy
is schematically presented in Fig. 2.1.

It is also worth noting that the proposed approach differs from the similar
approaches in the sense that a fuzzy logic controller does not directly control robot
movements (e.g., Abiyev et al., 2016; Omrane et al., 2016; Chen et al., 2017)),
but rather activates the set of rules (or in other words, strategies) that govern
autonomous navigation process in SAR missions. Also, differently from the
common approach of applying the same strategy at every decision-making
iteration (e.g., Yamauchi, 1997; Taillandier & Stinckwich, 2011; etc.), the
strategies are switched depending on the current state of the robot and the
exploration space).

= ‘ rl
| -—----- === —— === |
| |
| Fuzzy rule |
| base |
| |
| |
Ea | ¢ | Robot
Robot | Fuzzification Fuzzy Defuzzification | § | McDM | U(p") path
sensors | | module | inference [ module " module *  planning
s 2
: : module
o | i
Partial grid map P

information

Fig. 2.1. Proposed adaptive environment exploration strategy. Here, E(s) represents the
distance from the robot to the hypothesised survivor, E(d) represents the distance from
the robot to the dangerous object, S represents the selected candidate assessment
strategy, P is the list of available candidates and U (p*) is the utility of a candidate
(Semenas & Bausys, 2021)

By applying the proposed environment exploration strategy, the autonomous
robot starts the search and rescue mission at the set coordinate location
p(x:0,y:0). This location is a reference point around which the environment
representation model is built. First, the input data from robot sensors is collected,
as portrayed in Fig. 2.1. The obtained environment information is then added to
the constructed partial map, and the robot estimates its position in relation to the
physical obstacles and structures by applying the ROS provided gmapping
package for laser-based self-localisation (ROS Gmapping, 2020). Next, the list of
candidate frontiers is computed by detecting the connected chains of free grid-
map cells that are adjacent to the cells that are yet unknown (undiscovered). Then,
the centre point coordinates are calculated for each frontier p; (x,y);, and any
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frontier that is considered as not reachable or too small to traverse by the SAR
robot is discarded from the further utility assessment process.

The three main parameters considered in the next step are the distance from
the robot to the hypothesised survivor, E(s), the distance from the robot to the
dangerous object, E(d), and the list of currently available frontiers, Pr, which is
computed by analysing the partial grid map information. The first two parameters
are forwarded to the fuzzy logic controller, where their values are fuzzified, the
fuzzy rule base is applied, and the output value is provided by the defuzzification
module (which applies the centre of sums method). This value is then mapped to
the environment exploration strategy St that is applied for candidate assessment
by the search and rescue robot. Finally, the designated MCDM method is applied
to determine the utility U(ps(x,y)*) of each candidate frontier p;(x,y); € Pr
according to the selected strategy St.

When the decision on where to move next is made, the robot applies the path
planning algorithm. Although there are many different methods to choose from
(e.g., Kulvicius et al., 2021), this thesis applied the classical A* and Dijkstra
algorithms that are provided within the ROS Nav_core package (ROS Nav_core,
2020) to determine the path to the selected frontier R(ps(x,y)*) =
{pr, wp1, wpy, ..., wpy, pr(x,¥)"}. Here p,. is the current robot position within the
exploration space, wp are the waypoints returned by the path planning algorithm,
and pg(x,y)" is the highest valued frontier. If any new information about the
environment is obtained during the movement process, the robot’s decision-
making module re-evaluates partial environment information and reassess utility
values for all available candidate frontiers. This process is repeated until the
exploration objective is completed or mission termination conditions are met. It is
worth noting that although the proposed fuzzy logic controller and MCDM
methods together define the proposed adaptive autonomous environment
exploration strategy, they can also be applied separately or be transferred between
different robot systems.

2.8. Conclusions of Chapter 2

1. The state-of-the-art WASPAS MCDM method is extended by modelling
it under the interval-valued neutrosophic (WASPAS-IVNS) and m-
generalised g-neutrosophic (WASPAS-mGgNS) environments. The
WASPAS-IVNS extension is expected to enable the robot to consider
inaccurate input data characteristics when deciding where to move next.
The WASPAS-mGgNS method provides additional flexibility by
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allowing the robot operators to choose between the generalised fuzzy sets
applied in the decision-making process.

Different candidate assessment strategies can be defined by differently
weighted and optimised criteria sets. This feature can be applied to model
more altruistic or egoistic robot behaviour in SAR missions.

As multiple stakeholders can suggest different criteria weights to solve
the same problem, the state-of-the-art SWARA method can be used to
efficiently normalise the tensions between the stakeholders and determine
criteria weights.

The decision on which candidate frontier assessment strategy to apply can
be made by the fuzzy logic controller. Differently from the standard
approach in which fuzzy logic is applied to control the robot movements,
this approach does not directly control the movement of the robot but
enables the robot to switch between the rules that govern the candidate
assessment process. The proposed strategy is modelled to address the
adaptivity requirements of the autonomous SAR robot.






Assessment of the Proposed
Autonomous Robot Navigation
Strategies

This chapter presents an investigation of the performance of the proposed adaptive
environment exploration strategy and the novel WASPAS-IVNS and WASPAS-
mGQgNS methods introduced in the second chapter of this thesis. Novel candidate
assessment and environment exploration strategies are developed to address
multiple issues the SAR missions present, i.e., robot safety, detected survivor
visitation, exploration around the prioritised environment areas, and the
adaptability of an autonomous robot. The research results obtained by assessing
the proposed environment exploration strategies are discussed in detail.

Parts of this chapter were published (Bausys, Cavallaro & Semenas, 2019;
Semenas & Bausys, 2020; Semenas & Bausys, 2021; Semenas, Bausys &
Zavadskas, 2021; and Semenas & Bausys, 2022).

39
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3.1. Candidate Assessment Strategy by
WASPAS-SVNS Method

The multi-criteria decision-making methods modelled under the neutrosophic set
environment can be applied to extend standard navigation and environment
exploration strategies that are based on the candidate assessment approach.
However, this extension could be considered from the two viewpoints:

1. Criteria that are applied to decide on where to move next (in other words,
what strategy is applied when assessing a candidate).

2. Criteria aggregation methods that are applied to measure the utility of a

candidate.

At this time, prevalent strategies that are applied to decide on where the
autonomous robot should move next are generally based on the technical
navigation and environment exploration requirements, which consider the utility
of a candidate only from the cost—gain viewpoint. For example, a common
approach to the candidate assessment problem is to determine the ratio between
the distance the robot has to travel (cost) and the size of the area that is expected
to be discovered after reaching the candidate (gain). However, complex
environment exploration tasks, especially those performed in disaster sites,
introduce dangerous conditions that should be addressed when designing the
autonomous navigation and environment exploration strategy. Strictly speaking,
the strategy applied in the candidate assessment task should not only consider the
technical parameters of the candidate assessment task but also be capable of
determining if reaching the candidate is safe from the robot’s perspective.

3.1.1. Candidate Assessment in the Robot’s Field of View

The proposed novel candidate assessment strategy not only considers the standard
cost and benefit aspects but also the safety factors of autonomous environment
exploration. Also, the proposed environment exploration strategy is constructed
on the premise that the decision on where to move next is made by considering
only the information available within the robot’s current field of view. This
approach is expected to aid the robot in the assessment of its nearby environment
and in making decisions on where to move next. The robot’s field of view (which
is 180° at a 15 m distance) is segmented into traversable zones that correspond to
the currently visible spatial data. The candidate the robot could reach is thus
placed at the centre of each traversable zone at the 1 m distance from the robot, as
schematically presented in Fig. 3.1.
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Fig. 3.1. Segmentation of the robot’s field of view. Red markers represent dangerous
objects. Green markers represent the assessed candidates. The computed traversable
zones are marked blue and orange

The proposed candidate assessment strategy is constructed from two criteria
sets: three standard criteria regularly applied for candidate assessment tasks and
three new criteria constructed to specifically address the safety factors of an
autonomous SAR mission. The first criteria set includes the criteria of the
estimated amount of information that would be gained by reaching the candidate,
the length of the collision-free path the robot could travel, and the battery
consumption rate, which is modelled as the time needed to reach the candidate.

The estimated amount of new information that is expected to be discovered
by the robot considers the discovered spatial information and the robot’s field of
view. An estimate of the information gain can be obtained by subtracting the size
of the already-discovered area from the sampled area that would be visible to the
robot after reaching the candidate location. However, it is worth noting that this
estimate can differ from the actual results. These results strongly depend on how
cluttered the environment is within the space that is not visible to the autonomous
robot. Nonetheless, the criterion is maximised and is expected to direct the robot
to the mostly unexplored areas.

The length of the collision-free path the robot could travel is measured by the
Euclidean distance between the current robot position and the end of a centre line
within the computed traversable zone. This criterion is applied and maximised to
direct the robot to areas that are expected to lead the robot out of the current
exploration space.

The time needed to reach the candidate can be minimised to balance the cost
of reaching the candidate, and the expected maximum distance robot could travel.
The introduction of this criterion is expected to normalise robot rotational
behaviour when multiple traversable zones are detected with similar maximum
collision-free paths. In this situation, the robot should continue following the
previously selected movement trajectory. The criteria value is measured by the
following equation:
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ti = i + P_a, (31)

Vm  Up

where d is the distance to the candidate, p, is the corner between the robot and
the candidate. v,,, and v,. are the movement and rotation velocities that are defined
by considering the robot setup parameters.

However, although the discussed technical criteria are frequently applied in
candidate assessment tasks, they are not sufficient for harsh-environment
exploration. The inability to identify hazardous obstacles and evaluate their
impact on the robot system is a major design flaw that could be addressed from
the candidate assessment point of view. Therefore, in the context of this research,
the candidate assessment strategy is expanded by introducing the criteria of the
ratio between the detected drive-through region and standard door size, the
distance to the detected dangerous obstacle, and the distance to the nearest vision-
occluding object.

The ratio between the detected drive-through region and the standard door
size is expected to support the length of the collision-free path criterion by
estimating if the lengthy traversable zone could be, in fact, a doorway that leads
to different areas of the explored environment. The criteria value is determined by
applying the following equation:

1)
c= 1 (3.2)

where § = 0.762 is a constant value, representing the width of a door, and [ is
the width of a detected drive-through. For computational purposes, the robot only
uses [, values that are larger than its width.

The distance to the nearest dangerous object is measured by the Euclidean
distance between it and the assessed candidate. This criterion is proposed to model
the safety concerns of the autonomous SAR robot. Although in real-world
scenarios, there are numerous ways to damage the robot, in this model, a
dangerous stationary object is considered. It is expected that by applying the
proposed criterion, the robot will actively avoid any danger within its field of
view. Similarly, the distance to the nearest vision occluding object is also
considered in the proposed candidate assessment strategy, as the probability of
colliding with the unseen dynamic object can also put the autonomous robot in
danger. The criterion value is estimated by measuring the length of the sides of
the adjacent traversable zones and referring to the shortest one. It is expected that
by applying this criterion, the autonomous robot will keep further away from sharp
corners, thus, leaving enough time for collision avoidance manoeuvres.

The complete criteria list applied in the proposed candidate assessment
strategy is presented in Table 3.1.
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Table 3.1. Proposed candidate assessment strategy

Criterion Criterion name Optimum Weight

o Thg distance to the nearest dangerous Max 0.31
object, m.
The ratio between the standard door size

Cy and the detected drive-through region Max 0.26
width, %.

c The estimated amount of new Max 017

3 information that could be gained, m2. '

c The length of a visible collision-free Max 011
path, m.

s ;rhe t_|me needed to reach the candidate Min 008

rontier, s.
e The distance to the nearest vision- Max 0.07

occluding object, m.

The criteria weights and optimums presented in Table 3.1 are used in the
candidate assessment task and are determined by applying the SWARA method
introduced in the second chapter of this thesis. As the SWARA method is applied
to determine the criteria weights in all of the considered experiments and strategy
assessment tasks of this thesis, the example of the criteria weight computation
process is presented in detail. The pairwise comparison of the relative importance
of criteria is presented in Table 3.2.

Table 3.2. Pairwise comparison of the relative importance of criteria

Pairwise comparison values of the relative importance of criteria
Stakeholder

€L ©Cy Cy © C3 C3 © Cy Cy © Cy Cs © Cq
1 0.50 0.25 0.25 0.10 0.30
2 0.20 0.65 0.40 0.20 0.20
3 0.00 0.45 0.15 0.60 0.25
4 0.20 0.30 0.40 0.30 0.15
5 0.20 0.25 0.85 0.60 0.20
6 0.10 0.85 0.50 0.45 0.15
7 0.35 0.90 0.50 0.50 0.00
8 0.10 0.55 0.75 0.30 0.10
9 0.20 0.30 0.25 0.50 0.20
10 0.10 0.70 0.80 0.20 0.75
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Then, the average value of comparative importance is determined. By
applying the SWARA method, the final criteria values are computed and
presented in Table 3.3.

Table 3.3. Pairwise comparison of the relative importance of criteria

Average value of | Coefficients of
L - - Recalculated . .
Criterion comparative comparative . Final weight
. . weights
importance importance
o) - 1.000 1.000 0.31
fo 0.195 1.195 0.837 0.26
[o 0.520 1.520 0.551 0.17
Cy 0.485 1.485 0.371 0.11
Cs 0.375 1.375 0.270 0.08
Ce 0.230 1.230 0.220 0.07
- 3.249 -

Once competing stakeholder opinions are modelled into a well-defined
weight set, the proposed candidate assessment strategy can be applied by the
autonomous robot to evaluate candidates located in its field of view. In this case,
the key improvement of the proposed autonomous navigation strategy compared
to the standard approach is the implementation of additional technical and safety-
related criteria. This improvement is expected to enable the autonomous robot to
better interpret discovered spatial information and assist it in avoiding dangerous
objects without the additional navigation rules.

3.1.2. Evaluation of the Proposed Candidate Assessment
Strategy in the Robot’s Field of View

The considered candidate assessment strategy is tested in a simulated indoor
environment by applying the dedicated Gazebo simulation software (Gazebo,
2021). The proposed strategy is implemented into the turtle-bot-like robot system,
which is controlled by applying the Robot operating system ROS (ROS, 2020).
The utility of each candidate is measured by applying the state-of-the-art
WASPAS-SVNS method. The goal of this test is to determine if the inclusion of
safety concerns in the applied environment exploration strategy can influence the
robot movement trajectory. Thus, the example solution to one of the decision-
making problems is provided. The initial decision matrix of the sample decision-
making iteration is presented in Table 3.4. The utility of each candidate (denoted
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as Al, A2, ..., A6) is measured by applying the WASPAS-SVNS method and
presented in Table 3.5.

Table 3.4. Initial decision matrix of the sample iteration

Criterion Candidate frontier
Al A2 A3 A4 A5 A6
o3} 2.3608 2.2629 1.9455 1.2639 2.7165 3.9915
cy 0.0100 0.8968 0.0995 0.0100 0.3886 0.4274
C3 26.8296 43.6107 17.9941 9.7133 39.6498 5.3125
Cy 9.1394 12.5583 6.9450 4.4250 11.8150 2.7498
Cs 21.5175 20.7496 17.3396 6.7615 2.5623 17.7558
Ceo 0.0100 8.7569 5.7627 0.0100 2.6942 1.3109
Table 3.5. Results provided by WASPAS-SVNS method for sample iteration
Method Candidate frontier
results Al A2 A3 A4 A5 A6
(0.7195, | (0.8059, | (0.7526, | (0.8410, | (0.9268, | (0.7933,
o® 0.2986, | 0.1909, | 0.2435, | 0.1437, | 0.0745 | 0.1924,
0.2805) 0.1941) 0.2474) 0.1590) 0.0732) 0.2067)
(0.0142, | (0.1042, | (0.0339, | (0.0085, | (0.0691, | (0.0431,
o® 0.9871, | 0.8944, | 09700, | 0.9927, | 0.9356, | 0.9581,
0.9858) 0.8958) 0.9661) 0.9915) 0.9309) 0.9569)
(0.7235, (0.8262, (0.7610, (0.8424, (0.9318, (0.8022,
Q; 0.2948, 0.1707, 0.2362, 0.1427, 0.0697, 0.1844,
0.2765) 0.1738) 0.2390) 0.1576) 0.0682) 0.1978)
SQ) 0.7144 0.8277 0.7624 0.8498 0.9311 0.8089
Rank 6 3 5 2 1 4

The provided example demonstrates that the robot is capable of balancing the
competing optimisation priorities modelled by the proposed criteria set.
Considering the ¢, criterion that corresponds to the robot’s safety, the candidate
denoted as A5 is the second-best option within the list and A4 is last. However,
the results obtained by applying the WASPAS-SVNS method indicate that A5 is
ranked the best candidate and A4 is the second-best. In this case, the standard c5,
¢, and cs criteria outweigh the proposed ¢, criterion. This result highlights how
the optimisation priorities are balanced by applying the MCDM approach and
indicates that robot safety issues can be effectively addressed when applying the
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proposed candidate assessment strategy. The robot’s ability to evade dangerous
objects is also illustrated in Fig. 3.2.

a) b)

Fig. 3.2. Robot movement trajectory: (a) the robot movement trajectory when
applying the proposed candidate assessment strategy; (b) the robot movement
trajectory, when applying only the cs, ¢, and c5 criteria. The red markers represent
dangerous objects the robot should avoid, the black line indicates the robot’s
movement trajectory

The robot movement trajectory (black line in Fig. 3.2) suggests that by
applying the proposed candidate assessment strategy, the robot is actively
avoiding dangerous objects (red markers in Fig. 3.2). Also, the robot is attracted
to areas considered to lead the robot out of the current exploration space.

Although the proposed method demonstrates stability and the ability to avoid
dangerous objects, some improvements can be considered. For example, the
assessment of the candidates that are only in the robot’s field of view can reduce
the efficiency of the environment exploration process as the decisions on where
to move next might not be efficient on the global scale. Thus, further development
of the environment exploration strategies is presented in the next chapters of this
thesis.

3.2. Frontier Assessment Strategy by WASPAS-IVNS
Method

Although the previously proposed strategy for candidate assessment in the robot’s
field of view shows potential, the application of the MCDM approach for the
global candidate assessment task could increase the robot’s performance when
considering the size of the area that was searched by the robot. Differently from
the previously discussed strategy, in this approach, the robot determines a set of
possible candidates that could be reached by considering not the current field of
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view but rather all available environment information. Specifically, a frontier
assessment-based strategy is considered (Yamauchi, 1997).

In general, a frontier can be defined as a region between the currently
discovered and the unknown environment. By directing the robot to these areas,
new environment information can be discovered and added to the partial
environment representation model (in the case of this thesis, a grid map (ROS
Gmapping, 2020)). Then, a list of reachable frontiers is determined once again,
and the robot is directed to the one with the highest utility score, considering the
applied candidate assessment strategy.

However, the imprecise robot movements and small measurement variations
obtained by robot sensors can have a significant impact on the autonomous
environment exploration quality and, therefore, should be addressed while
designing environment exploration strategies. Thus, the proposed WASPAS
method extension, modelled under the interval-valued neutrosophic environment
(WASPAS-IVNS) is implemented into the autonomous robot decision-making
module. The proposed decision-making method provides additional reliability
when comparing and ranking candidate frontiers by addressing the plausible
measurement errors in the input data characteristics.

3.2.1. Candidate Frontier Assessment Strategy

Compared to the previously discussed approach, the proposed novel candidate
assessment strategy is developed to consider not only the technical and safety
requirements of an autonomous robot but also the social aspects of the SAR
mission. Also, each criterion measurement approach is adjusted to support the
environment exploration strategy based on the frontier evaluation.

The proposed strategy is developed by combining six criteria that expand the
standard environment exploration strategies, including the previously discussed
safety requirements for SAR robots and address the situations in which survivors
are detected. Thus, the candidates are assessed by applying the criteria of the
estimated distance from the candidate frontier to the robot control station, the
estimated amount of new information that is considered to be gained after
reaching the candidate frontier, the estimated energy needed to reach the candidate
frontier (measured by the time needed to reach the candidate), the distance from
the robot to candidate frontier location, the estimated danger to the hypothesised
survivor, and the estimated danger to the robot for following the computed path.

The first criterion, the estimated distance from the candidate frontier to the
robot control station, is a technical criterion that defines the robot’s ability to
transmit information after reaching the candidate frontier (Visser & Slamet,
2008). If the maximum transmission distance is known in advance and the robot
control station is located at the unchanging position ps(x, y), the criterion value
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can be estimated as the Euclidean distance between the control station and the
candidate frontier ps(x,y) in Pr. This criterion can be minimised to prioritise
frontiers that are close to the robot’s starting location to perform more structured
exploration while also enabling the robot to transmit the data to the robot
operators. However, if this criterion is maximised, the further located frontiers
will be preferred by the decision-making module. This can be applied to perform
a faster environment exploration (nevertheless, robot operators should consider
the possibility of losing communication with the robot and, thus, add restrictive
rules that prohibit the robot from leaving the designated search area). Considering
the operational parameters set to the simulated robot path planning algorithm, the
estimated measurement variance for this criterion is set to £1 m.

The estimated amount of new information considered to be gained after
reaching the candidate frontier (expressed by the estimated length of the frontier)
expresses the belief that the length of the frontier can be applied to estimate how
much spatial information can be observed from the candidate frontier ps(x, y)
(Gomez et al., 2019). Specifically, lengthier frontiers may indicate that they
border wide-open spaces, whereas short frontiers could indicate their position near
corners or cluttered spaces. When maximised, this criterion is expected to direct
the robot towards the open spaces, enabling it to discover more of the search and
rescue environment. Therefore, this exploration behaviour could be applied to
quickly obtain the base layout of the environment, which, in return, can help the
first responders to plan their actions (De Cubber et al., 2017). However, it is worth
noting that the estimation can differ from the actual result. This strongly depends
on the spatial information which is unknown to the robot. For example, the
environment can be cluttered around the candidate frontier, shaping a dead-end
structure. However, this clutter may not be visible to the robot before it actually
moves to the frontier. Considering the deployed autonomous robot, in this
research, the estimated measurement variance of this criterion is set to +0.1 m.

The estimated distance from the robot to the candidate frontier is measured
by the Euclidean distance between the current robot position p,-(x,y) and the
candidate frontier ps(x,y);. The criterion is expected to direct the robot to the
frontiers that are within the nearby exploration space.

The estimated time needed to reach the candidate frontier is applied to
prioritise candidate frontiers that are reachable by straight and short paths. The
criterion value is estimated by applying the approach proposed by Basilico and
Amigoni (2011). More specifically, the criteria value t(p;) is determined by
evaluating individual paths R(pf(x,y);) = {py, Wwp1, WDz, ..., wp, Pr (X, ¥);} tO
each candidate frontier ps(x, y); in the currently available set Pf. Starting from
the current robot position p,- to the candidate frontier p¢(x,y);, two connecting
waypoints wp; and wp,;,; create a path segment, returned by the robot path
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planning algorithm. Therefore, the distance between two waypoints can be
denoted as d(wp;_1,wp;) and the corner between two segments can be denoted
as a(wp;_1,wp;, Wpr+1)- As such, the criterion value can be determined by the
following equation:

t(pp(x,¥)1) = Zi=1 d(‘/zpl—lrWPl) P “(WP1—17WP17WP1+1), (3.3)

Ur

where v, = 0.1 m/s and v, = 0.1 °/s are the minimum robot movement and
rotation speed, respectively (here, the constant rotation and movement speed is
assumed for criteria value estimation). Considering the robot operational
parameters, the estimated measurement variance applied for this criterion is set to
be equal to £10 s.

