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Abstract 

Search and rescue (SAR) missions in disaster sites are complex operations with 

the top priority of the first responders to find as many survivors as possible within 

a limited time window. In these missions, autonomous robots can assist the 

responder teams by providing essential information about the SAR environments 

without putting human resources in danger. Thus, a robot’s ability to efficiently 

explore and navigate an unknown environment is the main requirement for an 

autonomous search and rescue robot. Currently, a common approach to this 

problem is to incrementally increase the robot’s knowledge about the exploration 

space by directing it to the regions which border currently unexplored areas, called 

frontiers. However, deciding on where to move next when multiple candidates are 

present introduces an additional layer of complexity as the robot must make real-

time decisions with limited and possibly inaccurate information. Also, imprecise 

robot movements and imperfect input data characteristics provided by robot 

sensors can impact the candidate assessment process and, therefore, should be 

addressed while designing autonomous search and rescue robots. 

The dissertation consists of an introduction, three main chapters, general 

conclusions, and a list of references. The first chapter performs a literature review 

on autonomous navigation and environment exploration strategies and formulates 

the dissertation’s objectives. In the second chapter, a novel adaptive approach that 

implements the fuzzy logic controller is proposed for the autonomous navigation 

and environment exploration process. Also, two novel extensions are developed 

for the state-of-the-art WASPAS multi-criteria decision-making method and 

applied to determine the most suitable frontier considering the current robot state 

and the discovered environment information. These extensions are modelled 

under the interval-valued neutrosophic and m-generalised q-neutrosophic 

environments and referred to as WASPAS-IVNS and WASPAS-mGqNS. 

The third chapter evaluates the proposed autonomous navigation strategies 

and presents the results. The case study results highlight how the proposed 

approach could be applied to minimise the probability to damage the robot while 

maximising the size of the area searched by the robot. By addressing the estimated 

inaccuracies in the input data characteristics, the proposed decision-making 

framework provides additional reliability when comparing and ranking candidate 

frontiers. The obtained results also indicate the increased efficiency when 

comparing the proposed adaptive candidate assessment strategies to the standard 

candidate assessment-based strategies. 
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Reziumė 

Paieškos ir gelbėjimo (SAR) misijos nelaimės zonose yra sudėtingos operacijos, 

kurių metu pagrindinė gelbėtojų užduotimi tampa per tam tikrą laiko tarpą aptikti 

ir padėti kaip įmanoma daugiau nukentėjusiųjų. Viena aktualių mokslinių tyrimų 

sritis šiame kontekste yra žmogaus ir roboto bendradarbiavimas, nes autonominių 

robotų naudojimas SAR operacijose gali padėti gelbėjimo komandoms surinkti 

nežinomos aplinkos informaciją, nerizikuojant žmonių gyvybėmis ar sveikata. 

Šiuo atveju, itin svarbus reikalavimas, taikomas autonominiam robotui, yra 

gebėjimas efektyviai ištyrinėti nežinomas ir, galimai, pavojingas aplinkas. Šiuo 

metu nežinomos aplinkos tyrinėjimo uždaviniui spręsti dažnai yra taikoma roboto 

nukreipimo į regionus tarp žinomos ir nežinomos erdvės (angl. Frontiers) 

strategija. Tačiau sprendimas, kur robotas turėtų judėti toliau, kai tyrinėjamoje 

erdvėje yra keletas galimų kandidatų, yra sudėtingas, nes dažnu atveju robotas 

privalo priimti tik pusiau optimalius sprendimus dėl nepakankamų ar nepatikimų 

sprendimui priimti reikalingų įvesties duomenų. Be to, netikslus roboto judėjimas 

ir netobuli sensoriai sukuria situacijas, kai įvesties parametrai nėra tikslūs, tad į 

šią problemą turėtų būti atsižvelgta kuriant autonomines nežinomos aplinkos 

tyrinėjimo strategijas. 

Disertaciją sudaro įvadas, trys pagrindiniai skyriai, bendrosios išvados ir 

literatūros sąrašas. Pirmame skyriuje atliekama literatūros apie autonomines 

navigacijos strategijas, grindžiamas nežinomos aplinkos tyrinėjimu, apžvalga ir 

suformuluojamos darbo užduotys. Antrame skyriuje aptariama siūloma adaptyvi 

neraiškiosios logikos valdiklį naudojanti sprendimų priėmimo strategija. Taip pat, 

pasiūlyti du klasikinio WASPAS daugiakriterinių sprendimų priėmimo metodo 

plėtiniai, kurie taikomi siekiant nustatyti vertingiausią kandidatą, įvertinant esamą 

roboto būseną ir atrastą tyrinėjamos vietovės informaciją. Siūlomi WASPAS 

plėtiniai sumodeliuoti taikant intervalines neutrosofines aibes ir m apibendrintas 

q neutrosofines aibes, o nauji metodai atitinkamai pavadinti WASPAS-IVNS ir 

WASPAS-mGqNS. 

Trečiame skyriuje įvertinama siūloma autonominės navigacijos strategija. 

Tyrimų rezultatai parodo, kaip siūloma strategija gali būti pritaikyta siekiant 

sumažinti tikimybę pažeisti robotą ir kartu padidinti atrastą aplinkos informacijos 

kiekį. Lyginant su standartiniais metodais, siūloma adaptyvi navigacijos strategija 

suteikia galimybę įvertinti netikslius įvesties parametrus ir yra efektyvi, lyginant 

ją su klasikinėmis kandidatų vertinimu pagrįstomis strategijomis.
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   Notations 

Symbols 

𝑃𝑓 – candidate frontier set. 

𝑝𝑓(𝑥, 𝑦)𝑖 – candidate frontier. 

𝑈 – utility score of a candidate. 

𝑈(𝑝𝑓(𝑥, 𝑦)∗) – candidate frontier with the highest utility score. 

𝑊 – the set of criterion weights. 

𝑤 – the criterion weight value. 

𝑤𝑠 – the criterion weight value when the membership is considered as strong. 

𝑤𝑣 – the criterion weight value when the membership is considered as weak. 

𝐶 – criteria set. 

𝑐 – the value of a single criterion. 

𝑆𝑇 – the set of candidate assessment strategies. 

𝑆𝑡 – a single candidate assessment strategy. 

𝑠𝑗 – comparative importance of average. 

𝑘𝑗 – characteristics of the comparative importance. 

𝑞𝑗 – intermediate weight. 

𝑋 – a set of objects. 
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𝑥 – a single object. 

𝑇(𝑥) – truth membership. 

𝐼(𝑥) – indeterminacy membership. 

𝐹(𝑥) – falsity membership. 

𝜆 – real number. 

𝑁𝑠𝑣 – a single-valued neutrosophic number. 

𝑁𝑖𝑣 – an interval-valued neutrosophic number. 

𝑁𝑚𝑞  – m-generalised q-neutrosophic number. 

𝑁𝑐 – the complementary neutrosophic number. 

𝑆( ) – the score functions. 

𝑎( ) – the accuracy functions. 

𝑐( ) – the certainty functions. 

𝑝( ) – the degree of possibility. 

𝐷 – The decision matrix. 

[𝑑]𝑖𝑗  – a member of a decision matrix. 

[𝑑̅]
𝑖𝑗

 – a member of a decision matrix in a neutrosophic form. 

𝑄𝑖
(1)

 – the first objective of the WASPAS method. 

𝑄𝑖
(2)

 – the second objective of the WASPAS method. 

𝑄𝑖  – the joint generalised value of the first and second objectives of the WASPAS 

method. 

𝐸(𝑠) – distance to the hypothesised survivor. 

𝐸(𝑑) – distance to the dangerous area. 

𝑅 – the computed path to the candidate. 

𝑤𝑝𝑖  – a single waypoint in the computed path to the candidate. 

𝑡 – the time needed to reach the candidate. 

𝑝𝛼 – the corner between the robot and the candidate. 

𝛼 – the corner between the waypoints in a planned path. 

𝑣𝑚 – the robot’s movement speed. 