Disaster sites can have objects threatening the autonomous robot (e.g., fire or
radiation sources (Wang et al., 2017; Zakaria et al., 2017; Tsitsimpelis et al.,
2019)), making it unable to continue the mission. Therefore, the criterion of the
estimated penalty for following the computed path is introduced to address the
robot’s safety requirements. The penalty system is introduced to define the danger
of following the planned path to the candidate frontier. The criterion value is
determined by assessing the distance from the planned path to the nearby
dangerous objects and converting the distances to a point-based penalty by the
following equation:

Py = Y1 Zi21 dp(Wpy, 04)), (3.4)

where dp(wpi, odj) =3 - dd(wpi, odj) if dd(wpi,odj) < 3. The partial
penalty is defined as d,, estimated by measuring the Euclidean distances between
wp; and og;. If this distance d; from each waypoint wp in a path R(pf(x,y);) to
all currently known dangerous areas in a set Oy = (041,042, ---, 04y IS greater
than three meters, the robot receives no penalty. However, if the distance between
wp; and oy is two meters, the robot receives one penalty point. If the distance is
0.25 m, the robot receives a penalty of 2.75, and so forth. The considered
measurement variance of this criterion is set to +0.2.

Finally, one of the social aspects of SAR missions (namely, the robot’s ability
to consider the status tracking of the detected survivors) is proposed to be
modelled by the estimated danger to the hypothesised survivor. This criterion is
expected to attract the robot to the detected survivors and prioritise the ones who
are in danger. To determine the value of this criterion, the Euclidean distance d,,
from the planned route to the detected survivor is measured. If d, < 6, the
Euclidean distance d; between the survivor and the nearest known dangerous area
04 = (041,042, ---,04n) IS measured. The criterion value is equal to 6 —
dgifdys <6.
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The criteria that define the proposed candidate frontier assessment strategy
are presented in Table 3.6. The criteria weights are determined by applying the
SWARA method, introduced in the second chapter of this thesis.

Table 3.6. Proposed strategy for the assessment of candidate frontiers

Estimated

Criterion Criterion name Optimum | Weight .
variance

The estimated distance from the
c candidate frontier to the robot Min 0.270 +1
control station, m.

The estimated amount of new
information that is considered to be

€ gained after reaching the candidate Max 0.217 *0.1
frontier (Iength of the frontier), m.

¢ Estlr_nated dgnger to the detected Max 0.186 +0.2
survivor, units.

¢ Estimated damage_for following the Min 0.143 +0.2
computed path, units.

s Estlmated tlme_needed to reach the Min 0.099 +10
candidate frontier, s.

¢ Distance to the candidate frontier, Min 0.085 +1

m.

It is worth noting that although the estimated variance of the criteria values
is application-specific and modelled by considering the parameters of the
deployed autonomous robot, it can be adjusted to consider the expected
inaccuracies of the input data characteristics as defined by the experts or robot
operators. Thus, this approach introduces additional flexibility when modelling
input data characteristics applied by the autonomous robot in the candidate
assessment task.

3.2.2. Assessment of Similar Candidate Frontiers

To highlight the practical application of the proposed WASPAS-IVNS method,
an example solution to one of the autonomous robot decision-making iterations is
presented. In this example, the indoor environment with a loop type topology is
considered and presented in Fig. 3.3. Here, the dangerous areas and survivors are
placed at random positions throughout the environment and are represented by the
red and yellow markers, respectively. The multi-purpose Pioneer 3-AT robot
platform is deployed in this example.
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Fig. 3.3. Test environment with a loop type topology. The red markers indicate the
positions of dangerous areas. The yellow markers indicate the positions of the
survivors (Semenas & Bausys, 2020)

The area searched and mapped by the robot at the discussed candidate
assessment example is provided in Fig. 3.4. In this example, one survivor and one
dangerous object have already been discovered and marked by the yellow and red
markers, respectively. The robot is located at the position marked by a black
marker, and the black line represents its previous movement trajectory. The
available frontier regions are depicted as blue lines, and the green markers
represent candidate frontiers a;(x,y). At this iteration, the robot has to measure
the utility of seven candidates.

Fig. 3.4. Area searched and mapped at the considered candidate frontier assessment
example. The blue lines indicate candidate frontiers (a,, a,, ..., a;). The red and
yellow markers represent the discovered dangerous object and survivor (Semenas &
Bausys, 2020)

First, the criteria values are estimated for each candidate frontier. At this
decision-making step, no new dangerous areas were detected around the candidate
frontiers or survivors; hence, c; and c, criteria values are null. Although these
criteria do not influence the decision-making process, it is highly recommended
to change the null values to a small positive number to stabilise the numerical



52 3. ASSESSMENT OF THE PROPOSED AUTONOMOUS ROBOT NAVIGATION...

computational procedure of neutrosophic algebra. The constructed decision
matrix for the sample iteration is presented in Table 3.7.

Table 3.7. Decision matrix of the considered candidate assessment example

Candidate Criterion
frontier o cy 3 Cy Cs Ce
a, 18.89 12.7 0.10 0.10 25.27 12.94
a, 11.84 9.10 0.10 0.10 37.58 7.13
as 16.54 4.00 0.10 0.10 39.09 10.28
a, 12.15 10.3 0.10 0.10 33.04 14.27
as 18.54 16.4 0.10 0.10 60.89 21.80
ae 29.33 155 0.10 0.10 31.59 23.57
a, 16.47 4.00 0.10 0.10 63.49 20.61

The utility of each candidate frontier is measured by applying the algebraic
functions of WASPAS-IVNS introduced in the second chapter of this thesis. The
same candidate assessment problem is solved by applying the WASPAS-SVNS
method. Compared to the WASPAS-SVNS method, the modelling of candidate
frontier evaluation problems under the interval-valued neutrosophic set provides
additional tools for assessing similar candidates. Therefore, the proposed
WASPAS-1VNS method enables the autonomous robot to make more accurate
estimates when ranking the candidate frontiers. This difference is illustrated in
Table 3.8, which represents the utility scores obtained by applying the WASPAS-
SVNS method. In this example, the scores of the a, and a, frontiers are very
similar. However, by applying the WASPAS-IVNS method, candidate a, is
chosen as the next-best candidate the robot should reach.

Table 3.8. Candidate ranks by the WASPAS-IVNS and WASPAS-SVNS methods

Candidate WASPAS-IVNS WASPAS-SVNS
frontier S(@) Rank S(@) Rank
a, [2.002, 2.286] 3 0.6655 3
a, [2.014, 2.312] 1 0.6708 2
as [1.877,2.172] 5 0.5982 5
a, [2.015, 2.306] 2 0.6719 1
as [1.898, 2.174] 4 0.6171 4
ag [1.853, 2.117] 6 0.5812 6
a; [1.743, 2.027] 7 0.5193 7
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The quality of the environment exploration strategy can be affected by the
small variations in the input data characteristics present due to the imprecise
environment representation model or faulty sensor readings. Therefore, the
proposed WASPAS-IVNS method is introduced to address this issue. The
assessment of the proposed method indicates that WASPAS-IVNS can be applied
to solve complex decision-making tasks and show potential when applied in SAR
missions. When compared to the standard WASPAS-SVNS method, the proposed
WASPAS-1VNS method provides additional reliability when comparing similar
candidates. This is achieved by considering the possible imprecisions in the input
data characteristics.

3.3. Candidate Frontier Assessment by
WASPAS-mGQgNS Method

As the proposed candidate-assessment-based autonomous navigation and
environment exploration strategies show potential in SAR environments, an
additional candidate assessment strategy is proposed. This strategy considers the
possibility of a priori information, which enables the robot operator to indicate the
priority areas that should be explored. Also, a criterion that defines the spatial
clutter around the candidate frontier is introduced to reduce the chance of selecting
the frontier around which most of the information has already been discovered.

However, different real-world missions might require a slightly different
approach when measuring the utility of a candidate. Therefore, a novel extension
modelled under the m-generalised g-neutrosophic environment is proposed for the
WASPAS method, namely, WASPAS-mGQgNS. This extension enables the robot
operator to shift between the fuzzy sets that govern the aggregation process of the
applied criteria and introduces additional flexibility when modelling environment
exploration strategies. Identically to the previously discussed frontier-based
approach, the proposed candidate assessment strategy is applied by a simulated
Pioneer-3AT robot. The obtained test results highlight how the proposed approach
could be used to minimise the distance travelled by the robot and maximise the
size of the area searched by the robot when the search must be performed around
the several priority locations that are set in advance by the robot operator.

3.3.1. Priority-Based Candidate Frontier Assessment Strategy

The strategies discussed in the previous chapters of this thesis are applied in
situations where no a priori information about the environment is known to the
autonomous robot. Yet, considering some real-world situations, it is likely that
robot operators can obtain some information about the environment and apply it
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to make more efficient decisions (e.g., as in Calisi et al., 2007; Roa-Borbolla et al.,
2017). Therefore, for the candidate assessment problem, a novel strategy is
proposed to enable the robot to explore areas around the set priority locations and
reduce the amount of input data needed to filter the frontiers surrounded by mostly
explored space. The main objective of the proposed strategy is to maximise the
amount of discovered information around a set of priority locations while
minimising the average distance travelled by the autonomous robot. Thus, the
candidate frontier assessment strategy is modelled by applying six criteria, i.e.,
the distance from the robot to the candidate frontier, the estimated amount of new
information that is considered to be gained after reaching the candidate frontier,
the estimated time needed to reach the candidate frontier, the distance between the
frontier and robot control station, the distance from the candidate frontier to the
set priority location and the ratio between the number of unknown cells and the
sample population size around the candidate frontier.

The distance from the candidate frontier to the set priority location is a novel
minimised criterion introduced to enable more exhaustive exploration around the
set priority location without directly moving the autonomous robot to the
designated area. The main idea behind introducing this criterion is that in real-
world search and rescue missions, it is very likely that the rescue teams can obtain
some information about the environment and focus the exploration effort around
the prioritised locations (e.g., Calisi et al., 2007; Roa-Borbolla et al., 2017). The
criterion value is measured by the shortest Euclidean distance between each
priority location and the considered candidate.

The ratio between the free cells around the frontier and the sample population
is a maximised criterion that is introduced to reduce the chance of selecting
frontiers that are unreachable or are surrounded by already discovered space (e.g.,
candidates that are detected near the corners of a room or, due to the faulty
environment representation model, in the middle of the wall). This criterion is also
applied to address the issue of inaccurate or noisy robot-constructed environment
representation model (Zakiev et al., 2019). As the MCDM methods are vulnerable
to numerical instability, this problem can have a notable influence on the
performance of the proposed strategy. The criterion value is measured by
sampling a total of 100 cells within a set radius around each frontier as presented
in Fig. 3.5 (in the considered setup, the set radius is equal to 1.5 m) and applying
the following equation:

Co = 707 (3.5)

where ¢ is the number of sampled cells that are yet to be discovered, A is the real
number, representing the sample population size and n is the number of sampled
cells that are occupied. Although the approach of estimating the amount of free
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space that would be visible by considering parameters of robot perception sensors
(Basilico & Amigoni, 2011; Taillandier & Stinckwich, 2011) can also be applied
to determine the value of this criterion, this approach requires additional
computational resources as more input data must be evaluated by the autonomous
robot.

Fig. 3.5. Proposed cell sampling method. Here, the blue line indicates the chain of
cells between the explored and unknown space. The green marker indicates the
location of the candidate frontier p,(x,y);. The red markers indicate samples that
fall into the explored or occupied space. Yellow markers indicate samples located on
the undiscovered cells (Semenas, Bausys & Zavadskas, 2020)

The proposed strategy for the assessment of candidate frontiers is presented

in Table 3.9. The criteria weights are determined by applying the previously
introduced SWARA method.

Table 3.9. Proposed (PS) candidate assessment strategy

Criterion Criterion name Optimum | Weight

c Distance to the candidate frontier, m. Min 0.07
The estimated amount of new information that

Cy is considered to be gained after reaching the Max 0.13
candidate frontier, m.

C3 Estimated time needed to reach the frontier, s. Min 0.24

Cy Distance to the robot control station, m. Min 0.04

s Di_sta_nce from the candidate frontier to the set Min 0.37
priority location, m.
The ratio between the number of unknown cells

Ceo and the sample population size around the Max 0.15
candidate frontier, %.
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To evaluate the performance of the proposed strategy (PS), two additional
autonomous navigation and environment exploration strategies are considered,
i.e., the direct control (WS) strategy and the information gain (IG) strategy, which
is based on the cost-benefit candidate assessment approach, presented in
Table 3.10.

Table 3.10. Information gain (1G) candidate assessment strategy

Criterion Criterion name Optimum | Weight
o) Distance to the candidate frontier, m. Min 0.25
The estimated amount of new information that
Cy is considered to be gained after reaching the Max 0.30
candidate frontier, m.
C3 Estimated time needed to reach the frontier, s. Max 0.35
Cy Distance to the robot control station, m. Min 0.10

In this evaluation, the IG and the PS strategies are modelled by applying the
frontier-based candidate assessment approach, in which the utility of a candidate
is determined by applying the proposed WASPAS-mGqNS method. The direct
control strategy WS is modelled by applying the approach in which the robot
operator sets the order of priority locations to be visited, and the robot follows the
shortest path between them.

3.3.2. Performance Evaluation of the Proposed Priority-Based
Candidate Assessment Strategy

To highlight how the proposed priority-based candidate assessment strategy and
the WASPAS-mGQgNS method could be applied in autonomous navigation and
environment exploration tasks, they are evaluated in a simulated search and rescue
environment, presented in Fig. 3.6. Here, the white markers indicate four priority
locations the autonomous robot is expected to visit and around which the robot
should focus the exploration effort. The blue marker indicates the robot’s starting
position (considered as the robot’s control station). The primary objective of the
proposed candidate-assessment-based environment exploration strategy is to
minimise the distance travelled by the robot and increase the size of the searched
environment around a set of priority locations that are identified by the robot
operators before deploying the autonomous SAR robot. The navigation and
environment exploration task is terminated when the autonomous robot visits all
four priority locations or the time limit of ten minutes is reached.
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Fig. 3.6. Simulated indoor environment. White markers indicate the priority
locations the robot is expected to visit. The blue marker indicates the robot’s starting
position (Semenas, Bausys & Zavadskas, 2020)

As in the previous tests, the autonomous robot deployed in a Gazebo
simulator is controlled by applying the ROS robot operating system and using a
similar navigation framework and sensor setup as discussed in the previous
section of this thesis. The decision on where to move next is made, and the frontier
with the highest utility is determined by applying the proposed WASPAS-mGgNS
method. The performance of the three environment exploration strategies (PS, IG,
and WS) is evaluated in this assessment. As the robot movement trajectories can
differ between multiple simulations due to the inaccurate input data characteristics
and errors in the environment representation model (which is used for path
planning), a total of ten simulation runs were performed for each environment
exploration strategy to obtain the averaged results. The results obtained in these
tests are presented in Fig. 3.7.
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Fig. 3.7. Results of tested navigation strategies: (a) the size of the searched area, m?;
(b) the length of the distance travelled by the robot, m

Considering the average distance travelled by the autonomous robot, the WS
strategy shows the best performance in the simulated environment. However, by
applying this approach, the robot searched the smallest area when compared to the
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IG and PS strategies. Considering the average distance travelled by the
autonomous robot, the worst performance is observed when applying the IG
strategy. Although this strategy enables the autonomous robot to search most of
the exploration space, it also significantly increases robot backtracking and does
not guarantee the visitation of all priority locations within the considered time
window of ten minutes. As such, the addition of cs and ¢ criteria show potential
in keeping the robot close to the prioritised locations while also minimising its
chance to select the candidates that are surrounded by a previously searched
environment.

These results are also represented by the robot movement trajectory
presented in Fig. 3.8. For example, (a) represents the robot movement trajectory
when the WS strategy is applied. In this example, the robot follows the shortest
route between the set priority locations and finishes the exploration mission when
the last priority location is visited. In contrast, it is common for the 1G strategy to
never visit all the priority locations and exhaustively explore the SAR
environment until the given time limit is reached and the robot is stopped, as
highlighted in (b). However, the proposed environment exploration strategy,
presented in (c), indicates that the robot that applies the proposed candidate
assessment strategy searched a lesser area when compared to the IG strategy.
However, the robot is directed to the priority locations, enabling it to explore the
frontiers around these positions and, thus, discover more environment information
(when compared to the WS strategy) while simultaneously constructing a time-
efficient navigation path (when compared to the IG strategy).

a)

Fig. 3.8. Robot movement trajectories when applying the PS, IG and WS strategies:
(a) robot movement trajectory when WS strategy is applied; (b) robot movement
trajectory when the IG strategy is applied; (c) robot movement trajectory when the
PS strategy is applied (Semenas, Bausys & Zavadskas, 2020)

The obtained results indicate that the proposed candidate assessment strategy
enables the autonomous robot to maximise the searched area around the prioritised
locations while travelling a relatively short distance. Thus, the proposed MCDM
method extension can be applied to solve such complex decision-making
problems as candidate assessment tasks in autonomous environment exploration.



3. ASSESSMENT OF THE PROPOSED AUTONOMOUS ROBOT NAVIGATION... 59

However, it is worth noting that the robot’s navigational behaviour strongly
depends on the physical features of the explored environment. For example, if
there is a lack of available frontiers in the space around the prioritised location,
the autonomous robot might not increase the amount of the discovered
environment information before the mission termination conditions are met.

3.4. Environment Exploration by the Adaptive MCDM
Approach

Considering the complexity of the candidate assessment problem in SAR missions
and the inherent complexity of real-world environments, it can be argued that an
efficient autonomous robot must be capable of swapping between the rules that
govern the candidate assessment task rather than applying the same rules for each
candidate assessment iteration. Therefore, an adaptive environment exploration
strategy is proposed, which implements the multi-criteria decision-making
methods to decide on where to move next, and the fuzzy logic controller, which
is applied to determine the most appropriate strategy for the candidate assessment
problem. Differently from the previously discussed strategies, the proposed
approach enables the autonomous robot to apply the most appropriate candidate
frontier assessment strategy based on the currently discovered environment
information and robot surroundings. Specifically, the decision on where to move
next is made by applying one of the pre-set strategies defined by differently
modelled criteria weights. The criteria are aggregated, and the utility of a
candidate frontier is measured by applying the previously discussed neutrosophic
WASPAS method extension, i.e., WASPAS-IVNS.

3.4.1. Fuzzy Logic Controller for Adaptive Environment
Exploration

In general, a basic fuzzy logic controller can be constructed from the four core
components: the fuzzification module, fuzzy inference machine, fuzzy rule base,
and the defuzzification module (Klir & Yuan, 1995). The first component, the
fuzzification module, is responsible for processing and mapping a set of crisp
input data values to the linguistic terms, called fuzzy sets, and determining the
degree of membership of each input data value in the unit interval of [0, 1]. A
fuzzy logic controller is a popular approach to modelling autonomous robot
systems that is successfully applied in many different designs (e.g., Din et al.,
2018; Hong et al., 2012; Seraji & Howard, 2002; Singh & Thongam, 2018;
Kahraman et al., 2020; Sreekumar 2016; and Khurpade et al., 2011, just to name
a few).
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The inference machine is applied to assess the fuzzified input data by a set of
fuzzy IF-THEN rules (called the fuzzy rule base), which govern the output of the
module. These rules can be defined by the experts, built on the knowledge base or
just by referencing successful system tests. However, as there may be multiple
rules that are activated due to the overlaps in the inference machine output, the
defuzzification module is applied to convert the obtained results to a crisp output
value. This value is further applied in selecting the appropriate candidate
assessment strategy. The defuzzification process can be performed by applying
several methods. For example, the centre of sums method (which is used in the
proposed system), the centre of gravity method, first, last or mean of maxima, just
to name a few.

The proposed fuzzy logic controller is applied to determine which candidate
frontier assessment strategy should be applied considering the current robot’s state
and known environment information. It is also worth noting that the proposed
fuzzy logic controller showcases applicational principles of the proposed adaptive
strategy and is not aimed to define how the robot should realistically operate in
every search and rescue mission. In this case, the proposed approach describes
how the output value of the fuzzy logic controller can be assigned to the unique
candidate assessment strategies. However, this process can be further extended by
introducing a fully autonomous or rule-based approach. The fuzzy logic controller
uses two input arguments, namely, E(s) — the distance from the robot to the
hypothesised survivor and E(d) — the distance from the robot to the closest
dangerous area. One output parameter is provided, namely, the candidate frontier
assessment strategy St that should be applied by the autonomous robot at the
current environment exploration step.

The input membership functions for the E(s) are defined as contact (SC),
near (SN), medium (SM), far (SF), and very far (SVF). The input membership
functions of the distance to the E(d) are defined as critical (DC), very near
(DVN), near (DN), medium (DM), far (DF), very far (DVF), and safe to ignore
(DSI). Here, triangular membership functions are used for the inputs as presented
in Fig. 3.9 and Fig. 3.10.
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Fig. 3.9. Input membership function for the distance to the hypothesised survivors
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Fig. 3.10. Input membership function for the distance to the dangerous objects

In the proposed adaptive candidate assessment strategy, the output of the
fuzzy logic controller is mapped to the candidate frontier assessment strategies, as
presented in Fig. 3.11. Here, the proposed candidate assessment strategies are
defined as the danger avoidance strategy (DA), which represents the egoistic
behaviour model and is expected to direct the autonomous robot away from the
dangerous paths and areas; the restrictive reach survivor strategy (RRS), which is
expected to balance the robots survivability requirements with the need to explore
the frontiers around the hypothesised survivor; the reach survivor strategy (RS),
which represents the altruistic behaviour model and prioritises candidate frontiers
that are relatively close to the hypothesised survivor; and the information gain
strategy (IG), which is applied for directing the robot to the set prioritised
locations. It is also worth noting, that the list of the proposed candidate assessment
strategies is not finite and can be easily extended depending on the specific
environment exploration task and the needs of robot operator.
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Fig. 3.11. Output membership functions for selecting the candidate frontier
assessment strategy

Since five fuzzy membership functions are defined for E (s) and seven fuzzy
membership functions are defined for E(d), the fuzzy rule base is constructed
from a total of 35 IF-THEN rules which are presented in Table 3.11.
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Table 3.11. Fuzzy rule-base for selecting candidate frontier assessment strategy

Me?;?;r:h'p DC | DVN | DN DM DF DVF | DSl
sC DA | RRS | RRS | RRS RS RS RS
SN DA | RRS | RRS | RRS RS RS RS
SM DA DA | RRS | RRS RS RS RS
SF DA DA DA | RRS RS IG IG
SVF DA DA DA DA RS IG IG

Several of the fuzzy rules applied by the proposed fuzzy logic controller are
defined:

— IFE(s) is SC AND E(d) is DC THEN St is DA;

— IFE(s) is SN AND E(d) is DVN THEN St is RRS;
— IFE(s) is SF AND E(d) is DF THEN St is RS;

— IFE(s) is SVF AND E(d) is DSI THEN St is IG.