𝑣𝑟  – the robot’s rotation speed. 

𝛿 – the constant value representing the width of the door. 

𝑙𝑑 – width of the detected drive-through region. 

𝑃𝑖  – the sum of the penalty received by the robot for crossing dangerous regions. 

𝑑𝑝 – the partial penalty value received by the robot for crossing dangerous regions. 

𝑂𝑑 – the set of currently known dangerous areas. 

𝑜𝑑 – the dangerous area. 

𝑑𝑑 – distance from the waypoint to the dangerous area. 

𝑑𝑣 – distance from the waypoint to the detected survivor. 

𝜑 – the number of sampled cells that are yet to be discovered. 
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Abbreviations 

ANOVA – the procedure of analysis of variance. 

CF – Closest Frontier. 

DA – Danger Avoidance strategy. 

EU – European Union. 

IG – Information Gain strategy. 

IVNS – Interval-Valued Neutrosophic Set. 

MCDM – Multi-Criteria Decision-Making. 

mGqNS – m-Generalised q-Neutrosophic Set. 

MULTIMOORA-SVNS – Multi-Objective Optimisation by Ratio Analysis method, 
modelled under the Single Valued Neutrosophic Set. 

ROS – Robot Operating System. 

RS – Reach Survivor strategy. 

RRS – Restrictive Reach Survivor strategy. 

SAR – Search and Rescue. 

SIG – Standard Information Gain strategy. 

SVNS – Single Valued Neutrosophic Set. 

UAV – Unmanned Aerial Vehicle. 

UGV – Unmanned Ground Vehicle. 

USV – Unmanned Surface Vehicle. 

UUV – Unmanned Underwater Vehicle. 

WASPAS – Weighted Aggregated Sum Product Assessment method. 

WASPAS-IVNS – the WASPAS method, modelled under the Interval-Valued 
Neutrosophic Set environment. 

WASPAS-mGqNS – the WASPAS method, modelled under the m-Generalised q-
Neutrosophic Set environment. 

WPM – Weighted Product Model. 

WSM – Weighted Sum Model. 
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Introduction 

Problem Formulation 

Application of autonomous and semi-autonomous mobile robots in disaster sites 

for search and rescue (SAR) missions can increase the awareness of the first 

responders, allowing them to collect on-scene information about the unknown 

and, often, dangerous areas in the search site without putting human resources at 

risk (Pfitzner & Merkl, 2013; De Cubber et al., 2017). As such, robots are 

expected to accomplish multiple high-level objectives without any (or with 

minimal) intervention from the robot operators (Bahadori et al., 2015; Sheh et al., 

2016). For example, robots can be tasked to explore and create a map of the 

initially unknown environment, visit a number of pre-set landmarks, detect and 

mark dangerous objects (e.g., radiation or fire source), detect and contact the 

survivors, and deliver sustenance and medication to the trapped or injured (Jacoff 

et al., 2003). 

However, imprecise or incomplete information about the disaster site 

introduces additional complexity to the autonomous environment exploration 

problem. If no initial information about the geometrical structure of the 

environment can be presented to the robot in advance, an offline route planning 

approach cannot be applied, and an optimal solution cannot be found simply due 

to the absence of problem-related information. This issue can be solved by 
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developing an efficient online navigation strategy, which enables the robot to 

autonomously decide where to move next (Amigoni, Basilico & Quattrini Li, 

2014). 

Currently, multiple strategies can be applied in autonomous navigation and 

environment exploration tasks. However, a prevalent approach to this problem is 

a frontier-based approach proposed by Yamauchi (1997). This strategy can be 

improved by applying the next-best candidate assessment strategy, which 

considers the mission optimisation priorities modelled by weighted criteria set. 

Due to the inherent multi-criteria nature of this environment exploration strategy, 

the multi-criteria decision-making methods (MCDM) can be applied to solve this 

next-best candidate selection problem. Thus, the main focus of this thesis aims to 

improve robot decision-making capabilities in search and rescue missions when 

multiple competing optimisation priorities are present, and the input data 

characteristics are inaccurate. 

Relevance of the Thesis 

Autonomous navigation and environment exploration strategies define how robots 

move and collect information in a completely unknown (or little known) 

environment. The common approach to this problem is to apply the candidate 

assessment-based (next-best-view) environment exploration strategies. As the 

decision on where the robot should move next requires balancing multiple 

competing optimisation priorities, developing a flexible, transparent and efficient 

decision-making system is an important issue that should be considered. 

Moreover, imprecise robot sensors and environment representation models can 

provide inaccurate input data characteristics used in the candidate assessment 

process. Therefore, autonomous environment exploration strategies that allow for 

the possibility to address these issues and ensure the stability of the decision-

making process in SAR environments are a prominent study subject. 

Research Object 

The object of the thesis is autonomous robot navigation strategies based on the 

candidate assessment by a multi-criteria decision-making approach. 
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Aim of the Thesis 

The thesis aims to improve the candidate-assessment-based navigation strategies 

applied by the autonomous search and rescue robot when the decision on where 

to move next is made by considering only the current state of the robot and the 

environment and having inaccurate input data characteristics. 

Tasks of the Thesis 

To achieve the aim of the thesis, the following problems had to be solved: 

1. To review common navigation and environment exploration strategies 

applied by the autonomous robots and determine the shared limitations 

of these strategies in search and rescue missions. 

2. To develop novel candidate assessment strategies considering the 

common limitations of the candidate-assessment-based autonomous 

navigation strategies. 

3. To develop an adaptive autonomous navigation strategy that allows 

switching between the rules that govern the candidate assessment 

process. 

4. To develop novel extensions of the multi-criteria decision-making 

methods capable of considering the inaccurate input data characteristics. 

5. To evaluate the performance of the developed multi-criteria decision-

making method extensions. 

6. To investigate the performance of the proposed autonomous navigation 

strategies in the simulated search and rescue missions. 

Research Methodology 

This thesis applied literature analysis methods for the investigation of the existing 

autonomous environment exploration strategies and problem formulation. Fuzzy 

logic, neutrosophic set theory and multi-criteria decision-making methods were 

applied to develop an adaptive online autonomous environment exploration 

strategy for search and rescue missions. The quantitative and qualitative 

evaluation methods were used for the assessment of the proposed autonomous 

navigation strategies. 
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Scientific Novelty of the Thesis 

This thesis introduces the following scientific novelty: 

1. The state-of-the-art WASPAS, multi-criteria decision-making method, is 

proposed two novel extensions, which utilise the neutrosophic set logic 

and enable the assessment of the inaccurate input data characteristics; i.e., 

WASPAS modelled under the interval-valued neutrosophic set 

environment (WASPAS-IVNS); and WASPAS modelled under the m-

generalised q-neutrosophic set environment (WASPAS-mGqNS). 

2. The novel egoistic, altruistic and impartial candidate assessment 

strategies are proposed for autonomous robot navigation in the search and 

rescue environments. 

3. A novel adaptive approach is developed for autonomous search and 

rescue robots, which combines fuzzy logic controller with multi-criteria 

decision-making methods. 

Practical Value of the Research Findings 

The research findings can be useful when developing and extending autonomous 

navigation and environment exploration strategies applied by autonomous mobile 

robots. Practical application of the proposed strategies can be valuable in 

collecting on-scene information about dangerous search and rescue sites without 

putting humans at risk. The proposed method allows robots to make decisions in 

real-time and choose different rules of operation, depending on the dynamic 

environment information. For example, while navigating, robots can apply an 

egoistic behaviour model and avoid danger, an altruistic model and prioritise 

reaching survivors, or an impartial behaviour model that could be useful in 

situations where area mapping is the most important task. The proposed criteria 

set that define distinctive navigation strategies are flexible and not exhaustive. 