To determine the output value of the proposed fuzzy logic controller, the
defuzzification step is performed by applying the centre of sums method. The
obtained output value is then mapped to the candidate assessment strategies (that
are presented in Table 3.13) according to the thresholded membership value. In
this case, the obtained output value is applied to determine if the membership to
the candidate frontier selection strategy is weak or strong. The membership is
considered strong, and the selected candidate frontier assessment strategy applies
the criteria weights represented as wg, when the obtained output value St satisfies
the following condition:

St<b+0.25

St>b—-0.25 (36)

wg IS true if {
where b is the integer value, which is closest to the fuzzy controller output value
St. Likewise, the membership is determined as weak, and the selected candidate
assessment strategy applies the criteria weights represented by w, when the
obtained output value St satisfies the following condition:

St>b+0.25 {St<b—0.25

St<b+0.5 St=b—-05" 37

w, is true if {
where b is the integer value, which is closest to the fuzzy controller output value
St. Here, the four main candidate assessment strategies ST (C, W) are modelled
by applying the criteria presented in Table 3.12.
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Table 3.12. Criteria applied to model the candidate frontier assessment strategy

Criterion Criterion name Optimum Elsglgﬁgd

(o) Length of the frontier, m. Max +0.6
The ratio between the number of unknown cells

Cy and the sample population size around the Max +3
candidate frontier, %.

¢ Dlsta.nce from the robot to the candidate Min +0.3
frontier, m.

c Estlmated time for reaching the candidate Min +1.2
frontier, s.
Distance from the candidate frontier to the

Cs : Max +0.3
robot control station, m.

cq The estimated danger for following the Min +0.3
computed path, units.

c; Estimated survivor hypothesis confirmation, %. Min 5

Similar to the previously discussed approach, the c, criterion is applied to
determine if the frontier is surrounded by already explored areas or if it borders
the edge of the unexplored space. However, in this strategy, the criterion value is
estimated by sampling the grid map cells around the candidate frontier in the
radius of 4 m with a sample population of 880. If the cell is thresholded as
unknown, it is added to the sum of unknown cells, and the obtained result is
divided by the sample population. As the applied WASPAS-IVNS method
enables the robot to evaluate the possible inaccuracies in the input data, the
considered variance of this criterion is set to £3%.

The estimated survivor hypothesis confirmation is defined as ¢, and is an
important criterion when considering autonomous environment exploration tasks
in search and rescue missions. The criterion can be minimised to urge the
decision-making module to choose a path to the frontier, which is near the
detected hypothesised survivor. This feature can assist the rescue teams in
determining if the detected object is a survivor that needs help and not a false
positive. However, as human and dangerous object recognition introduces many
problems that are out of the scope of this thesis, it is assumed that the robot can
ideally recognise these objects when they are detected in the robot’s field of view.
In real-world situations, this can be achieved by recognising heat signatures to
identify hot objects, such as humans (Cakmak et al., 2017), or Geiger-muller
sensors to detect dangerous objects, such as radioactive substances (Zakaria et al.,
2017), etc. The survivor confirmation rate is measured by the distance between
the autonomous robot and the hypothesised survivor and increases (with an
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estimated variance of £5%) as the robot approaches the detected object. The
increase is measured by the linguistic fuzzy approach in which the distance
between the robot and survivor is mapped to the percentage value. To address the
specifics of neutrosophic sets, the default value of a criterion is set to a high
randomised value. Later this value is switched to the exact measure whenever the
survivor is detected. The 100% confirmation rate is achieved when the distance
between the robot and the survivor is less than 1.5 meters (Aghababa et al., 2019).

The four distinctive frontier assessment strategies that are modelled by
applying the proposed criteria set are provided in Table 3.13. The relative weights
of criteria are determined by applying the SWARA method.

Table 3.13. Proposed set of candidate frontier assessment strategies

Candidate assessment strategy
Criterion | Optimum DA RRS RS IG

Wq wy, Wq wy, W wy, Wg wy,
(o) Max 0.15 | 0.14 | 0.08 | 0.09 | 0.10 | 0.10 | 0.12 | 0.12
Cy Max 0.19 | 0.16 | 0.09 | 0.10 | 0.13 | 0.12 | 0.16 | 0.14
C3 Min 0.08 | 0.09 | 0.06 | 0.07 | 0.09 | 0.09 | 0.11 | 0.09
Cy Min 006 | 011 | 014 | 012 | 0.21 | 0.15 | 0.22 | 0.16
Cs Max 0.05 | 0.07 | 0.05 | 0.20 | 0.05 | 0.07 | 0.25 | 0.21
Ce Min 034 | 024 | 0.35 | 0.28 | 0.08 | 0.20 | 0.08 | 0.20
c; Min 013 | 019 | 0.22 | 0.16 | 0.35 | 0.28 | 0.05 | 0.07

It is hypothesised that the adaptive candidate assessment strategy will
provide more balanced results when compared to the four individual candidate
assessment strategies. As a result, the robot should evade dangerous areas while
visiting detected survivors.

3.4.2. Evaluation of the Adaptive Candidate Frontier
Assessment Strategy

As previously discussed, the fuzzy logic controller is the main component of the
proposed adaptive environment exploration strategy, which enables the robot to
select the appropriate frontier assessment strategy based on the current state of the
robot and the discovered environment information. Thus, an example of robot
movement trajectory when applying the proposed strategy is presented in
Fig. 3.12. Here, the robot travelled path is represented by a black line. Dangerous
areas are presented by the red markers. Yellow markers indicate survivors, and
the white markers are the prioritised locations robot should visit. In this example,
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the proposed WASPAS-IVNS method is applied for the assessment of candidate
frontiers.

Fig. 3.12. Example of a robot movement trajectory by applying the proposed
strategy and the proposed WASPAS-IVNS method. The black marker indicates the
current robot position, red markers indicate dangerous areas and yellow markers
indicate detected survivors (Semenas & Bausys, 2021)

The exploration process is managed by the online candidate frontier
assessment and selection process, which is directly controlled by the fuzzy logic
controller as schematically presented in Fig. 2.1. Considering the provided
example of the robot movement trajectory, the input parameters for the fuzzy logic
controller, namely, the Euclidean distance between the robot and the closest
dangerous object E(d), and the distance between the robot and the closest
hypothesised survivor E (s), are presented in Fig. 3.13.
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Fig. 3.13. E(d) and E(s) values over time in the considered environment
exploration example

Each exploration sequence begins by applying the basic cost—benefit strategy
IG that is switched to the more suitable one, depending on the output of the fuzzy
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logic controller. This strategy activation and de-activation process is presented in
Fig. 3.14.
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Fig. 3.14. Applied frontier assessment strategy over time. The index of 1 corresponds to
the DA strategy, 2 — to the RRS strategy, 3 — to the RS strategy, and 4 — to the IG
strategy

Here, “1” indicates that the danger avoidance strategy DA is applied for the
assessment of candidate frontiers. Identically, the index value of “2” indicates the
application of the RRS strategy, the value “3” indicates the application of the RS
strategy, and the value “4” indicates the application of the IG strategy. The
example shows that the proposed fuzzy logic controller allows the autonomous
robot to swap between the candidate assessment strategies ST (C, W) throughout
the SAR mission.

The example suggests that the autonomous SAR robot that applies the
proposed environment exploration strategy is actively avoiding the dangerous
areas detected at the early stages of exploration. Also, the detected survivor
attracts the robot to the candidate frontiers located on the right side of the
simulated environment. The robot then explores nearby frontiers until the task
termination conditions are met. However, in the considered example, one frontier
that is located in the right-bottom area, between the two dangerous objects, was
not visited during the exploration process. Although such behaviour in this
situation reduces the amount of penalty received by the robot, it might also be
unwanted in real-world SAR missions as the robot can ignore unsafe paths that
could possibly lead to discovering more important environment features.
Therefore, the autonomous robot operators should carefully consider how safely
the robot should move in the environment and what are the effects of premature
termination of the environment exploration process, as it may lead to situations
where portions of the disaster site are not explored exhaustively.

The assessment of each strategy’s performance considers the average penalty
received by the robot for traversing dangerous areas and the average rates of the
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survivor hypothesis confirmation. Fig. 3.15 presents the results that indicate the
amount of penalty received by the autonomous search and rescue robot when
applying each of the proposed individual strategies (IG, RS, RRS and DA). The
results obtained by applying the adaptive candidate assessment strategy are
represented by FC.
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Fig. 3.15. Average penalty received by the autonomous robot when applying each
candidate assessment strategy, units (Semenas & Bausys, 2021)

The considered test results indicate that the proposed adaptive environment
exploration strategy (FC) shows more balanced results when compared to the four
strategies that can be applied individually. For example, the FC method shows
better performance when compared to the RS and IG strategies when the average
of the received penalty is considered. In this case, the autonomous robot, operating
by applying the proposed environment exploration strategy, reduces the received
average penalty by 70%. However, the egoistic DA and RRS strategies that
prioritise robot safety can reduce this average by up to 91%. The performed
assessment also indicates that there is no noteworthy difference between the
average percentage of survivor confirmation hypothesis (which reaches 80-83%
by applying all four strategies) when comparing the proposed adaptive navigation
strategy FC and the DA, RRS, RS and IG strategies.

This result can be explained by considering the topology of the simulated
SAR environment. As the robot can discover all environment information within
the given time interval, every survivor is detected. However, the proposed
adaptive environment exploration strategy that can swap between the rules that
govern the candidate assessment process actively directs the robot farther away
from dangerous areas (when the DA strategy is applied) and leads it to the areas
that are near the hypothesised survivors (when the RRS and RS strategies are
applied). The proposed approach shows potential in providing more balanced
robot behaviour when compared to the non-adaptive application of each strategy.
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3.5. Generalised Autonomous Robot Navigation
Strategy

As the proposed fuzzy logic controller shows potential in autonomous navigation
and environment exploration tasks, the proposed strategy is further tested by
developing a generalised candidate assessment strategy, which enables the
evaluation of the previously proposed MCDM methods, namely, WASPAS-IVNS
and WASPAS-mGgNS. The proposed autonomous navigation and environment
exploration strategy is also compared to the common environment exploration
strategies. The generalised environment exploration strategy for search and rescue
missions is evaluated in three simulated indoor environments representing
hypothetical SAR environments. The primary aims of this assessment are:

— Totest the performance and stability of the proposed WASPAS-IVNS and
WASPAS-mGgNS methods against the WASPAS-SVNS and
MULTIMOORA-SVNS methods.

— To examine the capabilities of the proposed generalised navigation
strategy in the simulated search and rescue mission and compare the
results against the baseline candidate-assessment-based strategies,
namely, the classical Closest Frontier (CF) strategy and the Standard
Information Gain (SIG) strategy.

When applying the CF strategy, the autonomous robot evaluates the utility of
the multiple candidates solitary on the estimated time needed to reach them. The
SIG strategy is based on the multi-criteria decision-making approach and is
derived from previously introduced candidate assessment strategies (Basilico &
Amigoni, 2011; Taillandier & Stinckwich, 2011; Bausys, Cavallaro & Semenas,
2019; Visser & Slamet, 2008). The criteria and their relative weights that define
the SIG strategy are presented in Table 3.14. The WASPAS-SVNS method is
applied to aggregate criteria values and measures the utility of candidates when
the SIG strategy is applied.

Table 3.14. Standard information gain (SIG) strategy

Criterion name Optimum | Weight
The estimated length of the frontier. Max 0.50
The estimated time needed to reach the candidate frontier. Min 0.30

The estimated distance from the candidate frontier to the robot

control station. Min 0.20
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Five parameters were considered to compare the proposed autonomous
navigation and environment exploration strategy and the baseline candidate
assessment methods. Three of them are measured on an ordinal scale: the robot
travelled distance, the size of the searched area, and the amount of the received
penalty for traversing dangerous areas. Two of them are measured in a ratio scale,
i.e., the ratio between the robot travelled distance and the size of the searched area,
and the ratio between the received penalty for traversing dangerous areas and the
size of the searched area.

It is also worth noting that the autonomous robot will not necessarily display
identical navigational behaviour in the same environment when considering the
different simulation runs. This is due to the various robot movement imprecisions
and the inaccurate environment representation model used by the robot to decide
on where to move next. Therefore, each individual candidate assessment strategy
is tested for a total of twenty simulation runs in a single environment, and the
averaged results are considered.

3.5.1. Generalised Candidate Frontier Assessment

The key part of the proposed generalised candidate frontier assessment strategy is
the adaptive decision-making approach applied to measure the utility of candidate
frontiers. In this case, the utility is determined by applying one of the modelled
strategies from a group of criteria and their relative weights that define different
candidate assessment strategies. It is also worth noting that the proposed criteria
list is not exhaustive and can be extended to include more objective-related
requirements that are important when deciding on where the autonomous robot
should move next.

As previously discussed, one of the possible approaches for modelling
candidate assessment strategies is to embed the optimisation requirements by
enabling the autonomous robot to make altruistic or egoistic decisions. This can
be achieved by defining different criteria optimums and weights to the same
criteria set. For example, by forcing the robot to prioritise the frontiers with the
computed path that also enables the robot to reach and monitor detected survivors
and minimise the robot’s priority to avoid penalties, the robot will essentially be
controlled by an altruistic strategy that prioritises survivors over the safety of the
robot. On the other hand, the egoistic frontier assessment strategy ensures that the
robot prioritises its safety and survivability above other objectives. Therefore, in
situations where the decision-making module must compare the safety of the
computed path to the candidate frontiers and the ability to make contact with the
survivor, the robot would prefer to select the safer alternative from the robot’s
perspective.



70 3. ASSESSMENT OF THE PROPOSED AUTONOMOUS ROBOT NAVIGATION...

These generalised behaviour models are not intended to exhaustively define
how the robot should behave in realistic search and rescue missions but rather
provide an example of how different behaviours can be modelled for candidate
assessment tasks. As the author already highlighted in the previous chapters of
this thesis, other frontier assessment strategies can be modelled to address the
specific optimisation requirements by introducing differently modelled criteria
groups and their weights.

In total, eight criteria are proposed for the frontier assessment task to model
technical, social and safety requirements of search and rescue missions. The
criteria set is built from the two key groups. The first group includes three criteria
that were derived from the previously discussed next-best candidate assessment
strategies (Basilico & Amigoni, 2011; Taillandier & Stinckwich, 2011): the
amount of new information that could be obtained after reaching the candidate
frontier (defined by the length of a frontier), the estimated cost of reaching the
candidate frontier (defined by the estimated time needed to reach the frontier), the
ability to transmit information from the candidate location to the robot control
station (defined by the Euclidean distance between the robot and robot control
station).

The second group includes five criteria that address the technical, safety and
social aspects of search and rescue missions: the estimated penalty for following
the computed path to the candidate frontier, the ratio between the free cells around
the candidate frontier and the sample population, the distance from the candidate
frontier to the closest priority location, the current lowest recognition rate of a
hypothesised survivor near the robot-computed path to the candidate frontier, and
the estimated overall recognition rate of the hypothesised survivors that could be
monitored while following the computed path to the candidate frontier. The last
criterion is maximised to prioritise paths that allow the autonomous robot to
monitor the discovered survivors. As the physical state of the survivors can change
during the search and rescue mission, it can be reasoned that the autonomous robot
should prioritise paths that enable it to monitor detected survivors and provide the
rescue team with the latest information about their physical condition. In the
context of this thesis, the criterion value of the total recognition rate of survivors
that can be monitored by following the computed path is estimated by measuring
the Euclidean distance d,, from each waypoint wp; in the robot-planned path to
the known survivor locations. If d,, < 3 m, it is assumed that the survivor is
observable and can be monitored by the passing autonomous robot. The survivor
recognition rates are summed to determine the value of a criterion. The final
criteria set that defines the generalised candidate frontier assessment approach is
presented in Table 3.15. The candidate frontier assessment strategies that define
the adaptive environment exploration strategy are presented in Table 3.16.
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Table 3.15. Criteria set for the generalised frontier assessment strategy

Criterion Criterion name Cons_ldered
variance
(o) The estimated length of the frontier, m. +0.6
The estimated distance from the candidate frontier to the
Cy . 0.3
robot control station, m.
C3 The estimated time needed to reach the candidate frontier, s. 7
cs Th_e estimated penalty for following the computed path, +(n*0.3)
units.
c The total recognition rate of hypothesised survivors that +(n * 10)
5 could be monitored by following the computed path, %. -
Ceo Current lowest hypothesised survivor recognition rate, %. +10
c; Distance from the frontier to the closest priority location, m. +0.3
The ratio between the free cells around the frontier and
Cg . +10
sample population, %.

Table 3.16. Strategies that define the generalised environment exploration strategy

Criterion | Optimum Candidate assessment strategy
DA RRS RS IG
o) Max 0.056 0.029 0.043 0.213
Cy Max 0.061 0.073 0.019 0.075
C3 Min 0.197 0.203 0.131 0.322
Cy Min 0.394 0.373 0.395 0.043
Cs Min 0.037 0.039 0.065 0.033
Ceo Min 0.112 0.125 0.234 0.081
¢, Min 0.078 0.070 0.025 0.137
Cg Max 0.065 0.089 0.088 0.097

The generalised candidate assessment strategy is implemented into the
autonomous robot decision-making module, as presented in Fig. 2.1. It is expected
that the proposed strategy will provide a balanced robot movement trajectory,
evading dangerous objects, visiting detected survivors and exploring around the
priority areas.
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3.5.2. Autonomous Robot Design

The proposed autonomous environment exploration strategy is employed by the
simulated multi-purpose four-wheeled Pioneer 3-AT (P-3AT) robot platform
(ROS Robots, 2020). The base parameters of the robot are set by considering the
existing manual (MobileRobots Inc., 2006). The P-3AT platform is selected for
its wide-ranging application in the context of academic autonomous mobile robot
research, including the field of search and rescue missions. The Robot Operating
System (ROS, 2020) libraries and packages are applied to set up the robot
navigation stack and other essential components, including environment
perception, localisation, movement and mapping modules. However, the robot
navigation stack is extended by implementing the proposed generalised candidate
frontier assessment strategy.

The simulated P-3AT robot is equipped with several simulated sensors that
enable it to obtain environment information. The main sensor the robot uses to
perceive spatial information (e.g., walls and other physical obstacles) is the
Hokuyo laser range scanner sensor. This simulated sensor is mounted on the top-
front part of the robot frame, enabling it to scan the environment at the 360-degree
field of view at a 30-meter distance. The data obtained from this sensor is applied
to build the partial map of the currently explored SAR environment. For this task,
the simulated P-3AT robot applies the ROS-provided grid-map environment
representation model (ROS Gmapping, 2020). In this model, the obtained spatial
information is projected on a two-dimensional occupancy map, which is
constructed from a set of equally-sized cells (in this thesis, the size of each cell is
set to 0.1 m?2). In this case, each individual cell contains its estimated occupancy
value, which can be thresholded as occupied (if the cell is considered to contain
an obstacle), free (when the robot can traverse the cell freely) or unknown (if the
corresponding search area was not yet observed by the autonomous robot). By
applying this grid map model, frontier regions can be defined as the chain of
connected free cells that are adjacent to the unknown cells. The centre cell of the
frontier, denoted as a point p¢(x, y), is considered a candidate frontier and all of
the criteria values that are applied to determine the utility of the candidate are
estimated according to this point.

It is also worth noting that object recognition and image analysis problems
(such as survivor or dangerous object identification) pose a set of problems that
are out of the scope of this thesis. Therefore, it is assumed that the simulated P-
3AT robot can accurately identify and mark dangerous objects and hypothesised
survivors whenever they are detected in the robots’ field of view. However, in
real-world situations, robots can additionally be equipped with thermal cameras
or other heat sensors (Cakmak et al., 2017) and use vision-based recognition
methods or other sensors and strategies for the identification of these objects.
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3.5.3. Simulated SAR Environments

The simulated Pioneer-3AT robot platform, which implements the proposed
candidate frontier assessment strategy, is deployed in three indoor environments,
which have distinctive topology and are simulated in the Gazebo simulation
software (Gazebo, 2021). These environments define clear exploration bounds for
the autonomous robot. The different environment sizes and topology also provide
bigger and more diverse sets of candidates that could be assessed when testing the
proposed autonomous navigation strategies. Several of these environments were
also tested in previously discussed results. The top-down structures of these SAR
environments are presented in Fig. 3.16. Here, the blue marker represents the
robot’s starting location. The red markers represent dangerous areas that the robot
must avoid during the navigation and environment exploration process. However,
these areas must be marked on the built environment representation model for
further use by the search and rescue teams. The yellow markers represent
survivors that the robot should reach to enable a close-up evaluation of their
physical status. The white markers represent priority locations that were set by the
robot operators before the navigation process to direct the autonomous robot to
the areas that are expected to provide important information for responder teams.
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Fig. 3.16. Simulated SAR environments: (a) the 1% environment with the 26 m by
17 m exploration space and an open topology; (b) the 2" environment with the
32 m by 26 m exploration space and a separated area topology; (c) the 3
environment with the 43 m by 28 m exploration space with a loop-type topology.
The red markers indicate dangerous areas the robot should avoid, white markers
represent priority locations, and yellow markers represent the position of survivors.
The blue marker represents the robot’s starting position (Semenas & Bausys, 2022)

As portrayed in Fig. 3.16, the first environment is 26 m by 17 m with
dominant open spaces. This topology enables the robot to traverse exploration
space without following the specific paths between the areas, meaning that the
robot can cover the exploration space without the need to backtrack. Six areas are
considered dangerous to the robot and, thus, should be avoided if possible. The
locations of the four survivors are initially hidden from the robot’s field of view.
The two priority locations were set to direct the robot to the left and right sides of
the map. Due to the location of the dangerous objects, it is expected that the
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proposed environment exploration strategy will first lead the robot to the right
side of the environment.

The second environment represents the 32 m by 26 m exploration space, with
multiple separated areas. This topology is expected to force the autonomous robot
to apply backtracking behaviour as there is only one corridor that connects the
separated areas. In this simulated exploration space, four areas are considered
dangerous to the robot. The five survivor locations are initially hidden from the
robot’s field of view, and the detection of three of them requires the robot to go
out of its way and exhaustively explore further located parts of the environment.

The third environment represents the 43 m by 28 m disaster site with a
mirrored loop-type topology. In the environments with this topology, the
autonomous robot can visit multiple areas while moving between the
interconnecting corridor loops. Eleven dangerous areas block multiple corridors,
and seven survivors are distributed throughout the environment. In this scenario,
it is expected that the autonomous robot will prioritise safe paths but will not avoid
traversing dangerous areas if such a decision will enable the autonomous robot to
monitor or reach detected survivors.

To simplify the simulations, it is assumed that the survivors do not change
their positions and the dangerous areas do not expand. Also, several additional
assumptions are made:

1. Itisassumed that the robot operators have limited information that allows
them to set the coordinates of priority locations that the robot should visit.
However, no additional information about the current state of the
environment is known to the autonomous robot or its operator in advance,
meaning that the set location might be unreachable during the SAR
mission. Hence, this information must be discovered by the autonomous
robot at runtime.

2. No additional moving objects that could damage the robot are present in
the environment. The robot’s field of view is also unobstructed by vision-
obscuring objects or events, e.g., smoke, which can be a common issue
considering the real-world search and rescue missions (Marjovi, Marques
& Penders, 2009).

3. The autonomous robot must cancel its current task and reach the detected
hypothesised survivor if it is nearby. The survivor is considered
successfully reached, and its status can be evaluated when the distance
between the survivor and the current robot position is less than 1.5 m
(Aghababa et al., 2019).

4. The autonomous robot must also cancel its current task and reach the
prioritised location if it is nearby. The prioritised location is considered
successfully visited when the distance between it and the current robot
position is less than 1.5 m. If there are two unvisited objects near the
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exploring robot, specifically, the hypothesised survivor and the prioritised
location, the robot will always prioritise the closest survivor.

5. The autonomous robot can change its navigation goal if a higher-valued
candidate is detected while moving to the previously selected frontier.
However, such decisions are made at constant simulation-time intervals
to minimise the computational load on the robot decision-making module
and reduce the likelihood of indecisive robot behaviour when several
similar-valued frontiers are detected.

6. The autonomous robot continues the environment exploration process
until one of the mission termination conditions is met. Specifically, if
either the 10-minute simulation-time limit has passed or the robot has
visited all of the priority locations set by the robot operators.

The final step in the proposed generalised autonomous navigation and
environment exploration strategy is the assessment of candidate frontiers.
However, as was previously discussed, there is a lack of flexible MCDM methods
that allow assessing the inaccurate input data characteristics. This is a prominent
issue, considering that inaccuracies can have a notable influence on the quality of
the multi-criteria decision-making process and, consequently, on the proposed
autonomous navigation strategy. Therefore, the proposed WASPAS-IVNS and
WASPAS-mGgNS methods are applied and compared to the WASPAS-SVNS
method to determine their computational stability and ability to consider the
inaccurate input data characteristics.

3.5.4. Assessment of the WASPAS-IVNS and WASPAS-mGQqNS
Methods

The proposed WASPAS method extensions modelled under the interval-valued
neutrosophic set and the m-generalised g-neutrosophic set enable the autonomous
robot to consider the uncertainty of the input data characteristics. Thus, the
performance of the proposed neutrosophic WASPAS method extensions, namely
WASPAS-IVNS and WASPAS-mGQNS, are compared to the state-of-the-art
neutrosophic  WASPAS-SVNS and MULTIMOORA-SVNS  (Stanujkic
et al., 2017) methods.

The proposed method extensions are expected to introduce minor
improvements and slight autonomous robot performance differences when
comparing the previously discussed parameters of the average size of the area
searched by the autonomous robot, the average penalty received by the
autonomous robot for moving through the dangerous areas, and the average
distance travelled by the autonomous robot. In other words, the result variations
obtained between the three MCDM methods in the three simulated environments
are expected to be generally insignificant, irrespective of the increased or
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diminished robot performance. The averaged simulation results obtained by
evaluating the three MCDM methods are presented in Table 3.17.

Table 3.17. Average results obtained in the three simulated environments. The
considered parameters: the area size searched by the robot, the received penalty for
moving through dangerous areas, and the distance travelled by the robot

Environment Method Searcheg Penqlty, Distance,
area, m units m

WASPAS-SVNS 367 5.47 66.11
s WASPAS-IVNS 367 7.20 68.92
WASPAS-mGgNS 367 5.85 70.36
MULTIMOORA-SVNS 366 7.49 67.23
WASPAS-SVNS 556 4,73 149.41
ond WASPAS-IVNS 562 8.85 147.67
WASPAS-mGQgNS 557 6.03 151.14
MULTIMOORA-SVNS 564 19.67 160.61
WASPAS-SVNS 643 14.47 137.03
3rd WASPAS-IVNS 644 11.70 130.94
WASPAS-mGQgNS 639 5.36 128.03
MULTIMOORA-SVNS 628 33.54 131.63

Considering the results obtained in the simulated environments, it is observed
that the autonomous robot applying the proposed WASPAS-IVNS and WASPAS-
MGQNS multi-criteria decision-making methods provides similar results to the
ones that uses the state-of-the-art WASPAS-SVNS and MULTIMOORA-SVNS
methods.

When the developed WASPAS-IVNS and WASPAS-mGgNS methods are
applied in the first simulated environment, the robot searches an almost identical
sized area between the assessed multi-criteria decision-making methods. Also, in
this environment, the autonomous search and rescue robot travelled a nearly
identical distance (with a 4-6% increase between the average results). When the
proposed WASPAS-IVNS and WASPAS-mGQgNS methods were applied in the
second simulated environment, the size of the searched area was increased by 0.3—
1%, and the average distance travelled by the robot fluctuated from a 1% decrease
to a 1% increase in value. When applying the proposed WASPAS-IVNS and
WASPAS-mGQgNS methods in the third environment, the autonomous robot
travelled by up to 4.5-6.5% less distance when compared to the one that applied
the WASPAS-SVNS method. However, the size of the searched area fluctuates
up to less than 1% between the WASPAS-SVNS and the proposed WASPAS-
IVNS and WASPAS-mGQgNS methods.
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As average results indicate similar navigational behaviour when applying the
considered MCDM methods, the ANOVA test was performed to evaluate the
significance of the observed variations between MULTIMOORA-SVNS,
WASPAS-SVNS, WASPAS-IVNS and WASPAS-mGgNS. The obtained p
values with a considered threshold of 0.05 indicate that there is no statistical
significance between the averaged results of the size of the area searched by the
autonomous robot. Also, there is no statistical significance between the distance
travelled by the robot when applying WASPAS-SVNS, WASPAS-IVNS and the
WASPAS-mGgNS methods. These results are stable in all three simulated
environments.

When the proposed WASPAS-IVNS and WASPAS-mGQNS methods are
compared to the state-of-the-art neutrosophic MULTIMOORA-SVNS method,
the slight variations in the average distance travelled by the autonomous robot are
observed. In the first simulated environment, the value of this parameter is
increased by up to 4.6% when the WASPAS-mGQgNS method is applied and by
up to 2.5% when the WASPAS-IVNS is applied. A decrease of 3% is observed in
the third simulated environment, and a decrease of up to 8% is observed in the
second environment. However, the increase in the distance travelled by the
autonomous robot does not notably affect the size of the searched area. A slight
value increase of 0.2—2.6% can be observed in the first and third environments, as
well as a reduction of up to 1% in the second environment. However, the observed
variation is statistically insignificant in all simulated environments (with
p values > 0.05).

Considering the average amount of penalty received by the autonomous robot
for moving through the dangerous areas, the proposed WASPAS-IVNS and
WASPAS-mGgNS methods show notable performance improvements in the
second and third simulated environments when compared to the
MULTIMOORA-SVNS method. These results indicate that the proposed
WASPAS method extensions could be more suitable for candidate assessment
tasks in autonomous search and rescue missions as they provide additional
reliability when balancing between the set optimisation priorities. Considering the
averaged results between the assessed MCDM methods, it could also be reasoned
that when applied in environments with different spatial topologies, the proposed
neutrosophic WASPAS-IVNS and WASPAS-mGQgNS methods can provide as
stable results as the WASPAS-SVNS method. The proposed extensions also allow
the autonomous robot to consider the inaccurate input data characteristics that can
be present due to the inaccurate sensor readings, imprecise environment model
built by the exploring robot, and other errors in the criteria assessment process.
Consequently, this ability can have a visible impact on the robot’s long-term
performance as it enables the autonomous robot to occasionally make better
decisions when measuring the utility of similar candidates.
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This ability is also highlighted by providing a computational example of the
candidate frontier assessment problem presented in Fig. 3.17. In this example, the
frontiers are presented by the blue chains of the connected grid map cells that are
located between the known and the unknown exploration space. The green
markers represent the candidate frontiers p(x, y);. The white markers represent
the priority locations set by the robot operators. The red markers indicate
dangerous areas the robot should avoid. The yellow markers represent the detected
survivors. The autonomous robot is located at the position marked by a black
marker, and the black line indicates the robot’s movement trajectory.

Fig. 3.17. Candidate frontier assessment problem. Frontier regions are defined by the
blue lines, and the candidate frontiers p(x, y); are marked by green markers. The white
markers represent priority locations that should be visited by the robot. The red markers
represent dangerous areas. The yellow marker represents the detected survivor (Semenas

& Bausys, 2022)

In this example, the autonomous robot decision-making module has to assess
18 candidate frontiers and select the one with the highest utility. This frontier will
then become the next spatial goal for the robot. In the current state of the
environment exploration task, the autonomous robot is located near the detected
survivor and is near the dangerous areas, meaning that the adaptive fuzzy logic
controller will instruct the decision-making module to apply the RRS strategy for
the candidate assessment task. Also, the prioritised location set by the robot
operator is situated on the right side of the simulated environment. As the
autonomous robot is expected to explore and map the area around the detected
survivor, avoid the dangerous areas, and also reach the prioritised location, it is
predicted that the robot will choose the candidate that allows it to get closer to the
prioritised location.
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The initial decision matrix that is constructed for the considered decision-
making problem is presented in Table 3.18. In this instance, the autonomous robot
is located very close to the detected survivor, and no other survivors are visible,
meaning that there are no survivors that could be actively considered for the
monitoring task. Therefore, in this specific candidate assessment example, the cs
and ¢, criteria have no significant influence on the decision-making process.
However, to address some specifics of the neutrosophic number normalisation,
and avoid undecisive robot behaviour, the cs criterion value is set to a small
positive constant, and the ¢, criterion value is set to a high randomised value.

Table 3.18. Initial decision matrix for the candidate frontier assessment problem

Candidate Criterion
frontier

o) Cy C3 Ca Cs Co cy Cg
pr(6,y); | 21 | 12.09 | 14.69 | 0.001 | 0.001 | 327.0 | 7.66 | 0.14
pr(x,y), | 20 | 13.17 | 20.49 | 0.001 | 0.001 | 4233 | 512 | 0.28
pr(x,y)s | 7.2 | 935 | 36.78 | 80.32 | 0.001 | 446.9 | 8.65 | 0.06
pr(x,y), | 88 | 17.14 | 5012 | 111.1 | 0.001 | 494.9 | 3.78 | 0.57
pr(x,y)s | 21 | 7.02 | 29.39 | 90.39 | 0.001 | 207.6 | 8.09 | 0.16
pr(x,y) | 35 | 1518 | 4372 | 111.1 | 0.001 | 324.1 | 4.15 | 0.50
pr(x,y); | 2.8 | 476 | 3827 | 1075 | 0.001 | 363.7 | 531 | 0.53
pr(x,y)s | 15 | 1091 | 47.15 | 91.15 | 0.001 | 298.8 | 7.89 | 0.01
ps(x,y)s | 6.3 | 10.03 | 48.87 | 175.27 | 0.001 | 452.9 | 8.12 | 0.08
pr(x,¥)1 | 38 | 901 | 50.78 | 135.26 | 0.001 | 389.1 | 1.90 | 051
pr(x,y)1, | 35 | 1362 | 51.67 | 90.72 | 0.001 | 326.7 | 8.43 | 053
pr(x,y)12 | 39 | 11.68 | 58.89 | 1285 | 0.001 | 2043 | 6.96 | 0.51
pr(x,¥)13 | 21 | 12.02 | 59.87 | 1353 | 0.001 | 3755 | 3.29 | 0.14
pr(, )14 | 31 | 1469 | 53.34 | 91.08 | 0.001 | 468.9 | 11.95 | 0.46
pr(x,¥)1s | 20 | 1291 | 63.38 | 1353 | 0.001 | 3605 | 5.15 | 0.27
pr(x,¥)16 | 63 | 1558 | 75.24 | 258.8 | 0.001 | 280.2 | 11.18 | 0.15
pr(x,y)1; | 15 | 1485 | 58.78 | 91.12 | 0.001 | 487.1 | 12.79 | 0.36
pr(x,¥)1s | 22 | 1749 | 89.78 | 2586 | 0.001 | 410.1 | 12.26 | 0.62
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After the initial decision matrix is computed, the criteria values are
normalised and transformed to the neutrosophic numbers by applying the
previously discussed methods. Then, the first and the second WASPAS objectives
are computed for WASPAS-SVNS, WASPAS-IVNS and WASPAS-mGgNS
methods. Then, the utility of each candidate frontier is measured and ranked by
applying  WASPAS-SVNS, WASPAS-IVNS and WASPAS-mGgNS score
functions, introduced in the second chapter of this thesis. The candidate frontier
with the highest utility is then chosen as the next goal for an autonomous SAR
robot. The results of this step are presented in Table 3.19.

Table 3.19. Utility scores of the candidate frontiers

Candidate WASPAS-SVNS WASPAS-IVNS WASPAS-mGgNS
frontier Score Rank Score Rank Score Rank
pr(x,¥)1 0.839 1 [2.467,2.636] | 2 0.711 1
pr(x,¥)2 0.838 2 [2.492,2.620] | 1 0.707 2
pr(, )3 0.743 9 [2.181,2.494] | 11 0.607 6
Pr(x, )4 0.763 5 [2.354, 2.507] 6 0.604 7-8
pr (6, Y)s 0.766 4 | [2.325,2558] | 4 0.632 3
pr(x Y6 0.761 6 [2.352,2513] | 5 0.609
pr(x,¥)7 0.775 3 [2.384,2539] | 3 0.623
pr(x,¥)g 0.691 14 | [2.119,2.438] | 15 0.586 12
pr(x,¥)9 0.676 16 [2.049, 2.400] 16 0.558 16
pr(x,¥)10 0.746 8 [2.338, 2.493] 8 0.598 9
pr(6, )11 0.754 7 [2.331,2513] | 7 0.604 7-8
pr(x, )12 0.737 10 |[2.321,2.4871| 9 0.590 10
pr(x, ¥)13 0.689 15 | [2.174,2.397] | 14 0.568 14
Pr(,¥)14 0.729 11 | [2.278,2.465] | 10 0.587 11
pr(x, ¥)1s 0.692 13 | [2.219,2.402] | 13 0.566 15
pr (%, ¥)16 0.598 17 | [2.057,2.312] | 17 0.522 17
pr (%, ¥)17 0.700 12 | [2.208,2.414] | 12 0.572 13
pr(x, ¥)1g 0.581 18 | [2.068,2.288] | 18 0.516 18

When applying the WASPAS-SVNS and WASPAS-mGgNS methods, the
candidate frontier p;(x, y) is considered to be the highest-valued frontier and the

next goal the robot should reach. However, when the candidate is evaluated by
applying the WASPAS-IVNS method, the frontier p(x, ), is chosen as the next
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goal the robot should reach. A similar switch between the computed utility values
is also observed when considering the frontiers ranked as the third- and the fourth-
best candidate. This candidate assessment example showcases how the proposed
WASPAS method extensions can address the issue of the inaccurate input data
and, thus, make better assessments throughout the SAR environment exploration
task when multiple similar candidates are present.

3.5.5. Comparison to the Baseline Strategies

The proposed generalised candidate assessment strategy, which applies the fuzzy
logic controller and the proposed WASPAS-IVNS or WASPAS-mGNS methods
for measuring the utility of a candidate frontier, is compared to the two commonly
applied strategies: the Closest Frontier strategy (CF) and the previously discussed
standard information-gain strategy (SIG). It is hypothesised that the proposed
generalised strategy will significantly increase the robot’s performance when
considering the size of the searched area, the distance travelled by the robot and
the penalty received by the robot for traversing dangerous areas. To test this
hypothesis, the examined strategies are applied in autonomous environment
exploration tasks within the previously discussed simulated environments, and the
averaged results are presented in Table 3.20.

Table 3.20. Averaged test results by the proposed environment exploration strategy
when applying WASPAS-IVNS or WASPAS-mGQgNS methods and the CF, SIG
strategies

Environment Method Sea“’hef ared, Pe“?"ty’ Distance, m
m units

WASPAS-IVNS 367 7.20 68.92

1ot WASPAS-mGgNS 367 5.85 70.36
SIG 360 57.32 77.18

CF 365 55.72 77.84

WASPAS-IVNS 562 8.85 147.67

ond WASPAS-mGgNS 557 6.03 151.14
SIG 498 52.68 142.33

CF 509 60.07 124.97

WASPAS-IVNS 644 11.70 130.94

3 WASPAS-mGgNS 639 5.36 128.03
SIG 569 95.74 113.30

CF 521 93.18 97.98
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When comparing the proposed adaptive generalised candidate assessment
strategy that applies WASPAS-IVNS to the CF and SIG strategies, the discovered
information in the first environment is increased by 1.8% and 0.5%, respectively.
When comparing the proposed strategy that applies the WASPAS-mGgNS
method to the SIG and CF strategies, the size of the searched area is increased by
1.8% and 0.5%. Such similar results can be explained by considering the topology
of a simulated search and rescue space and the theoretical aspects of the frontier-
based environment exploration strategy. As the simulated environment is
relatively small and has an open topology, the autonomous robot can discover its
spatial characteristics by visiting every available frontier within the set time limit
of ten minutes. Therefore, in this type of environment, the ability to balance
multiple optimisation priorities could be considered the most important
performance evaluation metric of the proposed candidate-assessment-based
autonomous navigation and environment exploration strategy.

When comparing the results of the proposed adaptive generalised strategy
that applies the WASPAS-IVNS method to the results of the SIG and CF
strategies, the penalty for traversing dangerous areas is reduced by 87.4% and
87.1%, respectively. This average is reduced by 89.8% and 89.5% when
comparing the proposed strategy that applies the WASPAS-mGgNS method to
the SIG and CF strategies, respectively.

When comparing the proposed environment exploration strategy, the robot
travel distance in this environment is reduced from a minimum of 8.84% to a
maximum of 11.5%. However, it is worth noting that this improvement strongly
depends on the position of dangerous areas and the topology of the environment.
In the considered SAR environment, the autonomous robot can reach most areas
without backtracking, and this can significantly reduce the average distance
travelled by the autonomous robot.

The increase in the average distance travelled by the autonomous search and
rescue robot is also observed in the second simulated environment. As the
considered exploration space is divided into multiple regions that are connected
by a single corridor, the autonomous robot must backtrack to the previously
discovered areas to reach the frontiers skipped in the early stages of environment
exploration. Therefore, the total distance travelled by the autonomous robot is
expected to increase when applying the proposed generalised candidate-
assessment-based strategy. When comparing the results obtained by the proposed
environment exploration strategy that applies the WASPAS-IVNS method to the
results obtained by the SIG and CF strategies, the distance travelled by the robot
is increased by 3.8% and 18.2%. When the results of the proposed adaptive
strategy that applies WASPAS-mGQNS are compared to the results of the SIG
and CF strategies, an increase of 6.2% and 21% is observed.
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The average, minimum and maximum values of the area size searched in the
second environment are presented in Fig. 3.18. The obtained results indicate that
the maximum value obtained by applying the SIG strategy is somewhat above the
average obtained by the proposed environment exploration strategy when
applying the WASPAS-mGgNS method. However, the minimum size of the
searched area by the proposed strategy when applying WASPAS-IVNS is above
the average obtained by applying the baseline SIG strategy. In general, when the
proposed generalised candidate-assessment-based navigation strategy is applied,
the average size of the area searched by the autonomous robot is increased by a
minimum of 9.5% and a maximum of 12.7%. These results highlight that the
performance of the autonomous search and rescue robot is increased when
applying the proposed navigation strategy.

650

616

600 sl
g 550 157 23
5 500 509 512 509
5
g 450
A 433

400 422

350

B WASPAS-IVNS [l WASPAS-mGgNS M SIG CF

Fig. 3.18. Size of the searched area in the second environment, m?

Considering the results presented in Fig. 3.19, it can be reasoned that the SIG
and CF strategies display less stable navigational behaviour when compared to the
proposed generalised adaptive environment exploration strategy. When
comparing the results, the penalty received by the autonomous robot for crossing
dangerous areas in the three simulated SAR environments is reduced by 83.2%
and 85.3% when applying the WASPAS-IVNS method and by 88.6% and 89.9%
when applying the WASPAS-mGQgNS method. It can also be observed that the CF
strategy is the least stable when considering the robot received penalty and
provides the worst results among the examined methods. As the robot will always
be directed to the closest frontier, small inaccuracies in the input data
characteristics may lead to situations where between the different simulation runs,
the robot movement trajectory is significantly different. This, in turn, can lead the
autonomous robot into dangerous areas, forcing it to stay in a dangerous situation
for unspecified periods of time.
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Fig. 3.19. Penalty received in the second environment, units

The results presented in Fig. 3.20 indicate that the average size of the
searched area is increased when applying the proposed generalised strategy.
Although the maximum size of the searched area when applying the CF and SIG
strategies is close to the average presented by the proposed generalised strategy,
these baseline methods show performance issues when considering the average of
the multiple simulation runs. When comparing the results of the proposed
environment exploration strategy to the results of the SIG and CF strategies, the
amount of the discovered information is increased by 13.2-23.6% when applying
the WASPAS-IVNS method and 12.3-22.6% when applying the WASPAS-
mGQgNS. This increase is also observable when considering the results obtained
in other simulated environments, indicating that the robot performance is
increased when the proposed generalised strategy is applied.
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Fig. 3.20. Size of the searched area in the third environment, m?
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Considering the results presented in Fig. 3.21, the SIG and CF strategies
display similar stability issues as in the other simulated environments. It can be
reasoned that the baseline strategies are more sensitive to the inaccurate input data
characteristics that are used by the autonomous robot decision-making module.
This sensitivity can reduce the stability of the baseline methods, resulting in
different navigational behaviour between the multiple simulation runs.

This issue is most noticeable when considering the average amount of penalty
received by the autonomous robot for crossing dangerous areas. When comparing
the results of the proposed environment exploration strategy to the results of the
baseline SIG and CF strategies, a decrease of 87.8-87.4% and 94.4-94.3% is
observed when the WASPAS-IVNS and WASPAS-mGgNS methods are applied,
respectively.
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Fig. 3.21. Penalty received in the third environment, units

The obtained results provide that the autonomous robot performance is
improved in all simulated environments when the proposed generalised
autonomous navigation and environment exploration strategy is applied.
However, it could be argued that the proposed strategy also increases the average
distance travelled by the robot. For example, when comparing the results of the
proposed environment exploration strategy to the results of the SIG and CF
strategies, the average distance travelled by the robot was increased by 15.6—
33.6% when the WASPAS-IVNS method was applied and by 13-30.7% when the
WASPAS-mGgNS method was applied to deciding on where the robot should
move next. Therefore, to determine the significance of the obtained results, the
ANOVA statistical analysis test is performed. The p values were obtained when
comparing the SIG and CF strategies to the proposed generalised autonomous
navigation and environment exploration strategy. The considered threshold in this
analysis is 0.05.
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The test results allow maintaining that the increase in the average size of the
area searched by the robot and the reduction in the distance travelled by the robot
are equally statistically significant when the proposed generalised strategy is
compared to the CF and SIG strategies in the second and third simulated
environments (with p values < 0.05). The increase in the average distance
travelled by the autonomous robot is also significant in the second and third
simulated environments (with p values < 0.05) when the proposed strategy is
compared to the CF. Also, improvements are statistically significant in the third
simulated environment when compared to the SIG.

However, considering the experiment results, there is no notable increase in
the robot’s performance in the first environment. This lack of considerable
performance improvements by the proposed autonomous navigation strategy
when compared to CF and SIG strategies can be explained by considering the size
and topology of the environment. As such result was achieved due to the small
size of the first environment, which generally means that the list of candidates that
is generated by the autonomous robot will also be small. Therefore, the
autonomous robot is observing similar information during the navigation process
and is computing similar lists of candidates that, if visited, will eventually lead
the robot to all key areas. Thus, an almost identical amount of information is
discovered, and similar distances are travelled by all the assessed autonomous
navigation strategies.