Therefore, by introducing new criteria or adjusting the weights of the applied 

ones, the proposed strategies can be easily extended to consider new navigational 

requirements and, thus, be adjusted to specific real-world situations. The results 

also include the developed WASPAS extensions under the interval-valued 

neutrosophic environment (WASPAS-IVNS) and the m-generalised q-

neutrosophic environment (WASPAS-mGqNS). These modern methods can be 

applied to consider vague input data characteristics that are often present in real-

world situations due to the imprecise sensor readings and various measurement 

errors in the criteria assessment process. Therefore, these MCDM method features 

can be applied not only in the context of autonomous robot navigation tasks but 
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can also be applied in multiple decision-making problems where there is a 

possibility of uncertain criteria values. 

Defended Statements 

The following statements based on the results of the present investigation may 

serve as the official hypotheses to be defended: 

1. The developed WASPAS method extensions under the interval-valued 

and m-generalised q-neutrosophic sets are stable and capable of 

considering the inaccurate input data characteristics. 

2. The developed autonomous navigation and environment exploration 

strategies that consider the issues of robot safety, visitation of the detected 

survivors, exploration around the priority locations of the autonomous 

robot, define different egoistic and altruistic robot behaviour models and 

are more effective when compared to the baseline strategies that assess 

only the common cost–benefit models. 

3. The developed adaptive autonomous navigation and environment 

exploration strategy that combines the fuzzy logic controller and MCDM 

methods enables the robot to effectively switch between the rules that 

govern candidate assessment strategies and increase the performance of 

the autonomous robot. 

Approval of the Research Findings 

Research results on the dissertation topic were published in six scientific 

publications. Four were published in the reviewed scientific journals, which are 

indexed in Web of Science databases (Semenas & Bausys, 2022; Semenas, Bausys 

& Zavadskas, 2021; Semenas & Bausys, 2020; Bausys, Cavallaro & Semenas, 

2019); and two were published in proceedings of international conferences 

(Semenas & Bausys, 2021; Semenas & Bausys, 2018). 

The author made three presentations at international scientific conferences: 

− 2nd International Conference on Communication and Intelligent Systems 

(ICCIS 2020), India, 26–27 December 2020. 

− 10th International Workshop Data Analysis Methods for Software 

Systems (DAMSS 2018), Druskininkai, Lithuania, 29 November  − 1 

December 2018. 

− Open Conference of Electrical, Electronic and Information Sciences 

(eStream), Vilnius, Lithuania, 26 April 2018. 
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The Structure of the Dissertation 

The scope of the dissertation consists of an introduction, the three main chapters, 

general conclusions, a reference list, and the list of publications by the author. The 

scope of the thesis is 121 pages, 57 equations, 23 figures and 22 tables. A total of 

126 thesis-related research references are made.
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1 
Overview of the Autonomous Robot 

Navigation Strategies 

This chapter reviews the autonomous navigation and environment exploration 

strategies applied by autonomous search and rescue (SAR) robots. It discusses 

common applied autonomous navigation strategies and issues that must be 

considered when designing entirely autonomous SAR robots. The presented 

approach centres on the online candidate assessment strategy by multi-criteria 

decision-making methods (MCDM). This chapter concludes by formulating the 

main objective and tasks of the present investigation. 

Parts of this chapter were published in articles (Semenas & Bausys, 2018; 

Bausys, Cavallaro & Semenas, 2019; Semenas & Bausys, 2020; Semenas & 

Bausys, 2021; Semenas, Bausys & Zavadskas, 2021; and Semenas & Bausys, 

2022). 

1.1. Search and Rescue by Autonomous Robots 

The level of real-world disasters can vary from small and localised (such as fires 

in an industrial complex) to large-scale and covering vast habitable areas (e.g., 

earthquakes, floods and tsunamis) (Memon et al., 2016; Nagatani et al., 2013). 
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Disasters usually result in human casualties, health risks in affected communities, 

and economic and environmental damages (Jorge et al., 2018). 

However, the introduction of autonomous search and rescue robots in such 

events can help to mitigate some of the mentioned problems by providing the on-

scene information to responder teams, enabling them to react faster and make 

better decisions. By increasing the situational awareness of the first responders, 

more tasks can be accomplished in a shorter span of time. Also, the high-risk areas 

that need to be avoided or require more safety precautions before sending humans 

to such locations can be determined in advance (De Cubber et al., 2017). 