However, in larger environments with multiple separated corridors and
rooms (such as the second and third simulated environments), the autonomous
robot movement trajectories start to differ from SIG and CF strategies, as the
proposed generalised candidate assessment strategy is leading the robot to more
valuable frontiers that are near the attraction zones, such as prioritised locations
or detected survivors. It is also worth noting that this improvement can be
considered dependable on the physical structure of the search and rescue
environment and the position of the attraction zones and objects. Therefore, the
proposed optimisation short-term decision-making could actually lead the
autonomous robot to the dead-ends or dangerous areas, requiring the robot to
backtrack. Nevertheless, the ability to balance competing criteria is an important
factor of the proposed autonomous navigation strategy, which shows the potential
of increasing the autonomous robot performance in environment exploration
tasks.

To determine if the proposed generalised strategy is balancing between the
optimisation priorities and the increased distance that is travelled by the
autonomous robot is not significant, two additional parameters are taken into
consideration. Namely, the ratio between the distance travelled by the robot and
the size of the searched area and the ratio between the received penalty for
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crossing dangerous areas and the size of the searched area. These ratios are
presented in Table 3.21.

Table 3.21. Averaged relative results obtained in the three simulated environments

. Distance / Penalty /
Environment Method Searched area Searchedyarea

WASPAS-IVNS 0.19 0.02

1t WASPAS-mGgNS 0.19 0.02
SIG 0.21 0.16

CF 0.21 0.15

WASPAS-IVNS 0.26 0.02

ond WASPAS-mGgNS 0.27 0.01
SIG 0.29 0.11

CF 0.25 0.12

WASPAS-IVNS 0.20 0.02

grd WASPAS-mGgNS 0.20 0.01
SIG 0.20 0.17

CF 0.19 0.18

The average results indicate that the penalty received by the autonomous
robot for each travelled meter can be reduced from 85% by up to 90% when the
autonomous robot applies the proposed generalised strategy. This performance
improvement is notable in all the simulated environments. However, when
considering the ratio between the distance travelled by the robot and the size of
the searched area, this value is decreased by up to 12% in the first environment
and increased by up to 9% and by up to 7% in the second and third simulated
environments, respectively. The obtained results suggest that the application of
the proposed adaptive navigation and environment exploration strategy can
notably reduce the average of the robot received penalty relative to the distance
travelled by the autonomous robot. Also, when the results of the proposed
generalised strategy are compared to the results obtained by applying the SIG
strategy, the increased average of the distance travelled in the third environment
is not significant as the robot discovers more environment information.

The test results confirm that the proposed adaptive generalised autonomous
navigation and environment exploration strategy can significantly increase the
autonomous robot’s performance when compared to the baseline CF and SIG
strategies. The robot’s ability to avoid danger while also increasing the size of the
searched area is a significant feature that can be employed in search and rescue
missions. However, it is worth noting that the results obtained by the online
strategies strongly depend on the geometrical features of the exploration space
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and the positions of task-related objects that attract or push away the autonomous
robot. For example, if the corridors or areas are blocked by dangerous objects, the
robot will try to protect itself and choose to explore around the frontiers that are
considered to be safer from the robot’s viewpoint. However, such decisions may
lead the autonomous robot to the dead-ends (as in the second environment, the
top-left corridor) that require the robot to move back to the previously discovered
locations, reducing the performance of the autonomous robot in the long run.

3.6. Conclusions of Chapter 3

Considering the results obtained by testing the proposed environment exploration
strategies and WASPAS method extensions, the following conclusions can be
drawn:

1. Introduction of non-standard cost—benefit criteria for a candidate assessment
task shows the potential of increasing the robots’ performance in SAR
missions. By introducing safety requirements into the candidate assessment
process, the autonomous robot is capable of avoiding dangerous objects
present in its field of view without additional movement rules.

2. The developed WASPAS-IVNS method allows considering the issue of
inaccurate input data characteristics when deciding on where the robot should
move next. This improvement shows potential when the numerical criteria
value differences are minimal between the two candidates.

3. The introduction of the area prioritisation criterion and the assessment of the
occupancy around the candidate frontier show potential in enabling the robot
to increase the size of the searched area (when compared to the direct control
approach) while also reducing the distance travelled by the robot (when
compared to the greedy cost-benefit frontier assessment strategy.

4. The introduction of the fuzzy logic controller enables the SAR robot to switch
between the rules that govern the candidate assessment process. The
development of four distinctive candidate assessment strategies highlights
that different robot behaviour patterns (e.g., altruistic or egoistic) can be
modelled and applied in SAR missions. The strategies that are modelled to
prioritise the danger avoidance (egoistic) decrease the robot received penalty
by up to 91% when compared to the ones that direct the robot to the detected
survivors (altruistic). However, the adaptive strategy is capable of balancing
between the egoistic and altruistic behaviours and thus receives 70% less
penalty when compared to the altruistic ones.

5. The proposed neutrosophic WASPAS-IVNS and WASPAS-mGgNS methods
show computational stability when compared to the WASPAS-SVNS and
MULTIMOORA-SVNS methods. By applying the proposed candidate
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frontier assessment strategy, a generally insignificant robot performance

increase is observed, highlighting that the ability to deal with the inaccuracies

in the input data characteristics enables the robot to make slightly better
decisions which can have a long-term impact on the robot’s performance in
larger SAR environments.

6. When compared to the SIG and CF strategies, the proposed adaptive
generalised autonomous navigation and environment exploration strategy that
applies the proposed distinctive candidate assessment strategies and the
WASPAS-IVNS and WASPAS-mGgNS methods provide notable
improvements to the autonomous robot performance:

6.1. When compared to the SIG strategy, the proposed generalised
environment exploration strategy increases the average size of the
searched area by up to 1.8%, 12.7% and 13.2% when applying the
WASPAS-IVNS method, and up to 1.8%, 11.8% and 12.3% when
applying the WASPAS-mGgNS method. The increase is significant in
the second and third environments at the p values < 0.05.

6.2. When compared to the CF strategy, the proposed generalised
environment exploration strategy increases the average size of the
searched area by up to 0.5%, 10.4% and 23.6% when applying the
WASPAS-IVNS method, and by up to 0.5%, 9.5% and 22.6% when
applying the WASPAS-mGQgNS method. The increase is significant in
the second and third environments at the p values < 0.05.

6.3. Comparing the proposed generalised environment exploration strategy
to the baseline SIG and CF strategies, the penalty received by the robot
for crossing dangerous areas decreased by up to 87.1-89.8%,
83.2-98.9% and 87.4-94.4%.

6.4. The increase in the distance travelled by the autonomous robot by up to
3.8-21% and 15.6-33.6% is observed in the second and third
environments, respectively. However, considering the ratio between the
distance travelled by the autonomous robot and the average size of the
searched area, this increase is only noteworthy when compared to the CF
strategy.






General Conclusions

1. The review of commonly applied online next-best-view environment
exploration strategies, which measure the utility of each candidate goal by
considering the given optimisation priorities, failed to address the inaccurate
input data characteristics when deciding on where the robot should move next.
Moreover, the applied candidate assessment strategies are commonly based
on a non-adaptive approach that applies identical candidate assessment rules,
disregarding the current state of the robot and the discovered environment
information.

2. Extension of the candidate assessment strategy by non-standard cost-benefit
criteria, namely the safety and social requirements of SAR missions, shows
the potential of increasing robots’ performance in SAR missions. Also, the
introduction of area prioritisation and the assessment of the occupancy around
the candidate frontier indicate the increased robot performance when
compared to the standard cost—benefit strategies.

3. The developed adaptive autonomous navigation strategy that combines fuzzy
logic controller with the proposed MCDM methods enables the SAR robot to
switch between the strategies that govern the candidate assessment process in
the environment exploration task, depending on the dynamic environment
information. The proposed adaptive approach, which applies modern
neutrosophic sets in the decision-making process, optimises the robot
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navigation trajectories and increases the robot performance when compared
to the non-adaptive application of the proposed individual egoistic, altruistic
and impartial information gain strategies. The adaptive approach enables the
robot to avoid dangerous areas and reduce the received penalty by up to 70%
when compared to the altruistic strategies and the strategies that prioritise
information gain. However, purely egoistic candidate assessment strategies
can reduce the penalty received by the robot by up to 91%.
The developed WASPAS extensions modelled under the interval-valued
neutrosophic set environment (WASPAS-IVNS) and the g-neutrosophic m-
generalised environment (WASPAS-mGgNS) allow considering the
inaccurate input data characteristics when deciding on where the robot should
move next. This improvement shows potential when the numerical criteria
value differences are slight between the two assessed candidates. The
comparison between the proposed WASPAS-IVNS, WASPAS-mGgNS and
the state-of-the-art WASPAS-SVNS and MULTIMOORA-SVNS methods
indicates the computational stability of the proposed MCDM method
extensions.

The proposed adaptive generalised autonomous navigation and environment

exploration strategy introduce a notable performance increase when

compared to the Closest Frontier (CF) and the Standard Information Gain

(SIG) strategies:

5.1. The quantitative comparison of the proposed generalised environment
exploration strategy performance regarding the size of the searched area
in the second and third exploration space shows an increase in the
parameter value of up to 12.7-13.2% when considering the SIG strategy
and up to 10.4-23.6% when considering the CF strategy.

5.2. The quantitative comparison of the proposed generalised environment
exploration strategy performance regarding the robot obtained penalty
for traversing the dangerous areas shows a decrease in the parameter
value of up to 94.4%. The highlighted performance is stable across the
simulated environments.

5.3. The increase in the distance travelled by the robot when applying the
proposed generalised environment exploration strategy depends on the
topology of the exploration space and the location of dangerous areas.
Although the parameter value is increased by up to 33.6%, considering
the ratio between the robot travel distance and the size of the searched
area, the increase of the distance travelled by the robot more often
increases the amount of obtained environment information.



References

Abiyev, R. H., Gunsel, I., Akkaya, N., Aytac, E., Cagman, A., & Abizada, S. (2016).
Robot Soccer Control Using Behaviour Trees and Fuzzy Logic. Procedia Computer
Science, 102(C), 477-484. DOI: 10.1016/j.procs.2016.09.430

Aghababa, F. P., Kabiri, A., Hughes, J., Visser, A., Amigoni, F., & Shimizu, M. (2019).
RoboCup 2019 RoboCup Rescue Simulation League Virtual Robot Competition Rules
Document. Document version 1.0: April 18, 2019, 1-6. https://rescuesim.robocup.org/wp-
content/uploads/2019/04/RoboCup2019-RVRL-Rules-v1_0.pdf

Akin, H. L., Ito, N., Jacoff, A., Kleiner A., Pellenz, J., & Visser, A. (2013). RoboCup
Rescue Robot and Simulation Leagues. Al Magazine, 34(1), 78-86. DOI:
10.1609/aimag.v34i1.2458

Alaieri, F., & Vellino, A. (2016). Ethical decision making in robots: Autonomy, Trust and
Responsibility. In Agah A., Cabibihan J. J., Howard A., Salichs M., He, H. (eds). Social
Robotics. ICSR 2016. Lecture Notes in Computer Science, 9979, 159-168. Springer,
Cham. DOI: 10.1007/978-3-319-47437-3_16

Amigoni, F., Basilico, N., & Quattrini Li, A. (2014). Moving From ‘How to go There?’
to ‘Where to go?’: Towards Increased Autonomy of Mobile Robots, Mechanisms and
Machine Science, 20, 345-356. DOI: 10.1007/978-3-319-05431-5 23

Amigoni, F., & Gallo, A. (2005). A Multi-Objective Exploration Strategy for Mobile
Robots. In International conference on Robotics and Automation (ICRA), 18-22 April
2005 (pp. 3850-3855). Barcelona, Spain. DOI: 10.1109/ROBOT.2005.1570708

93



94 REFERENCES

Amigoni, F., & Schiaffonati, V. (2018). Ethics for Robots as Experimental Technologies:
Pairing Anticipation with Exploration to Evaluate the Social Impact of Robotics. In IEEE
Robotics &  Automation Magazine, 25(1), 30-36, March 2018. DOI:
10.1109/MRA.2017.2781543

Aruldoss, M., Lakshmi, T. M., & Vankatesan, V. P. (2013). A Survey on Multi Criteria
Decision Making Methods and Its Applications. American Journal of Information
Systems, 1(1), 31-43. DOI: 10.12691/ajis-1-1-5

Asimov, 1. (1950). I, Robot. New York, Gnome press.

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
DOI: 10.1016/S0165-0114(86)80034-3

Bahadori, S., Calisi, D., Censi, A., Farinelli, A., locchi, L., Nardi, D., & Tipaldi, G. D.
(2005). Autonomous Systems for Search and Rescue. Rescue Robotics. Springer-Verlag.

Basilico, N., & Amigoni, F. (2011). Exploration strategies based on multi-criteria decision
making for searching environments in rescue operations. Autonomous Robots, 31(4), 401-
417. DOI: 10.1007/s10514-011-9249-9

Boddington, P., Millican, P., & Wooldridge, M. (2017). Minds and Machines Special
Issue: Ethics and Artificial Intelligence. Minds and Machines, 27(4), 569-574. DOI:
10.1007/s11023-017-9449-y

Bogue, R. (2014). Robot ethics and law part two: Law. Industrial Robot, 41(5), 398-402.
DOI: 10.1108/IR-04-2014-0332

Cakmak, F., Uslu, E., Amasyali, M. F., & Yavuz, S. (2017). Thermal based exploration
for search and rescue robots. In 2017 IEEE International Conference on INnovations in
Intelligent SysTems and Applications (INISTA), 3-5 July 2017 (pp. 113-118). Gdynia,
Poland. DOI: 10.1109/INISTA.2017.8001142

Calisi, D., Farinelli, A., locchi, L., & Nardi, D. (2007). Multi-objective exploration and
search for autonomous rescue robots. Journal of Field Robotics, 24(8/9), 763-777. DOI:
10.1002/rob.20216

Chandrawati, T. B., Ratna, A. A. P., & Sari, R. F. (2020). Path Selection using Fuzzy
Weight Aggregated Sum Product Assessment. International Journal of Computers
Communications & Control, 15(5), 1-19. DOI: 10.15837/ijccc.2020.5.3978

Chatila, R., & Havens, J. C. (2019). The IEEE global initiative on ethics of autonomous
and intelligent systems. Intelligent Systems, Control and Automation: Science and
Engineering, 95, 11-16. DOI: 10.1007/978-3-030-12524-0_2

Chen, C. H., Wang, C. C., Wang, Y. T., & Wang, P. T. (2017). Fuzzy Logic Controller
Design for Intelligent Robots. Mathematical Problems in Engineering, 8984713, 1-12.
DOI: 10.1155/2017/8984713

Choi, Y. H., Lee, T. K., Baek, S. H., & Oh, S. Y. (2009). Online Complete Coverage Path
Planning for Mobile Robots. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 10-15 October 2009 (pp. 5788-5793). St. Louis, MO, USA. DOI:
10.1109/IR0OS.2009.5354499



REFERENCES 95

Choset, H. (2001). Coverage for robotics - A survey of recent results. Annals of
Mathematics and  Artificial  Intelligence, 31(1-4), 113-126. DOI:
10.1023/A:1016639210559

Contissa, G., Lagioia, F., & Sartor, G. (2017). The Ethical Knob: ethically-customisable
automated vehicles and the law. Artificial Intelligence and Law, 25(3), 365-378. DOI:
10.1007/s10506-017-9211-z

CRASAR. (2020). https://crasar.org/our-mission

De Cubber, G., etal. (2017). Introduction to the Use of Robotic Tools for Search and
Rescue. Search and Rescue Robotics - From Theory to Practice, 1-17. IntechOpen.

DasGupta, B., Hespanha, J. P., Riehl, J., & Sontag, E. (2006). Honey-pot constrained
searching with local sensory information. Nonlinear Analysis: Theory, Methods &
Applications, 65(9), 1773-1793. DOI: 10.1016/j.na.2005.10.049

Din, A., Jabeen, M., Zia, K., Khalid, A., & Saini, D. K. (2018). Behavior-based swarm
robotic search and rescue using fuzzy controller. Computers and Electrical Engineering,
70, 53-65. DOI: 10.1016/j.compeleceng.2018.06.003

Furda, A., & Vlacic, L. (2010). Multiple criteria-based real-time decision making by
autonomous city vehicles. IFAC Proceedings Volumes, 43(16), 97-102. DOI:
10.3182/20100906-3-it-2019.00019

Galceran, E., & Carreras, M. 2013. A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61(12), 1258-1276. DOl:
10.1016/j.robot.2013.09.004

Gazebo. (2021). GAZEBO Robot simulation made easy. http://gazebosim.org/

Gomez, C., Hernandez, A. C., & Barber, R. (2019). Topological Frontier-Based
Exploration and Map-Building Using Semantic Information. Sensors, 19(20), 4595. DOI:
10.3390/519204595

Gonzélez, E., Alvarez, O., Diaz, Y., Parra, C., Bustacara, C., & Javeriana, P. U. (2005).
BSA: A Complete Coverage Algorithm. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 18-22 April 2005 (pp. 2040-2044). Barcelona,
Spain. DOI: 10.1109/ROBOT.2005.1570413

Gonzalez-Bafios, H. H., & Latombe, J. C. (2002). Navigation Strategies for Exploring
Indoor Environments. The International Journal of Robotics Research, 21, 829-848.

Harbers, M., de Greeff, J., Kruijff-Korbayova, I., Neerincx, M. A., & Hindriks, K. V.
(2017). Exploring the ethical landscape of robot-assisted Search and Rescue. Intelligent
Systems, Control and Automation: Science and Engineering, 84, 93-107. DOI:
10.1007/978-3-319-46667-5_7

High-Level Independent Group on Artificial Intelligence (Al HLEG). Ethics Guidelines
for Trustworthy Al. (2019). European Commission.



96 REFERENCES

Hong, T. S., Nakhaeinia, D., & Karasfi, B. (2012). Application of Fuzzy Logic in Mobile
Robot Navigation. Fuzzy Logic - Controls, Concepts, Theories and Applications.
IntechOpen, 21-36. DOI: 10.5772/36358

Jacoff, A., Messina, E., Weiss, B. A., Tadokoro, S., & Nakagawa, Y. (2003). Test arenas
and performance metrics for urban search and rescue robots. In 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003) (Cat.
N0.03CH37453), 27-31 October 2003 (pp. 3396-3403). Las Vegas, NV, USA. DOI:
10.1109/IR0S.2003.1249681

Jeddisaravi, K., Alitappeh, R. J., Luciano, L. C., & Guimardes, F. G. (2016). Multi-
objective approach for robot motion planning in search tasks. Applied Intelligence, 45(2),
305-321. DOI: 10.1007/s10489-015-0754-y

Jorge, V. A. M,, Granada, R., Maidana, R. G., Jurak, D. A., Heck, G., Negreiros, A. P. F.,
dos Santos, D. H., Gongalves, L. M. G., & Amory, A. M. (2018). A survey on unmanned
surface vehicles for disaster robotics: Main challenges and directions. Sensors, 19(3), 1-
44, DOI: 10.3390/s19030702

Julig, M., Gil, A., & Reinoso, O. (2012). A comparison of path planning strategies for
autonomous exploration and mapping of unknown environments. Autonomous Robots,
33(4), 427-444. DOI: 10.1007/s10514-012-9298-8

Juodagalviené, B., Turskis, Z., Saparauskas, J., & Endriukaityté, A. (2017). Integrated
Mulit-Criteria Evaluation of House’s Plan Shape Based on the EDAS and SWARA
Methods. Engineering Structures and Technologies, 9(3), 117-125. DOl:
10.3846/2029882x.2017.1347528

Kahraman, C., Deveci, M., Boltirk, E., & Turk, S. (2020). Fuzzy controlled humanoid
robots: A literature review. Robotics and Autonomous Systems, 134, 103643. DOI:
10.1016/j.robot.2020.103643

Kalibatiene, D., & Miliauskaite, J. (2021). A Hybrid Systematic Review Approach on
Complexity Issues in Data-Driven Fuzzy Inference Systems Development. Informatica,
32(1), 85-118. DOI: 10.15388/21-INFOR444

Karaca, Y., Cicek, M., Tatli, O., Sahin, A., Pasli, S., Beser, M. F., & Turedi, S. (2018).
The potential use of unmanned aircraft systems (drones) in mountain search and rescue
operations. American Journal of Emergency Medicine, 36(4), 583-588. DOI:
10.1016/j.ajem.2017.09.025

Katsev, M., Yershova, A., Tovar, B., Ghrist, R., & Lavalle, S. M. (2011). Mapping and
Pursuit-Evasion strategies for a simple wall-following robot. IEEE Transactions on
Robotics, 27(1), 113-128. DOI: 10.1109/TR0.2010.2095570

KerSuliené, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of Rational Dispute
Resolution Method by Applying New Step-Wise Weight Assessment Ratio Analysis
(Swara). Journal of Business Economics and Management, 11(2), 243-258. DOI:
10.3846/jbem.2010.12



REFERENCES 97

Keshavarz Ghorabaee, M. (2016). Developing an MCDM method for robot selection with
interval type-2 fuzzy sets. Robotics and Computer-Integrated Manufacturing, 37, 221—
232. DOI: 10.1016/j.rcim.2015.04.007

Khurpade, J. B., Dhami, S. S., & Banwait, S. S. (2011). A review of fuzzy logic based
control of robotic manipulators. In ASME 2011 International Mechanical Engineering
Congress and Exposition, IMECE 2011 7(PARTS A AND B) (pp. 241-257). DOI:
10.1115/imece2011-64527

Kikutis, R., Stankanas, J., & Rudinskas, D. (2019). Autonomous Unmanned Aerial
Vehicle Flight Accuracy Evaluation for Three Different Path-Tracking Algorithms.
Transport, 34(6), 652-661. DOI:10.3846/transport.2019.11741

Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice
hall.

Kruijff-Korbayova, 1., Colas, F., Gianni, F., Pirri, M., de Greeff, J., Hindriks, K., Neerincx,
M., Ogren, P., Svoboda, T., & Worst, R. (2015). TRADR Project: Long-Term Human-
Robot Teaming for Robot Assisted Disaster Response. Kl - Kiinstliche Intelligenz, 29(2),
193-201. DOI: 10.1007/s13218-015-0352-5

Kruijff, G. J. M., et al. (2014). Designing, developing, and deploying systems to support
human-robot teams in disaster response. Advanced Robotics, 28(23), 1547-1570. DOI:
10.1080/01691864.2014.985335

Kruijff, G. J. M., et al. (2012). Rescue robots at earthquake-hit Mirandola, Italy: A field
report. In 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics,
SSRR 2012, 5-8 November 2012 (pp. 1-8). College Station, TX, USA. DOI:
10.1109/SSRR.2012.6523866

Kulvicius, T., Herzog, S., Luddecke, T., Tamosiunaite, M., & Worgétter, F. (2021). One-
Shot Multi-Path Planning Using Fully Convolutional Networks in a Comparison to Other
Algorithms. Frontiers in Neurorobotics, 14. DOI:10.3389/fnbot.2020.600984

Kumar, A., Sah, B., Singh, A.R., Deng, Y., He, X., Kumar, & P., Bansal, R.C. (2017). A
review of multi criteria decision making (MCDM) towards sustainable renewable energy
development. Renewable and Sustainable Energy Reviews, 69, 596-609. DOI:
10.1016/j.rser.2016.11.191

Luneckas, M., Luneckas, T., Kriau¢ianas, J., Udris, D., Plonis, D., Damaseviéius, R., &
Maskelitinas, R. (2021a). Hexapod Robot Gait Switching for Energy Consumption and
Cost of Transport Management Using Heuristic Algorithms. Applied Science, 11(3), 1339.
DOI:10.3390/app11031339

Luneckas, M., Luneckas, T., Udris, D., Plonis, D., Maskelitinas, R., & Damasevicius, R.
(2021b). A hybrid tactile sensor-based obstacle overcoming method for hexapod walking
robots. Intelligent Service Robotics, 14, 9-24. DOI:10.1007/s11370-020-00340-9

Makarenko, A. A., Williams, S. B., Bourgault, F., & Durrant-Whyte, H. F. (2002). An
experiment in integrated exploration. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 30 September — 4 October 2002 (pp. 534-539). Lausanne,
Switzerland. DOI: 10.1109/IRDS.2002.1041445



98 REFERENCES

Mardani, A., Nilashi, M., Zakuan, N., Loganathan, N., Soheilirad, S., Saman, M. Z. M.,
& Ibrahim, O. (2017). A systematic review and meta-Analysis of SWARA and WASPAS
methods: Theory and applications with recent fuzzy developments. Applied Soft
Computing Journal, 57, 265-292. DOI: 10.1016/j.as0c.2017.03.045

Marjovi, A., Marques, L., & Penders, J. (2009). Guardians robot swarm exploration and
firefighter assistance. Workshop on NRS in IEEE/RSJ international conference on
Intelligent Robots and Systems (IROS). St Louis, USA.