Therefore, in search and rescue missions, autonomous robots are expected 

not only to create the representative map of the disaster site but are also tasked to 

complete a set of other high-level objectives of varying complexity, such as safely 

navigating in disaster sites with complex terrain and multiple obstacles (Luneckas 

et al., 2021b), finding and contacting survivors, visiting specific landmarks or 

locating dangerous objects and events (Jacoff et al., 2003). These high-level 

objectives and the assumed space of operation are the defining factors that 

influence the autonomous robot design (e.g., it can be an autonomous flying aerial 

vehicle (Kikutis, Stankūnas & Rudinskas, 2019) or a walking hexapod robot 

(Luneckas et al., 2021a), just to name a few). Thus, search and rescue robots can 

be classed as: 

− Unmanned Aerial Vehicles (UAVs) (San Juan et al., 2018) that can be 

used for aerial-based search in harsh or vast environments, such as 

mountains (Silvagni et al., 2017; Karaca et al., 2018) or above the bodies 

of water (Zheng, Hu & Xu, 2017); 

− Unmanned Surface Vehicles (USVs) that operate above the surfaces of 

water bodies to assist water-stranded boats or people (Jorge et al., 2018); 

− Unmanned Underwater Vehicles (UUVs) that operate in deep-sea 

missions or are applied in flooded environments. 

− Unmanned Ground Vehicles (UGVs) that are used in many situations, 

such as exploring disaster sites after an earthquake and assisting detected 

survivors (Sahashi et al., 2011; Kruijff et al., 2012) or operating in mining 

site disasters (Murphy et al., 2009; Reddy, Kalyan & Murthy 2015);  

Although autonomous robots in search and rescue missions can provide 

many benefits, their application in real-world tasks is currently limited due to the 

high robustness and stability requirements. Thus, it is more common for SAR 

robots to perform alongside humans, forming human–robot teams (Sheh et al., 

2016) and leaving the important decisions (e.g., confirmation of the detected 

survivor) to the human operators. Currently, there is no globally-recognised 

standard that describes how the decision-making modules of such robots should 

be designed.  
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Many initiatives have been taking place around the globe to address this 

problem and to establish globally-recognised guidelines for SAR robot 

development (performing autonomously or in human–robot teams). For example, 

the Center for Robot-Assisted Search and Rescue (CRASAR) was established in 

the United States of America. The main mission of this organisation is not only to 

support and promote the development and application of autonomous robots in 

disaster response but also to prepare trained specialists capable of working 

together with autonomous robots in search and rescue scenarios (CRASAR, 

2020). It is also worth noting that this organisation has participated in the 9/11 

response, providing on-the-ground assistance by rescue robots. 

The European Union (EU) has also supported many initiatives related to the 

use of autonomous robots in search and rescue operations (De Cubber et al., 

2017). One of such EU funded efforts was the NIFTi project which was active for 

four years starting in 2010 and focused on human–robot interaction in search and 

rescue missions (Kruijff et al., 2014). By focusing on the aspects of optimisation 

and separation of human and robot task loads, forms of communication and 

alignment with human rescue teams, NIFTi aimed for stronger robot cooperation 

with human rescue teams. The results of this project were successfully applied 

after the 2012 earthquake in Northern Italy (Kruijff et al., 2012).  

Another EU funded project — TRADR — is a direct successor of NIFTi. 

The project was active for four years, starting in 2013 and focused on human–

robot team interaction and cooperation in search and rescue scenarios (Kruijff-

Korbayová et al., 2015). TRADR’s main goal was to develop robust user-centric 

strategies for long-term SAR missions involving UAVs and UGVs with different 

levels of autonomy. 

INACHUS was one more EU project that could be considered a successful 

investment. It has been active since 2015 and has also continued for four years. 

This project was directed at developing solutions for urban search and rescue 

missions, enabling the rapid assessment of structural damage to the disaster site 

and providing tools to efficiently plan the actions of the first responders. The 

project includes modern sensor systems and communication solutions for survivor 

localisation (e.g., mobile phone signals, chemical sensors etc.) (Rigos et al., 2018), 

a snake-type robot design, which can navigate through rubble and other small 

spaces, decision and planning strategies for casualty and damage estimation. 