Martin Ramos, J. M., Lopez Garcia, D., Gémez-Bravo, F., & Blanco Morén, A. (2010).
Application of multicriteria decision-making techniques to manoeuvre planning in
nonholonomic robots. Expert Systems with Applications, 37(5), 3962-3976. DOI:
10.1016/j.eswa.2009.11.019

McGrath, J., & Gupta, A. (2018). Writing a Moral Code: Algorithms for Ethical
Reasoning by Humans and Machines. Religions, 9(8), 240. DOI: 10.3390/rel9080240

Memon, S. F., Kalwar, 1. H., Grout, I., Lewis, E., & Panhwar, Y. N. (2016). Prototype for
localization of multiple fire detecting mobile robots in a dynamic environment. In 2016
3rd International Conference on Computing for Sustainable Global Development,
INDIACom 2016, 16-18 March 2016 (pp. 395-400). New Delhi, India.

MobileRobots Inc. (2006).
https://www.inf.ufrgs.br/~prestes/Courses/Robotics/manual_pioneer.pdf

Murphy, R. R., Kravitz, J., Stover, S. L., & Shoureshi, R. (2009). Mobile robots in mine
rescue and recovery. IEEE Robotics and Automation Magazine, 16(2), 91-103. DOI:
10.1109/MRA.2009.932521

Murphy, R. R., & Woods, D. D. (2009). Beyond Asimov: The Three Laws of Responsible
Robotics. IEEE Intelligent Systems, 24, 14-20. DOI: 10.1109/M1S.2009.69

Nagatani, K., et al. (2013). Emergency response to the nuclear accident at the Fukushima
Daiichi nuclear power plants using mobile rescue robots. Journal of Field Robatics, 30(1),
44-63. DOI: 10.1002/rob.21439

Nevejans, N. (2016). European Civil Law Rules in Robotics. European civil law rules in
robotics, 1-34. DOI: 10.2861/946158

Ning, K., Kulvicius, T., Tamosiunaite, M., & Wérgoétter, F. (2012). A Novel Trajectory
Generation Method for Robot Control. Journal of Intelligent & Robotic Systems, 68, 165—
184, d0i:10.1007/s10846-012-9683-8

Omrane, H., Masmoudi, M. S., & Masmoudi, M. (2016). Fuzzy Logic Based Control for
Autonomous Mobile Robot Navigation. Computational Intelligence and Neuroscience,
9548482. DOI: 10.1155/2016/9548482

Pfitzner, C., & Merkl, C. (2013). Exploration Strategies for Mobile Robots in Rescue
Environments. Applied Research Conference 2013, 1-4.

Polvara, R., Fernandez-Carmona, M., Neumann G., & Hanheide, M. (2020). Next-Best-
Sense: A Multi-Criteria Robotic Exploration Strategy for RFID Tags Discovery. IEEE
Robotics and Automation Letters, 5(3), 4477-4484. DOI: 10.1109/LRA.2020.3001539



REFERENCES 99

Potthast, C., & Sukhatme, G.S. (2014). A probabilistic framework for next best view
estimation in a cluttered environment. Journal of Visual Communication and Image
Representation, 25(1), 148-164. DOI: 10.1016/j.jvcir.2013.07.006

Reddy, A. H., Kalyan, B., & Murthy, C. S. N. (2015). Mine Rescue Robot System — A
Review. Procedia Earth and Planetary Science, 11, 457-462. DOI:
10.1016/j.proeps.2015.06.045

Rigos, A., Sofianos, D., Sourlas, V., Sdongos, E., Koutsokeras, M., & Amditis, A. (2018).
A resilient, multi-access communication solution for USaR operations: The INACHUS
approach. In International Conference on Wireless and Mobile Computing, Networking
and Communications 2018, October (pp. 255-261). DOl:
10.1109/WiMOB.2018.8589111

Roa-Borbolla, A. G., Marin-Hernandez, A., Rechy-Ramirez, E. J., & Vazquez-Leal, H.
(2017). Priority exploration by mobile robots for search and rescue situations. In 2017
IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 8-
10 November 2017 (pp. 1-6). Ixtapa, Mexico. DOI: 10.1109/ROPEC.2017.8261681

RoboCup Rescue. (2020). https://rrl.robocup.org/league-overview/

Roesner, F., Castrillion, C. A. S., Hartanto, R., & Struck, A. (2019). Optimal Search
Strategies for Rescue Drones Based on Swarm Behaviour of Different Ethics. In EngOpt
2018 Proceedings of the 6th International Conference on Engineering Optimization (pp.
122-131). Springer, Cham. DOI: 10.1007/978-3-319-97773-7_12

ROS. (2020). https://www.ros.org
ROS Gmapping. (2020). https://wiki.ros.org/gmapping
ROS Nav_core. (2020). https://wiki.ros.org/nav_core

ROS Robots. (2020). Pioneer 3-AT Medium-sized general-purpose skid-steer mobile
robot platform. https://robots.ros.org/pioneer-3-at

Saha, A., Smarandache, F., Baidya, J., & Dutta, D. (2020). MADM Using m-Generalized
g-Neutrosophic Sets. Neutrosophic Sets and Systems, 35(1), 252—-268.

Sahashi, T., Sahashi, A., Uchiyama, H., & Fukumoto, I. (2011). Study and development
of the Rescue Robot preventing Crush Syndrome of earthquake victims. In ICINCO 2011
- Proceedings of the 8th International Conference on Informatics in Control, Automation
and Robotics, Vol. 2 (pp. 43-49). DOI: 10.5220/0003536200430049

San Juan, V., Santos, M., & And(jar, J. M. (2018). Intelligent UAV Map Generation and
Discrete Path Planning for Search and Rescue Operations. Complexity 2018, 6879419, 1—
17. DOI: 10.1155/2018/6879419

Senthilkumar, K. S., & Bharadwaj, K. K. (2008). Spanning Tree Based Terrain Coverage
by Multi Robots in Unknown Environments. In 2008 Annual IEEE India Conference, 11—
13 December 2008 (pp. 120-125). Kanpur, India. DOI: 10.1109/INDCON.2008.4768812



100 REFERENCES

Seraji, H., & Howard, A. (2002). Behavior-based robot navigation on challenging terrain:
A fuzzy logic approach. In IEEE Transactions on Robotics and Automation, 18(3), 308—
321. DOI: 10.1109/TRA.2002.1019461

Sheh, R., Schwertfeger, S., & Visser, A. (2016). 16 Years of RoboCup Rescue. Kl -
Kinstliche Intelligenz, 30(3—4), 267-277. DOI: 10.1007/s13218-016-0444-x.

Silvagni, M., Tonoli, A., Zenerino, E., & Chiaberge, M. (2017). Multipurpose UAV for
search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards
and Risk, 8(1), 18-33. DOI: 10.1080/19475705.2016.1238852

Singh, N. H., & Thongam, K. (2018). Mobile Robot Navigation Using Fuzzy Logic in
Static  Environments. Procedia Computer Science, 125, 11-17. DOl:
10.1016/j.procs.2017.12.004

Smarandache, F. (1999). A Unifying Field in Logics: Neutrosophic Logic. Phylosophy,
1-141.

Smarandache, F. (2019). Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set,
Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean
Fuzzy Set (Atanassov’s Intuitionistic Fuzzy Set of second type), q-Rung Orthopair Fuzzy
Set, Spherical Fuzzy Set, and n-HyperSpherical Fuzzy Set, while Neutrosophication is a
Generalization of Regret Theory. Grey System Theory, and Three-Ways Decision
(revisited). Journal of New Theory, 29, 1-31.

Sreekumar, M. (2016). A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle
Avoidance. Journal of The Institution of Engineers (India): Series C, 97, 469-478. DOI:
10.1007/s40032-015-0215-8

Stanujkic, D., Zavadskas, E. K., Smarandache, F., Brauers, W. K. M., & Karabasevic, D.
(2017). A Neutrosophic Extension of the MULTIMOORA Method. Informatica, 28(1),
181-192. DOI:10.15388/Informatica.2017.125

Stoji¢, G., Stevic, 7., Antucheviéiene, J., Pamuéar, D., & Vasiljevi¢, M. (2018). A novel
rough WASPAS approach for supplier selection in a company manufacturing PVC
carpentry product. Information, 9(5), 121. DOI: 10.3390/inf09050121

Strom, D. P., Bogoslavskyi, 1., & Stachniss, C. (2017). Robust exploration and homing
for autonomous robots. Robotics and Autonomous Systems, 90, 125-135. DOI:
10.1016/j.robot.2016.08.015

Taillandier, P., & Stinckwich, S. (2011). Using the PROMETHEE multi-criteria decision
making method to define new exploration strategies for rescue robots. In 2011 IEEE
International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, 1-5
November 2011 (pp. 321-326). Kyoto, Japan. DOI: 10.1109/SSRR.2011.610674

Tsitsimpelis, 1., Taylor, C. J., Lennox, B., & Joyce, M. J. (2019). A review of ground-
based robotic systems for the characterization of nuclear environments. Progress in
Nuclear Energy, 111, 109-124. DOI: 10.1016/j.pnucene.2018.10.023

Turskis, Z., Zavadskas, E. K., Antucheviciene, J., & Kosareva, N. (2015). A hybrid model
based on fuzzy AHP and fuzzy WASPAS for construction site selection. International



REFERENCES 101

Journal of Computers, Communications and Control, 10(6), 873-888. DOI:
10.15837/ijccc.2015.6.2078

Vanderelst, D., & Winfield, A. (2018). An architecture for ethical robots inspired by the
simulation theory of cognition. Cognitive Systems Research, 48, 56-66. DOI:
10.1016/j.cogsys.2017.04.002

Veruggio, G., & Operto, F. (2008). Roboethics: Social and Ethical Implications of
Robotics. Springer Handbook of Robotics, 1499-1524. DOI: https://doi.org/10.1007/978-
3-540-30301-5_65

Visser, A., & Slamet, B. A. (2008). Including communication success in the estimation of
information gain for multi-robot exploration. In Proceedings of the 6th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks,
WiOpt 2008 (pp. 680-687). DOI: 10.1109/WIOPT.2008.4586160

Wang, H., Smarandache, F., Zhang, Y. Q., & Sunderraman, R. (2005). Interval
Neutrosophic Sets and Logic: Theory and Applications in Computing. University of New
Mexico.

Wang, L., Gao, F., Cai, F., & Shen, S. (2018). CRASH: A Collaborative Aerial-Ground
Exploration System Using Hybrid-Frontier Method. In 2018 IEEE International
Conference on Robotics and Biomimetics, ROBIO 2018 (pp. 2259-2266). DOI:
10.1109/ROBI10.2018.8665052

Wang, W., Gao, W., Zhao, S., Cao, W., & Du, Z. (2017). Robot Protection in the
Hazardous Environments. Robots Operating in Hazardous Environments. IntechOpen,
DOI: 10.5772/intechopen.69619

Yager, R. R. (2017). Generalized Orthopair Fuzzy Sets. IEEE Transactions on Fuzzy
Systems, 25(5), 1222—-1230. DOI: 10.1109/TFUZZ.2016.2604005.

Yager, R. R. (2013). Pythagorean fuzzy subsets 2013. In Joint IFSA World Congress and
NAFIPS Annual Meeting (IFSA/NAFIPS), 24-28 June 2013 (pp. 57-61). Edmonton, AB,
Canada. DOI: 10.1109/IFSA-NAFIPS.2013.6608375

Yager, R. R. (2020). Using fuzzy measures for modeling human perception of uncertainty
in artificial intelligence. Engineering Applications of Artificial Intelligence, 87, 103228.
DOI: 10.1016/j.engappai.2019.08.022

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. IEEE
International Symposium on Computational Intelligence in Robotics and Automation, 10—
11 July 1997 (pp. 146-151). Monterey, CA, USA. DOI: 10.1109/CIRA.1997.613851

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. DOI:
10.1016/S0019-9958(65)90241-X

Zagradjanin, N., Pamucar, D., Jovanovic, K., Knezevic, N., & Pavkovic, B. (2022).
Autonomous Exploration Based on Multi-Criteria Decision-Making and Using D* Lite
Algorithm. Intelligent Automation & Soft Computing, 32(3), 1369-1386.
DOI: 10.32604/iasc.2022.021979



102 REFERENCES

Zakaria, A. H., Mustafah, Y. M., Abdullah, J., Khair, N., & Abdullah, T. (2017).
Development of Autonomous Radiation Mapping Robot. Procedia Computer Science,
105, 81-86. DOI: 10.1016/j.procs.2017.01.203

Zakiev, A., Lavrenov, R., Magid, E., Svinin, M., & Matsuno, F. (2019). Partially unknown
environment exploration algorithm for a mobile robot. Journal of Advanced Research in
Dynamical and Control Systems, 11(8), 1743-1753.

Zavadskas, E. K., Antucheviciene, J., Razavi Hajiagha, S. H., & Hashemi, S. S. (2014).
Extension of weighted aggregated sum product assessment with interval-valued
intuitionistic fuzzy numbers (WASPAS-IVIF). Applied Soft Computing, 24, 1013-1021,
doi:10.1016/j.as0c.2014.08.031

Zavadskas, E. K., Bausys, R., Lescauskiene, I., & Omran, J. (2020a). M-generalised g-
neutrosophic MULTIMOORA for Decision Making. Studies in Informatics and Control,
29(4), 389-398. DOI: 10.24846/v29i4y202001

Zavadskas, E. K., Bausys, R., Lescauskieneg, I., & Usovaite, A. (2020b). MULTIMOORA
under Interval-Valued Neutrosophic Sets as the Basis for the Quantitative Heuristic
Evaluation Methodology HEBIN. Mathematics, 9(1), 66. DOI: 10.3390/math9010066

Zavadskas, E. K., Bausys, R., & Mazonaviciute, I. (2019). Safety evaluation methodology
of urban public parks by multi-criteria decision making. Landscape and Urban Planning,
189, 372-381. DOI: 10.1016/j.landurbplan.2019.05.014

Zavadskas, E. K., Bausys, R., & Lazauskas, M. (2015a). Sustainable assessment of
alternative sites for the construction of a waste incineration plant by applying WASPAS
method with single-valued neutrosophic set. Sustainability, 7(12): 15923-15936. DOI:
10.3390/su71215792

Zavadskas, E. K., Bausys, R., Stanujkic, D., & Magdalinovic-Kalinovic, M. (2016).
Selection of lead-zinc flotation circuit design by applying WASPAS method with single-
valued neutrosophic set. Acta Montanistica Slovaca, 21(2), 85-92.

Zavadskas, E. K., Pali¢, 1., & Stevié, Z. (2021). Application of novel DEA-SWARA-
WASPAS model for efficiency assessment of agricultural products. Journal of Smart
Environment Green Computing, 1, 32-46. DOI: 10.20517/jsegc.2020.02

Zavadskas, E. K., Kalibatas, D., & Kalibatiene, D. (2016). A multi-attribute assessment
using WASPAS for choosing an optimal indoor environment. Archives of Civil and
Mechanical Engineering, 16, 76-85. DOI: https://doi.org/10.1016/j.acme.2015.10.002

Zavadskas, E. K., Nuni¢, Z., Stjepanovi¢, Z., & Prentkovskis, O. (2018). A Novel Rough
Range of Value Method (R-ROV) for selecting automatically guided vehicles (AGVs).
Studies in Informatics and Control, 27(4), 385-394. DOI: 10.24846/v27i4y201802

Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2015b). Selecting A Contractor by
Using a Novel Method for Multiple Attribute Analysis: Weighted Aggregated Sum
Product Assessment with Grey Values (WASPAS-G). Studies in Informatics and Control,
24(2), 141-150. DOI:10.24846/v24i2y201502



REFERENCES 103

Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012).
Optimization of Weighted Aggregated Sum Product Assessment. Electronika ir
Elektrotechnika, 122(6), 3-6. DOI: 10.5755/j01.eee.122.6.1810

Zhang, H. Y., Wang, J. Q., & Chen, X. H. (2014). Interval neutrosophic sets and their
application in multicriteria decision making problems. The Scientific World Journal 2014,
645953. DOI: 10.1155/2014/645953

Zheng, L., Hu, J., & Xu, S. (2017). Marine search and rescue of UAV in long-distance
security modeling simulation. Polish Maritime Research, 24(S3), 192-199. DOI:
10.1515/pomr-2017-0122

Zheng, X., Jain, S., Koenig, S., & Kempe, D. (2005). Multi-robot forest coverage. In 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2—-6 August 2005
(pp. 3852-3857). Edmonton, AB, Canada. DOI: 10.1109/IR0S.2005.1545323






List of Scientific Publications by the
Author on the Topic of the
Dissertation

Papers in the Reviewed Scientific Journals

Bausys, R., Cavallaro, F., Semenas, R. (2019). Application of sustainability principles for
harsh environment exploration by autonomous robot. Sustainability, 11(9), 2518. [Science
Citation Index Expanded (Web of Science)], [Index: 3,251 (2020, InCites JCR SCIE)],
DOI: 10.3390/su11092518

Semenas, R., Bausys, R. (2020). Modelling of autonomous search and rescue missions by
interval-valued neutrosophic WASPAS Framework. Symmetry, 12(1), 162. [Science
Citation Index Expanded (Web of Science)], [Index: 2,713 (2020, InCites JCR SCIE)],
DOI: 10.3390/sym12010162

Semenas, R., Bausys, R., Zavadskas, E. K. (2021). A Novel Environment Exploration
Strategy by m-generalised g-neutrosophic WASPAS. Studies in Informatics and Control,
30(3), 19-28. [Science Citation Index Expanded (Web of Science)], [Index: 1,649 (2020,
InCites JCR SCIE)], DOI: 10.24846/v30i3y202102

Semenas, R., Bausys, R. (2022). Adaptive Autonomous Robot Navigation by
Neutrosophic WASPAS Extensions. Symmetry, 14(1), 179. [Science Citation Index

105


https://www.mdpi.com/2071-1050/11/9/2518/htm
https://www.mdpi.com/2073-8994/12/1/162
https://sic.ici.ro/a-novel-environment-exploration-strategy-by-m-generalised-q-neutrosophic-waspas/

106 LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON TOPIC OF THE...

Expanded (Web of Science)], [Index: 2,713 (2020, InCites JCR SCIE)], DOI:
10.3390/sym14010179

Papers in Other Editions

Semenas, R., Bausys, R. (2021). Adaptive Strategy for Environment Exploration in Search
and Rescue Missions by Autonomous Robot. In Sharma, H., Gupta, M. K., Tomar, G. S.,
Lipo, W. (eds). Communication and Intelligent Systems. Lecture Notes in Networks and
Systems, Vol. 204 (pp. 335-353). Springer, Singapore. DOI: 10.1007/978-981-16-1089-
9 28

Semenas, R., Bausys, R. (2018). Autonomous navigation in the robots’ local space by
multi criteria decision making. In 2018 Open Conference of Electrical, Electronic and
Information Sciences (eStream), 26 April 2018 (pp. 1-6). Vilnius, Lithuania. DOI:
10.1109/eStream.2018.8394125


https://www.mdpi.com/2073-8994/14/1/179
https://link.springer.com/chapter/10.1007/978-981-16-1089-9_28
https://link.springer.com/chapter/10.1007/978-981-16-1089-9_28
https://ieeexplore.ieee.org/document/8394125

Summary in Lithuanian

Jvadas

Problemos formulavimas

Autonominiy roboty naudojimas paieskos ir gelbéjimo operacijose gali padidinti
gelbéjimo komandy efektyvumg ir sauguma, nes autonominés sistemos gali biiti
naudojamos nelaimés vietos Zemélapiui sudaryti, pavojingiems jvykiams identifikuoti,
nukentéjusiems asmenims aptikti ir kitoms sudétingoms uzduotims atlikti (Jacoff et al.,
2003; Pfitzner & Merkl, 2013; De Cubber et al., 2017). Tikimasi, kad robotai $ias uzduotis
sugebés atlikti autonomiskai arba operatoriui tik minimaliai jsikiSus (Bahadori et al., 2015;
Sheh et al., 2016). Kita vertus, visi$kai autonominiy roboty taikyma apsunkina tai, kad
aplinkos tyrinéjimo efektyvumas yra tiesiogiai priklausomas nuo robotui prieinamo
pradiniy duomeny kiekio. Pavyzdziui, jei apie tyrinéjamg aplinkg yra zinoma visa
informacija, optimalus paieskos kelias gali buti sudarytas taikant iSankstinio marsruto
sudarymo strategijas. Taciau, kai tyrinéjamos nezinomos aplinkos, §is uzdavinys
sprendziamas taikant realiojo laiko navigacijos strategijas, kurios iesko artimo optimaliam
sprendimo, remdamosi tik tuo laiko momentu Zinoma aplinkos informacija ir roboto
biisena.

Tokiam aplinkos tyrinéjimui galima pritaikyti jvairias strategijas, ta¢iau dauguma jy
pagrijstos grafo arba tinklelio struktiiros sudarymu ir analize. Viena i§ populiariy aplinkos
tyrinéjimo strategijy yra Yamauchi (1997) pasiiilyta roboto nukreipimo j artimiausia
regiona tarp Zinomos ir nezinomos erdvés strategija. Si strategija gali biti i§plésta taikant
kandidaty vertinimo metodikg. Kitaip tariant, sprendimas, kur robotas turéty judéti toliau
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(Amigoni, Basilico & Quattrini Li, 2014), gali bati priimtas pritaikius vykdomai
uzduodiai aktualig kriterijy aibe, kuri apibrézia kandidaty vertinimo prioritetus. Kadangi
kriterijy aibés dydis yra baigtinis, bet i§ esmés neribojamas, sprendimams priimti galima
taikyti daugiakriterinius sprendimy priémimo (MCDM) metodus. Pagrindinis Sios
disertacijos tikslas — iplésti autonominio roboto taikomas autonominés navigacijos ir
aplinkos tyringjimo strategijas, grindziamas kandidaty vertinimu, kai jvesties duomenys
gali buti nepatikimi.

Darbo aktualumas

Autonominés navigacijos strategijos apibrézia, Kaip robotas juda ir renka informacija
nezinomoje erdvéje. Kadangi nezinomoje paieSkos erdvéje neimanoma numatyti ir
vertinti visy galimy roboto ir aplinkos biiseny, itin svarbia problema tampa efektyvios
aplinkos tyrinéjimo strategijos sukiirimas ir roboto trumpalaikiy sprendimy priémimas,
vertinant nepatikimus jvesties duomenis ir konkuruojancius optimizacijos prioritetus.

Tyrimo objektas

Disertaciniy tyrimy objektas — autonominiy roboty navigacijos strategijos, paremtos
daugiakriteriniy sprendimy priémimo metodais.

Darbo tikslas

ISplésti autonominio paieskos ir gelbéjimo roboto taikomas ir kandidaty vertinimu
pagristas navigacijos strategijas, kai sprendimas kur judéti toliau, yra priimamas
priklausomai tik nuo esamos roboto ir tyrinéjamos aplinkos biisenos, 0 sprendimui priimti
naudojami jvesties duomenys gali biiti netiksls.

Darbo uzdaviniai
Darbo tikslui pasiekti sprendziami $ie uzdaviniai:

1. I8analizuoti navigacijos ir aplinkos tyringjimo strategijas, taikomas autonominiy
roboty sistemose ir iskirti dazniausius $iy strategijy trikumus paieskos ir
gelbéjimo uzdaviniy kontekste.

2. Suformuoti originalias kandidaty vertinimo strategijas, kai sprendimai, kur
robotas turéty judéti toliau, priimami remiantis tik tuo metu Zinoma aplinkos
informacija.

3. Sukurti adaptyvig autonominés navigacijos strategija, kuri paieskos ir gelbéjimo
robotui suteikty galimybe pakeisti taikomas kandidaty vertinimo taisykles.

4. Sukurti naujus daugiakriterinius sprendimy priémimo metody plétinius, Kurie
suteikty galimybe jvertinti netikslius jvesties duomenis, taikomus sprendimy
priémimo procese.

5. Ivertinti sitlomy daugiakriteriniy sprendimy priémimo metody plétiniy
efektyvuma.

6. [Ivertinti sukurty autonominiy navigacijos Strategijy efektyvuma skirtingose
simuliuojamose paieskos ir gelbéjimo operacijose.
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Tyrimy metodika

Darbe taikomi literatiiros analizés metodai, taikomi siekiant itirti analizuojama objekta.
Autonominés navigacijos, daugiakriteriniy sprendimy priémimo, neutrosofiniy ir
nerai$kiyjy aibiy teorijos Zinios buvo taikomos nezinomos aplinkos tyrinéjimo
strategijoms kurti. Kiekybiniai ir kokybiniai vertinimo metodai buvo taikyti siekiant istirti
sitlomy navigacijos strategijy ir daugiakriteriniy sprendimy priémimo metody
efektyvuma.

Darbo mokslinis naujumas

1. Sitlomi du nauji klasikinio WASPAS (angl. Weighted Aggregated Sum Product
Assessment) MCDM metodo plétiniai, sukurti taikant neutrosofines aibes:
WASPAS, modeliuojamas taikant intervalines neutrosofines aibes — WASPAS-
IVNS, bei WASPAS, modeliuojamas taikant m apibendrintas q neutrosofines
aibes — WASPAS-mGQgNS.

2. Autonominiam paie$kos ir gelbéjimo robotui siilomos naujos egoistings,
altruistinés ir nesaliskos kandidaty vertinimo strategijos, taikytinos autonominés
navigacijos metu.

3. Autonominiam paieskos ir gelb¢jimo robotui sukurta nauja adaptyvi
autonominés navigacijos strategija, jungianti neraiskiosios logikos valdiklj ir
daugiakriteriniy sprendimy priémimo metodus.

Darbo rezultaty praktiné reikSmé

Tyrimo rezultatai gali biiti naudingi kuriant ir i$ple¢iant autonominés navigacijos bei
aplinkos tyrinéjimo strategijas, kurias taiko autonominiai robotai. Praktinis sitilomy
strategijy pritaikymas gali buti naudingas siekiant surinkti duomenis apie pavojingas
nelaimés vietas, nerizikuojant zmogiskojo personalo saugumu. Siilomi autonominés
navigacijos metodai leidzia robotui priimti sprendimus realiuoju laiku ir pasirinkti
taikomas navigacijos taisykles. Pavyzdziui, navigacijos metu robotas gali taikyti egoistinj
elgsenos modelj ir taip vengti pavojaus, taikyti altruistinj modelj ir teikti pirmenybe
nukentéjusiy asmeny paieskai arba taikyti neSaliska elgsenos modelj, kuris gali biiti
naudingas situacijose, kai skubus vietovés zemélapio sudarymas yra svarbiausia roboto
uzduotis. Sitillomi skirtingas navigacijos strategijas apibréziantys kriterijy rinkiniai yra
lankstds ir nebaigtiniai. Jvedant naujus kriterijus ar koreguojant esamy kriterijy svorius,
siilomas strategijas galima nesunkiai iSplésti taip, kad bity atsizvelgta j naujus
autonominés navigacijos reikalavimus ir strategijos biity pritaikytos konkre¢ioms realaus
pasaulio situacijoms. Rezultatai taip pat apima sukurtus WASPAS-IVNS ir WASPAS-
mGQgNS daugiakriterinius sprendimy priémimo metodus, kurie sumodeliuoti taikant
intervalines neutrosofines ir m apibendrintas g neutrosofines aibes. Siuos Siuolaikinius
metodus galima pritaikyti, kai siekiama atsizvelgti j netikslias jvesties duomeny
charakteristikas, kurios daznai pasitaiko dél netiksliy sensoriy rodmeny ir jvairiy
matavimo klaidy nustatant kriterijy reik§me. Sios siilomy metody savybés gali biiti
pritaikytos ne tik autonominiy roboty navigacijos uzduociy kontekste, bet ir gali bati
taikomos jvairioms sprendimy priémimo problemoms spresti, kai tikétinos netiksliai
nustatytos kriterijy reikSmeés.
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Ginamieji teiginiai
1. Sukurti WASPAS metody plétiniai, taikantys intervalines neutrosofines ir m
apibendrintas g neutrosofines aibes, yra stabilais, palyginti su Klasikiniu
WASPAS-SVNS metodu, ir suteikia galimybe atsizvelgti | nei$samius ar
netikslius jvesties duomenis.

2. Sukurtos egoistinés ir altruistinés autonominés navigacijos ir aplinkos tyrinéjimo
strategijos kurios jvertina roboto saugumo problemas, aptikty nukentéjusiy
asmeny aplankymo reikalavimus, roboto gebéjimag prisitaikyti ir iStyrinéti
prioritetines vietoves, yra efektyvesnés, lyginant jas su standartinémis aplinkos
tyrinéjimo strategijomis, pagrjstomis kainos ir naudos vertinimu.

3. Sukurta adaptyvi autonominés navigacijos ir aplinkos tyrin¢jimo strategija, Kuri
sujungia nerai$kiosios logikos valdiklj ir MCDM metodus, leidzia paieskos ir
gelbéjimo robotui efektyviai tarpusavyje keisti taikomas skirtingas kandidaty
vertinimo strategijas, Sitaip padidindama autonominio roboto efektyvuma.

Darbo rezultaty aprobavimas

Tyrimy rezultatai disertacijos tematika buvo atspausdinti Sesiose publikacijose. Keturi
straipsniai atspausdinti recenzuojamuose moksliniuose Zurnaluose, indeksuotuose WoS
duomeny bazése (Semenas & Bausys, 2022; Semenas, Bausys & Zavadskas, 2021;
Semenas & Bausys, 2020; Bausys, Cavallaro & Semenas, 2019); ir dviejose publikacijose,
atspausdintose pranesimo medziagos pagrindu (Semenas & Bausys, 2021; Semenas &
Bausys, 2018).

Tyrimy rezultatai buvo pristatyti trijose tarptautinése konferencijose:

— ,,2nd International Conference on Communication and Intelligent Systems
(ICCIS 2020)“, India, December 26—27, 2020.

— ,,10th International Workshop Data Analysis Methods for Software Systems
(DAMSS 2018)“, Druskininkai, Lithuania, November 29 — December 1, 2018.

— ,,2018 Open Conference of Electrical, Electronic and Information Sciences
(eStream)*, Vilnius, Lithuania, April 26, 2018.

Disertacijos struktara

Darbg sudaro jvadas, trys pagrindiniai skyriai, bendrosios i§vados, literatiiros sarasas ir
autoriaus publikacijy disertacijos tema sgraSas. Darbo apimtis — 121 puslapis, tekste yra
57 formulés, 23 paveikslai ir 22 lentelés. Rasant disertacijg buvo pacituoti 126 literatiiros
Saltiniai.

1. Autonominiy roboty navigacijos strategijy apzvalga

Siame skyriuje apZzvelgtos autonominiy roboty pritaikymo galimybés ir nauda paieskos ir
gelbéjimo operacijose, daznai taikomos nezinomos aplinkos tyrinéjimo strategijos.
Atlikta nezinomy aplinky tyrinéjimo strategijy, skirty autonominiams paieskos ir
gelbéjimo robotams, apzvalga parode, kad dél iSankstinés informacijos trikumo
nezinomos aplinkos tyrinéjimo uzdaviniams spresti daZniausiai taikomos realiojo laiko
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sprendimy priémimo strategijos (angl. Online strategies), grindziamos cikliSku roboto
nukreipimu j dar neistyrinétas erdves. Taikant §ias strategijas, kickviename sprendimo
priémimo cikle robotas turi priimti sprendima, kur judéti toliau, kai Zinoma tik esama
roboto ir tyrinéjamos erdvés biisena. Siuo atveju sprendimg galima priimti taikant
maksimizuojamy ir minimizuojamy parametry rinkinj, Kuris apibrézia taikomg aplinkos
tyrinéjimo strategijos tiksla (pavyzdziui, padidinti navigacijos metu roboto istirtg erdve,
kartu sumazinant jo nukeliautg atstumg).

Tokios sprendimy priémimo problemos, kuriy metu yra sickiama subalansuoti keleta
kriterijy ir pasirinkti vertingiausig kandidata, gali buti jvertintos taikant daugiakriteriniy
sprendimy priémimo teorijg ir metodus. Visgi $iuo metu taikomos navigacijos ir aplinkos
tyringjimo strategijos yra ne lanks¢ios ir paremtos tik techniniais kandidaty vertinimo
kriterijais, neatsizvelgiant j kitus paieSkos ir gelbéjimo operacijy aspektus. Be to,
praktikoje dazniausiai taikomos kandidaty vertinimo Strategijos nejvertina galimo jvesties
duomeny nepatikimumo. Tikimasi, kad darbo metu suformuotos kandidaty vertinimo
strategijos ir neutrosofiniai WASPAS sprendimy priémimo metodo plétiniai padés
iSspresti §ias literattiros analizés metu identifikuotas problemas.

2. Neutrosofiniy daugiakriteriniy sprendimy priémimo metody
taikymas autonominiy roboty navigacijoje

Antrajame darbo skyriuje detaliai apraSoma autoriaus siiloma neZinomos aplinkos
tyrinéjimo strategija, taip pat sukurti neutrosofiniai WASPAS daugiakriteriniy sprendimy
priémimo metodo plétiniai, taikantys intervalines neutrosofines aibes (WASPAS-IVNS)
bei m apibendrintas g neutrosofines aibes (WASPAS-mGQgNS).

Sitilomos autonominés nezinomos aplinkos tyringjimo strategijos pagrinda sudaro
Yamauchi (1997) pasiiilyta strategija, kuri paremta cikliSku roboto nukreipimu j regionus
(kandidatus), esancius tarp jau istyrinétos ir dar neatrastos erdvés. Siuo atveju roboto
sukuriamas aplinkos modelis yra nuolat papildomas naujai atrasta informacija, o bet
kuriuo metu paieskos erdvéje gali buti m kandidaty Pr = {p, p,, .., P}, kuriuos robotas
turi jvertinti ir pasirinkti vertingiausig. Siekiant optimizuoti §j procesg, kiekvieno
kandidato ps(x,y) vert¢ U nustatyty prioritety atzvilgiu apskai¢iuojama jvertinant
kriterijy rinkinj C = {cy, ¢y, ... , ¢}, Kuriame Kiekvienam Kkriterijui yra priskirtas svorio
koeficientas W = {w;,w,, ..., w,}. Kadangi skirtingi kriterijy svorio koeficientai ir
optimumai apibrézia skirtingas kandidaty vertinimo strategijas, §i savybé gali biuti
pritaikyta modeliuojant skirtingus roboto elgsenos modelius. Siy skirtingy strategijy
rinkinys gali bati apibréZtas kaip ST = {St;(C;, W,), St (Cy, W), ..., St (Cr,, Wi)3, Gia
St;(C;, W;) — individuali kandidato vertinimo strategija, k nurodo, kiek strategijy yra
rinkinyje ST. Sprendimas, kurig kandidato vertinimo strategija pasirinkti, yra priimamas
taikant sitiloma neraiSkiosios logikos valdiklj. Skirtingai nei kiti praktikoje taikomi
neraiskiosios logikos valdikliai, Siame darbe siilomas valdiklis kontroliuoja ne roboto
judesius, o nustato, kokia sprendimy priémimo strategija turéty buti taikoma, vertinant
kandidatus, esancius Py rinkinyje. Sitiloma adaptyvi kandidaty vertinimo strategija
schemigkai pavaizduota S2.1 paveiksle.
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S2.1 pav. Sitloma adaptyvi kandidaty vertinimo strategija, taikanti neraiskiosios logikos valdiklj
ir sukurtus neutrosofinius WASPAS metodo plétinius. Cia E (s) — atstumas tarp roboto ir aptikto
nukentéjusio asmens, E (d) — atstumas tarp roboto ir pavojingo regiono, S zZymi parinkta kandidaty
vertinimo strategija, P — galimy kandidaty sgrasa, o U(p*) — apskaiiuota naudingiausio kandidato
vertg (Semenas & Bausys, 2021).

Viena pagrindiniy problemy, su kuriomis gali susidurti autonominis paieskos ir
gelbéjimo robotas, yra nepatikimi jvesties parametry duomenys, kurie naudojami priimant
sprendimus. Sukurtas WASPAS-IVNS metodas suteikia galimybe spresti $ig problema
skai¢iavimy metu, jvertinant galimus jvesties parametry nuokrypius. Toliau pateikiami
pagrindiniai intervaliniy neutrosofiniy aibiy apibrézimai (Zhang et al., 2014), taikyti
kuriant WASPAS-IVNS metoda.

S1 apibrézimas. Intervaliné neutrosofiné aibé (IVNS) isSreiskiama trimis
intervalinémis priklausomybés funkcijomis: tiesos funkcija — T;,(x), neapibréztumo
funkcija — I;,,(x), netiesos funkcija — F;, (x).

S2 apibrézimas. Intervaliné neutrosofiné aibé gali buti iSreiksta taip:

IVNS = {(Ti, (%), Iy (x), Fi (X)) : x € X}, (82.1)
Cia trys priklausomybés funkcijos tenkina Sias salygas:
Tip(x) = [T ()7, Tiy () *] < [0,1]; (52.2)
liy(x) = [ ()7, Iy () *] < [0,1]; (52.3)
Fiy(x) = [Fiy ()7, Fip (1)1 € [0,1]; (S2.4)
0< Tiv(x)+ + Ii,,(x)+ + Fiv(x)J' < 3. (825)

S3 apibrézimas. Intervalinis neutrosofinis skai¢ius (IVNN) gali bati isreikstas taip:
Niy = [tip ti], li, 051, [fiw, fir - (52.6)
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S4 apibrézimas. Intervalinius neutrosofinius skai¢ius galima palyginti taikant vertés
S(Q), tikslumo a(Q) ir uztikrintumo c(Q) funkcijas:

S@=1[tp+1—if, +1=fIttH +1—iy +1—f,1; (S2.7)
a(Q) = [minfty, — fiy, ti, — fiw } max{ty, — fi ti, — fin 31; (S2.8)
c(Q) = [t th]. (S2.9)

S5 apibrézimas. Intervaliniy neutrosofiniy skaidiy palyginimas gali bati atliktas
taikant tikimybés laipsnj p, kurj apibréZia $ios taisykles:

- Jeip(5(Q,) = 5(Q2)) > 0,5, tada Q; > Q;
- Jeip(5(Q) = 5(Q2)) =0,5irp(a(Qy) = a(Qz)) > 0,5, tada Q; > Q;

- ‘]el p(S(Ql) = S(QZ)) = 0'5 ir p(a(Ql) = a(QZ)) = 0,5, ir p(C(Ql) =
C(QZ)) > 0'51 tada Ql > QZa

- Jei p(5(Q1) =5(Q2)) =05 ir pla(@) =a(@2)) =05, ir p(c(Q,) =
c(Qz)) = 0,5, tada Q; ~ Q.

S6 apibrézimas. Tikimybés laipsnis p apskai¢iuojamas taikant nelygybe:
p(S(Q) 2 5(Q,) =

5(Q2)T-5(Q1)~
1— .
max { max ((s(am—s(ql)—>+(s(qz)+—s(qz)—> ' 0) ' 0}

(S2.10)

Kadangi vienas pagrindiniy autonominiy paieskos ir gelbéjimo operacijy aspekty, i
kuriuos privalu atkreipti démesj, yra naudojamos strategijos lankstumas, m apibendrinty
g neutrosofiniy aibiy taikymas roboty operatoriui suteikia galimybe pasirinkti, kokias
neraiskigsias aibes taikyti priimant sprendima. Sis funkcionalumas realizuojamas
pasirenkant atitinkamas m ir g parametry reik§mes. PavyzdZziui, klasikinés SVNS aibés
taikomos, kai m,q = 1. Pagrindinius m apibendrinty q neutrosofiniy aibiy apibréZzimus
galima pateikti taip:

S7 apibrézimas. m apibendrinta g neutrosofiné aibé (MGQNS) isreiskiama trimis
m apibendrintomis g neutrosofinémis priklausomybés funkcijomis: tiesos funkcija —
Tinq (x), neapibréztumo funkcija — I, (x), ir netiesos funkcija — Fy, (x).

S8 apibrézimas. m apibendrinta g neutrosofiné aibé gali buti isreiksta taip:

MGANS = {{Tq (%), Lng (X), Fpg (%)) : x € X}, (S2.11)
Cia trys priklausomybés funkcijos tenkina salygas:

Ting (X)), Lng (), Fg(): X = [0,7],(0 <7 < 1); (S2.12)

0 < (Tng()? + (g ()7 + (Fing (0))7 < (S2.13)

m=1]3,q>1. (S2.14)
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S9 apibrézimas. m apibendrintas g neutrosofinis skai¢ius (MGONN) gali bati
iSreikstas $ia iSraiska:

Nimg = (tmg: lmg» fing)- (S2.15)

S10 apibrézimas. Taikant m apibendrintas g neutrosofines aibes kandidatui parinkti
taikoma vertés funkcija, kuri iSreiskiama kaip:

3+3td 2] £
S(Npng) = —— (S2.16)

Originalus svertinés agreguotos sumos (WASPAS) metodas buvo sukurtas WPM
(angl. Weighted Product Model) ir WSM (angl. Weighted Sum Model) pagrindu
(Zavadskas et al., 2012). Toliau pateikiamas standartinio WASPAS metodo etapy aprasas,
taikytinas sukurtuose WASPAS-IVNS ir WASPAS-mGgNS metoduose.

Pirmiausia kiekvienam galimam kandidatui yra apskaiciuojamos taikoma
navigacijos strategija apibrézian¢iy kriterijy reikSmés ir sukuriama sprendimo matrica D.
Matricos duomenys sudaryti i§ [d];; elementy, ¢iai = 1, 2, ..., n atitinka kandidato, 0 j =
1,2, ..., k kriterijaus indeksus.

Tada atliekamas sprendimo matricos D normalizavimas. Taikant WASPAS-IVNS
metoda normalizavimo funkcija isreiskiama taip:

(] = —2eli g 1t __ lwlly (S2.17)
wiy max[d);jVE' Y max[d;,);jVk’ '
o taikant WASPAS-mGgNS metoda naudojama tokia funkcija:
[d ] _ [ mq]”
maly — ' (S2.18)

Z?:l([qu]ij)z

Tuomet normalizuotos matricos elementai yra konvertuojami j neutrosofing forma,
taikant antrame §io darbo skyriuje pristatyta neutrosofikacijos lentele (Zavadskas et al.,
2015a). Po $io etapo matricos elementai jgauna atitinkama neutrosofing forma: [div]i]_ =

([t t) Lz, i), [fin, fid])  (taikant WASPAS-IVNS metoda) arba [d_mq]i]_ =
(tmgs img» fmq) (taikant WASPAS-mGQNS metoda).

Kandidaty reikSmés apskaiciuojamos pagal pirmaji WASPAS kriterijy, kuriame
maksimizuojamy (Oy,qy,) it minimizuojamy (0,,;,) matricos elementy [J]U reikSmes
padauginamos i$ svoriy koeficienty w; ir sudedamos:

[
QY = (B9 [dlyy - wy) + (Z7min(dly - wy) (S2.19)
Kandidaty reik§més skaic¢iuojamos pagal antrajj WASPAS kriterijy:
0" = (™ (il ) - (7" (Ld1ep)™ )" (52.20)

Galiausiai apskai¢iuojama apibendrinta funkcija:



SUMMARY IN LITHUANIAN 115

Q=050 +0507 . (S2.21)

Taikant vertés funkcijas aprasytas S6 ir S10 apibrézimuose, apskai¢iuotos
neutrosofinés reik§més konvertuojamos j paprastuosius skai¢ius, kurie nusako kandidato
vertg.

3. Siulomy autonominiy roboty navigacijos strategijy
vertinimas

Treéiajame darbo skyriuje pateikti siilomos autonominés roboto navigacijos nezinomoje
SAR aplinkoje strategijos tyrimai. Darbo metu buvo atlikti penki tyrimai, kuriuose
sitilomos skirtingos kandidato vertinimo metodikos, kai sprendimui priimti taikomi
autoriaus sitilomi WASPAS metodo plétiniai — WASPAS-IVNS ir WASPAS-mGgNS.

Pirmajame tyrime sitiloma roboto matymo zonoje esan¢iy kandidaty vertinimo
strategija. Ji sudaryta modeliuojant Sesiy kriterijy rinkinj: atstumo nuo kandidato iki
artimiausio pavojingo objekto, numatomos erdvés, Kurig robotas gali istirti pasiekes
kandidata, galimo nukeliauti kelio ilgj, numatomo laiko, per kurj robotas gali pasiekti
kandidata, atstumo iki artimiausio roboto matymo lauka uzstojanc¢io objekto, ir santykio
tarp aptikto pravaziavimo ir standartinio dury plocio. Sitilomy kriterijy optimumai ir
svoriai nustatyti taikant SWARA metoda, 0 Sprendimui, kur robotas turéty judéti toliau,
priimti taikomas klasikinis WASPAS-SVNS metodas. Tyrimo metu nustatyta, kad
siiloma kandidaty vertinimo strategija gali padidinti roboto sprendimy priémimo modulio
efektyvumg. Standartinés kandidaty vertinimo metodikos i$plétimas integruojant roboto
saugos Kriterijus, paieskos ir gelbéjimo robotui suteikia galimybe¢ aplinkos tyrinéjimo
metu vengti pavojingy objekty, netaikant papildomy roboto judéjimo taisykliy ir padeda
pasirinkti nustatyta strategija atitinkancia judéjimo kryptj roboto lokalioje erdvéje. Nors
sitiloma strategija gali biti taikoma tyrinéjant nezinoma aplinka, svarstytini patobulinimai,
kurie galéty iSplésti esamos kandidaty vertinimo strategijos efektyvuma SAR aplinkose.
Pavyzdziui, pakeitus kandidaty aptikimo strategija i$ lokalios i globalia, robotas gali
jvertinti kandidatus, atsizvelgdamas j visg atrastg aplinkos informacijg. Todél antrajame
tyrime sitloma globali navigacijos strategija, i$ple¢iama atsizvelgiant ne tik j roboto
saugumo reikalavimus, bet ir jterpiant nukentéjusiy asmeny jvertinimo Kriterijus.

Sitloma strategija sudaryta modeliuojant $e$iy kriterijy rinkinj: atstumo iki roboto
valdymo centro, numatomos erdvés, kurig robotas galéty istirti pasiekes kandidatg,
numatomo laiko, reikalingo pasiekti kandidatg, atstumo tarp roboto ir kandidato,
numatomo pavojaus aptiktam nukentéjusiam asmeniui ir numatomo pavojaus robotui, jei
jis iki kandidato judéty numatytu keliu. Kriterijy optimumai ir svoriai nustatyti taikant
SWARA metoda. Sprendimas, kur robotas turéty judéti toliau, priimamas taikant sitiloma
WASPAS-IVNS metoda. Tyrimy metu nustatyta, kad dél galimybés jvertinti galimas
kriterijy reik8miy variacijas WASPAS-1VNS sprendimy priémimo metodas yra tinkamas,
siekiant efektyviai palyginti itin panaSius kandidatus. PavyzdZiui, S3.1 paveiksle
pavaizduoti kandidatai (a,, a,, ..., a;) buvo jvertinti, klasikiniu WASPAS-SVNS ir naujai
sitlomu WASPAS-IVNS metodais.
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S3.1 pav. Pateikiamas kandidaty vertinimo pavyzdys. Robotas pazymétas juodu kvadratu.
Kandidatai pazymeéti Zaliais Zymekliais (a;, a,, ..., a;). Raudona spalva pazymeétas pavojingas
objektas, geltona — aptiktas nukentéjes asmuo (Semenas & Bausys, 2020)

Kandidaty vertinimo rezultatai, kurie buvo nustatyti taikant silomg WASPAS-
IVNS ir standartinj WASPAS-SVNS metodus, yra pavaizduoti S3.1 lenteléje. Siame
pavyzdyje parodoma, kad WASPAS-IVNS metodas suteikia papildomus jrankius siekiant
jvertinti itin panagios reik§més kandidatus. Siuo atveju pirmyjy dviejy kandidaty rangai
apsikeité vietomis. Nors, taikant WASPAS-SVNS metods, a, ir a, kandidaty reikSmés
yra itin artimos, robotas pasirinkty a, kandidata, esantj toliau nuo esamos roboto
pozicijos. WASPAS-IVNS $§iuo atveju prioritetg teikty artimesniam, a, kandidatui.

S3.1 lentelé. Kandidaty vertinimo rezultatai taikant WASPAS-IVNS ir WASPAS-SVNS
metodus

. WASPAS-IVNS WASPAS-SVNS
Kandidatas
S(Q) Rangas S(Q) Rangas
a, [2,002; 2,286] 3 0,6655 3
a, [2,014;2,312] 1 0,6708 2
as [1,877;2,172] 5 0,5982 5
ay [2,015; 2,306] 2 0,6719 1
as [1,898; 2,174] 4 0,6171 4
Qg [1,853;2,117] 6 0,5812 6
a, [1,743; 2,027] 7 0,5193 7

TreCiajame tyrime sitloma globali kandidaty vertinimo strategija sudaryta
modeliuojant $esiy kriterijy rinkinj: atstumo nuo kandidato iki roboto valdymo centro,
numatomos aplinkos erdvés dydzio, kuria robotas galéty istirti pasiekes kandidata,
numatomo laiko, reikalingo kandidatui pasiekti, atstumo tarp roboto ir kandidato, atstumo
nuo kandidato iki artimiausio prioritetinio regiono bei santykio tarp nezinomy celiy,
esanciy aplink kandidata, ir méginio dydzio. Skirtingai nei pries tai pasitlytos kandidaty
vertinimo strategijos, §i strategija skirta situacijoms, kai roboto operatoriui Zinomas
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nedidelis kiekis iSankstinés informacijos apie SAR aplinka, Kkuris leidzia nustatyti
prioritetinius paieskos regionus. Kriterijy optimumai ir svoriai nustatyti taikant SWARA
metoda, 0 sprendimas, kur robotas turéty judéti toliau, priimamas taikant sukurtg
WASPAS-mGQNS metodg. Tyrimo metu sitiloma aplinkos tyrinéjimo strategija (PS) yra
lyginama su dviem strategijomis: standartine kainos ir naudos strategija (I1G), ir
trumpiausio kelio (tiesioginio mars$ruto sudarymo) strategija (WS), kurioje roboto
operatorius nustato prioritetiniy zony aplankymo eiliskuma, o robotas jas aplanko,
taikydamas trumpiausio kelio paieSkos metodus. Tikétasi, kad paieskos ir gelbéjimo
roboto gebéjimas jvertinti uzimtos erdvés, esancios aplink kandidata, kiekj bei galimybé
teikti prioritetg nustatytiems regionams leis padidinti roboto efektyvumg istirtos erdvés
dydzio atzvilgiu. Tyrimo metu surinkti rezultatai pavaizduoti S3.2 paveiksle patvirtina $ig
hipoteze. Tyrimo rezultatai iSryskina, kad sitiloma aplinkos tyrinéjimo strategija gali buiti
taikoma siekiant padidinti roboto istirta erdve, sumazinti nukeliautg atstumg, ir kartu
nukreipti robota | prioritetinj paieskos regiona, kurj identifikavo roboto operatorius.
Tyrimo metu daugiausia aplinkos erdvés istyré robotas, taikantis standartine kainos ir
naudos strategija (IG). Taciau, taikant Sig strategija, pastebimas ir ilgiausias roboto
nukeliauto atstumo vidurkis. PrieSingai, taikant trumpiausio kelio strategija, autonominis
robotas nukeliauja trumpiausig atstumg, taciau iStiria maZiausiai paie$kos erdvés.
Taikydamas sialomg kandidaty vertinimo strategija, autonominis robotas elgiasi
subalansuotai ir gali iStyrinéti erdves, esanCias netoliese prioritetiniy zony, ir Sitaip
padidinti istirta paieSkos erdve (lyginant su WS strategija), bei sumazinti roboto
nukeliautg atstumg (lyginant su IG strategija).
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a) b)

$3.2 pav. Navigacijos strategijy vertinimo rezultatai: a) roboto istirta erdvé, m?;

b) roboto nukeliautas atstumas, m

Kadangi skirtingos kandidaty vertinimo strategijos nukreiptos ] skirtingus
autonominés navigacijos prioritetus, adaptyvi aplinkos tyrinéjimo strategija buvo sukurta
siekiant suteikti robotui galimybe¢ autonomiskai pakeisti kandidato vertinimo strategija,
atsizvelgiant j atrastg aplinkos informacija. Sprendimas, kuri strategija turi buti pritaikoma
vertinant kandidatus, yra priimamas taikant neraiskiosios logikos valdiklj, pavaizduota
S2.1 paveiksle. Kandidatams vertinti taikomos keturios skirtingos strategijos: pavojingo
regiono vengimo strategija (DA), nukreipianti robota nuo pavojingy regiony; atsargi
aptikto asmens aplankymo strategija (RRS), prioritetg teikianti kandidatams, esantiems
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netoli aptikty nukentéjusiy asmeny ir toli nuo pavojingy regiony; aptikto asmens
aplankymo strategija (RS), prioriteta teikianti kandidatams, esantiems netoli aptikty
nukentéjusiy asmeny; informacijos paieskos strategija (IG), prioriteta teikianti roboto
istirtos erdvés padidinimui. Kandidaty vertinimo strategijos parenkamos jvertinant
atstumus tarp roboto ir pavojingy regiony bei atstumus tarp roboto ir tyrinéjamoje SAR
aplinkoje aptikty nukentéjusiy asmeny.

Vertinant tyrimo rezultatus, galima daryti i§vada, kad sitiloma adaptyvi kandidaty
vertinimo strategija aktyviai nukreipia robota nuo pavojingy regiony ir traukia jj prie
aptikty galimai nukentéjusiy asmeny. Roboto judéjimo trajektorija indikuoja, kad robotas
nevengia pavojingy regiony tuo atveju, kai netoliese jy aptinkami nukentéj¢ asmenys, ir
patvirtina roboto gebéjima subalansuoti skirtingus optimizavimo parametrus, vykdant
kandidaty parinkimo uzduotj. Vertinant individualiy strategijy pateikiamus rezultatus,
pazymétina, kad egoistiniy pavojingy regiony vengimui prioriteta teikianciy Strategijy
taikymas sumazina robotui skirtos nuobaudos kiekj iki 91 %, lyginant su RS ir IG
kandidaty vertinimo strategijomis. Kita vertus, siiloma adaptyvi aplinkos tyrinéjimo
strategija yra pajégi subalansuoti abu elgsenos modelius, o kartu ir sumazinti robotui
skirtos nuobaudos dydj iki 70 %.

Siekiant palyginti sukurtus daugiakriterinius sprendimo priémimo metodus, sitiloma
apibendrinta aplinkos tyrinéjimo strategija, jungianti potencialg rodancius kandidato
vertinimo kriterijus ir kandidaty vertinimo strategijas, taikytas keturiuose aptartuose
tyrimuose. Penktojo tyrimo metu buvo iskelti $ie pagrindiniai tikslai:

1. Palyginti WASPAS-IVNS ir WASPAS-mGgNS metody efektyvumg su
klasikiniais WASPAS-SVNS ir MULTIMOORA-SVNS metodais.

2. IStestuoti siilomos autonominés aplinkos tyringjimo strategijos efektyvuma
simuliacijoje ir gautus rezultatus palyginti su atskaitiniais, kandidato parinkimu
grindZiamais metodais: artimiausio kandidato parinkimo metodu (angl. Closest
frontier — CF), bei standartine aplinkos tyrinéjimo strategija (angl. Standard
information gain — SIG).

Taikant CF strategija, robotas parenka artimiausig galimg kandidata, remdamasis tik
tuo, kiek laiko prireiks robotui, kad pasiekty kandidatg. Taikant SIG strategija, kandidatas
parenkamas remiantis daznai taikomu kriterijy rinkiniu (Basilico & Amigoni, 2011;
Taillandier & Stinckwich, 2011; Bausys, Cavallaro & Semenas, 2019; Visser & Slamet,
2008), o sprendimas priimamas Kklasikiniu WASPAS-SVNS metodu. Sitloma
apibendrinta kandidaty vertinimo strategija modeliuojama taikant astuonis kriterijus,
nukreiptus | roboto saugos, socialinius ir techninius SAR aplinkos tyringjimo aspektus:
erdvés tarp zinOmo ir nezinomo regiono ilgis (c,); atstumas tarp kandidato ir roboto
valdymo stoties (c,); laikas, per kurj robotas gali pasiekti kandidata (c3); numatoma
nuobauda robotui, jei kandidatas biity pasiektas judant suplanuotu keliu (c,); bendras
nukentéjusiy asmeny, esanciy Salia suplanuoto roboto kelio, atpazinimo rodiklis (cs);
Zemiausias nukentéjusio asmens, esanc¢io netoli suplanuoto kelio, atpaZzinimo rodiklis (c);
atstumas nuo kandidato iki artimiausio prioritetinio regiono (c;); santykis tarp neZinomy
celiy aplink kandidata ir méginio populiacijos dydZio (cg). Kandidaty vertinimo
strategijas apibréziantys svoriai ir optimumai pateikti S3.2 lenteléje.
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S3.2 lentelé. Kriterijai, apibréZiantys apibendrintg adaptyvia navigacijos strategija

Zyméjimas | Optimumas DA RRS RS IG
¢ Max 0,056 0,029 0,043 0,213
Cy Max 0,061 0,073 0,019 0,075
cs Min 0,197 0,203 0,131 0,322
Cs Min 0,394 0,373 0,395 0,043
cs Min 0,037 0,039 0,065 0,033
Ce Min 0,112 0,125 0,234 0,081
c; Min 0,078 0,070 0,025 0,137
Cg Max 0,065 0,089 0,088 0,097

WASPAS-IVNS ir WASPAS-mGQqNS metodai vertinti simuliuojamose aplinkose,
pavaizduotose S3.3 paveiksle. Pirmoji SAR aplinka apima 26x17 m paieskos erdve,
antroji aplinka — 32x26 m paieskos erdve, o trecioji — 43x28 m paieskos erdve. Siekiant
palyginti tyrimo metu surinktus rezultatus tarp sialomos aplinkos tyrinéjimo strategijos,
CF ir SIG strategijy yra taikomi penki parametrai. Trys parametrai yra matuojami
ordinalioje skaléje: atstumas kurj nukeliavo robotas, roboto istirtos SAR aplinkos erdvés
dydis, ir nuobauda, kurig robotas gavo kirtes pavojingais laikomas vietoves. Kiti du
parametrai matuojami pagal santyking skale: santykis tarp roboto nukeliauto atstumo ir
istirtos erdvés dydzio bei santykis tarp robotui skirtos nuobaudos ir istirtos erdvés dydzio.

b)

S3.3 pav. Simuliuojamos SAR aplinkos: a) pirmoji SAR aplinka, kuriai biidinga atvira
topologija; b) antroji SAR aplinka, kurioje atskiros erdvés sujungtos centriniu koridoriumi;
¢) trecioji SAR aplinka, kuriai biidinga kilpiné topologija. Cia mélynas Zymeklis nurodo
roboto pradzios pozicija, raudoni zymekliai — pavojingus regionus, kuriy robotas turi vengti,
geltoni zymekliai indikuoja nukentéjusiy asmeny buvimo pozicijas, balti zymekliai —
prioritetinius regionus, kuriuos turéty aplankyti robotas (Semenas & Bausys, 2022)

Pirmoje aplinkoje, taikant WASPAS-SVNS, WASPAS-IVNS, WASPAS-mGgNS ir
MULTIMOORA-SVNS metodus, roboto istirta SAR aplinkos erdvé yra beveik identiska.
Pagrindinis skirtumas Siuo atveju yra roboto nukeliautas atstumas, kuris yra padidintas
nuo 4 iki 6 % taikant WASPAS-IVNS ir WASPAS-mGqNS metodus. Panasis rezultatai
matomi vertinant duomenis surinktus antroje ir tre¢ioje aplinkose. Antroje aplinkoje
roboto istirta erdvé buvo padidinta iki 1 %, o nukeliautas atstumas, taikant WASPAS-
IVNS ir WASPAS-mGQNS metodus, atitinkamai svyruoja nuo 1 % reikSmés sumazinimo
iki 1 % reik8més padidinimo. Tre¢ioje aplinkoje roboto nukeliautas atstumas sumazintas
iki 4,5-6,5 %, taCiau iStirta aplinkos erdvé buvo padidinta iki 1 %. Kadangi skirtumai tarp
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surinkty duomeny yra minimalds, jvertinus $iuos rezultatus, galima daryti i§vada, kad
siilomi WASPAS-IVNS ir WASPAS-mGqNS metodai yra stabilts, lyginant juos su
klasikiniais WASPAS-SVNS ir MULTIMOORA-SVNS metodais. Be to, papildomas $iy
metody funkcionalumas, kuris suteikia galimybe jvertinti sprendimui priimti reikalingy
duomeny nuokrypius, gali sudaryti sglygas pagerinti kandidaty vertinimo rezultatus.
PavyzdZiui, taikant WASPAS-IVNS ir WASPAS-mGgNS metodus, vidutinis robotui
skirtos nuobaudos kiekis reik§mingai sumazéja, lyginant su MULTIMOORA-SVNS
pateikiamais rezultatais.

Lyginant sitloma aplinkos tyringjimo strategija taikant WASPAS-IVNS ir
WASPAS-mGqNS metodus, su bazinémis CF ir SIG aplinkos tyrinéjimo strategijomis yra
pastebimas sifilomos adaptyvios strategijos pranaSumas. Pirmoje simuliuojamoje
aplinkoje roboto rezultatai i§liecka panasis. Taikant sitiloma strategija bei WASPAS-IVNS
ir WASPAS-mGgNS metodus, roboto istirta aplinkos erdvé padidinama iki 1,8 % lyginant
su istirta erdve taikant SIG ir CF strategijas. Rezultaty panaSuma galima paaiskinti
jvertinus santykinai nedidel;j Sios aplinkos dydj, jos atvirg topologija ir taikoma kandidato
vertinimu pagrista strategija. Siuo atveju robotas yra pajégus padengti visa paieskos erdve
per paieskos ir gelbéjimo misijai skirtg laiko intervala, nepaisant taikomos strategijos
efektyvumo. Todél pagrindinis strategijos vertinimo kriterijus tokiu atveju gali biiti roboto
gebéjimas subalansuoti uzduoties reikalavimus, pavyzdziui, gebéjimas uztikrinti roboto
saugumg ir sumazinti nukeliautg atstuma. Taikant WASPAS-IVNS ir WASPAS-mGgNS
metodus, pastebimas roboto surinktos nuobaudos sumazéjimas iki 89,80 %, o roboto
nukeliautas atstumas pirmoje aplinkoje sumazinamas iki 11,46 %.

Lyginant SIG ir CF aplinkos tyringjimo strategijas su sitilomais neutrosofiniais
WASPAS plétiniais, pastebima, kad antroje aplinkoje nukeliautas kelias pailgéja iki 21 %.
Kitg vertus, sitiloma aplinkos tyrinéjimo strategija padeda robotui istirti iki 12,7 % daugiau
erdvés. Vertinant roboto nukeliautg atstuma ir istirtos erdvés kiekj trec¢ioje aplinkoje, $ie
parametrai padidéja atitinkamai iki 33,6 % ir 23,6 %. Atlikus ANOVA statistinés analizés
testus, nustatyta, kad Sie rezultatai yra statistiskai reik§mingi antroje ir tre¢ioje aplinkoje,
kai p < 0,05. Jvertinus santykj tarp roboto nukeliauto atstumo ir istirtos erdvés dydj bei
santykj tarp robotui skirtos nuobaudos ir istirtos erdvés dydj, buvo nustatyta, kad, taikant
siilomg aplinkos tyrinéjimo strategija, padidéjes roboto nukeliautas kelias tiesiogiai
veikia ir iStirto ploto dydj. Kitaip tariant, aplinkos tyrinéjimo metu robotas elgiasi
subalansuotai.

Lyginant sitllomos strategijos ir SIG bei CF strategijy surinkta vidutinj nuobaudos
dydj pastebimas sililomos strategijos pranasumas. Lyginant SIG ir CF strategijas su
sitiloma aplinkos tyringjimo strategija, taikant WASPAS-IVNS metoda, maksimalus sio
parametro reik§meés sumazinimas siekia 87,8 %. Taikant WASPAS-mGgNS metoda,
pastebimas $ios reik§més sumazinimas siekia iki 94,4 %. Vertinant tyrimo rezultatus,
galima daryti i§vada, kad siiloma nezinomos aplinkos tyrinéjimo strategija reikSmingai
padidina autonominio roboto efektyvuma, lyginant jg su CF ir SIG strategijomis, o sitilomi
WASPAS-IVNS ir WASPAS-mGgNS metodai yra stabilas, lyginant juos su Klasikiniu
WASPAS-SVNS metodu.
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Atlikta dazniausiai taikomy aplinkos tyrinéjimo strategijy apzvalga atskleide, kad
kandidatams vertinti taikomos strategijos nejvertina galimy nepatikimy jvesties
parametry, Kai priimamas sprendimas, kur robotas turéty judéti toliau. Be to,
kandidaty vertinimas daznai atliekamas taikant ne adaptyvias kandidaty vertinimo
metodikas, kai sprendimui priimti taikomos tos pacios vertinimo taisyklés,
neatsizvelgiant j esama roboto ar aplinkos biiseng.
Sitiloma kandidaty vertinimo strategija, integruojanti roboto saugumo ir nukentéjusiy
asmeny jvertinimo Kriterijus pagerina autonominio roboto rodomus autonominés
navigacijos ir aplinkos tyrinéjimo rezultatus. Be to, kriterijy, jvertinanéiy uzimtos
erdvés, esanCios aplink kandidata, kiekj bei suteikian¢iy galimybe nustatyti
prioritetinius tyrinéjimo regionus, integravimas sukuria efektyvesng¢ kandidaty
vertinimo strategija, lyginant jg su standartinémis kainos ir naudos strategijomis.

Sukurta autonominés navigacijos strategija, jungianti neraiskiosios logikos valdiklj ir

sukurtus MCDM metodus, leidzia SAR robotui navigacijos metu atsizvelgti |

dinamiska aplinkos informacijg ir pakeisti kandidaty vertinimo strategijas. Sitiloma
adaptyvi autonominés navigacijos strategija, kuri priimant sprendimus taiko
modernias neutrosofines aibes, optimizuoja roboto judéjimo trajektorija ir padidina
jo efektyvuma, lyginant su neadaptyviomis egoistinémis, altruistinémis ir
nesaliSkomis kandidaty vertinimo strategijomis. Lyginant altruistines ir nesaliskas
kainos ir naudos strategijas su sitiloma adaptyvia strategija, robotui skirtos nuobaudos
dydis gali buti sumazintas iki 70 %, 0 su visi§kai egoistinémis strategijomis iki 91 %.

Sukurti neutrosofiniai WASPAS metodo plétiniai, WASPAS-IVNS ir WASPAS-

mMGgNS metodai, suteikia galimybe jvertinti galimus nepatikimus jvesties duomenis.

Si galimybe uztikrina sprendimy priémimo efektyvumg kai lyginami itin panasiis

kandidatai. WASPAS-IVNS, WASPAS-mGgNS ir standartiniy WASPAS-SVNS ir

MULTIMOORA-SVNS metody palyginimas parodé, kad siiilomi daugiakriteriniy

sprendimy priémimo metodai yra stabiltis skirtingose paieskos erdvése.

Sitloma adaptyvi apibendrinta aplinkos tyringjimo strategija yra efektyvesné,

lyginant jg su artimiausio kandidato strategija (CF) ir standartine aplinkos tyrinéjimo

strategija (SIG):

5.1. Kiekybinis rezultaty palyginimas tarp sitilomos apibendrintos aplinkos
tyrinéjimo strategijos ir SIG strategijos parodé, kad, taikant siilomg strategija,
autonominis robotas istiria iki 12,7-13,2 % daugiau SAR erdvés. Lyginant
sitilomg ir CF strategijas, robotas istiria iki 10,4-23,6 % daugiau erdveés, kai
taikoma sitiloma strategija.

5.2. Kiekybinis rezultaty palyginimas, kai vertinamas roboto surinktos nuobaudos
dydis, rodo, kad, taikant sitiloma apibendrinta aplinkos tyrinéjimo strategija, $is
parametras sumazinamas iki 94,4 %. Sis reikimés sumazéjimas yra stabilus
visose simuliuojamose aplinkose.

5.3. Taikant sitiloma apibendrinta aplinkos tyrinéjimo strategija, roboto nukeliautas
atstumas padidéja iki 33,6 %. [vertinus santykj tarp roboto nukeliauto atstumo
ir istirtos erdvés dydzio, $is padidéjimas néra reik§mingas, nes autonominis
robotas kartu padidina ir istirta plota.
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