In Asia, Japan and South Korea are also working on search and rescue robots. 

For example, in the 2011 Fukushima Daiichi event, robots were used to inspect 

structures with high collapse risk and to search for tsunami victims (Nagatani 

et al., 2013). Motivated by this event, the 2015 DARPA Robotics Challenge 

presented similar disaster site conditions to provide a platform for testing robots 

in performing common SAR objectives. In this event, the South Korean team won 

first place by developing a search and rescue robot capable of performing all of 
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the required tasks of driving a vehicle, opening doors, climbing ladders and other 

challenges important in real-world SAR missions (De Cubber et al., 2017). 

One notable global event that provides a testing ground for new autonomous 

robot design and environment exploration strategies for search and rescue 

missions is RoboCup Rescue Robot League (Akin et al., 2013; Sheh et al., 2016; 

RoboCup Rescue, 2020). This competition provides a testing ground suitable for 

the assessment of the robot’s ability to navigate and explore disaster sites, create 

representative environment maps, locate the survivors and assess their condition, 

and deliver or extract various objects. Such an annual competition-based approach 

enables the modelling of good robot design practices, identification of effective 

navigation and environment exploration strategies, creating a globally-recognised 

approach (Aghababa et al., 2019) for testing autonomous robot capabilities, and 

measuring the overall progress of autonomous search and rescue robots and 

strategies throughout the years.  

The autonomous navigation and environment exploration strategies applied 

by the SAR robots are affected by many different factors, including how the 

underlying high-level objectives are modelled. And the modelling of these 

objectives can involve many different stakeholders, such as medical staff, police 

officers, firefighters, disaster survivors, local authorities and journalists, just to 

name a few. Each of these stakeholders can have a set of unique expectations or 

requirements for the deployed autonomous robot, introducing value tensions that 

should be addressed to achieve not only the given mission goals (Harbers et al., 

2017) but also to create a transparent and trusted autonomous system.  

For example, in search and rescue missions, firefighters can prioritise the 

robot to construct a map that represents the layout of the disaster site and mark 

the locations of dangerous events that may hinder the rescue process. Medical 

staff can prioritise the monitoring of the detected survivors, and survivors can 

prioritise their own well-being. Also, robots are expensive tools that could be 

modelled to egoistically protect themselves from harm instead of achieving some 

of the given short-term goals. 

As autonomous SAR robots can be involved in decision-making situations 

that directly affect humans, an efficient robot decision-making strategy must 

balance the set stakeholder requirements while also addressing real-world 

legislative and ethical design requirements (Veruggio & Operto, 2008) applicable 

to the intelligent systems. Therefore, several papers have emerged to address these 

issues. For example, Murphy and Woods (2009) addressed the inherent flaws of 

the fictional Asimov laws (Asimov, 1950) and proposed three laws of responsible 

robotics. Amigoni and Schiaffonati (2018) considered the application of an ethical 

framework to search and rescue robot design and development. Vanderelst and 

Winfield (2018) tested an ethical behaviour model in physical robots, providing 

proof of the concept that robots can be enforced to behave socially acceptably. 
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Bogue (2014) reviewed the ethical and legal issues of several existing and 

emerging classes of robots, and Alaieri and Vellino (2016) published a paper 

discussing the issue of unpredictable robot behaviour and the liability transferring 

from the robot to its designers and users (although it should be clarified that in 

SAR scenarios, important decisions that impact the survivors are currently always 

entrusted to the humans). Boddington et al. (2017) discussed a collection of recent 

works that tackle ethical concerns in artificial intelligence. 

Several global initiatives have also been started to develop a globally-

recognised standard for the development of intelligent autonomous systems. IEEE 

has recently launched its global initiative on the ethics of autonomous and 

intelligent systems to advance the public discussion by proposing the concept of 

ethically aligned design (Chatila & Havens, 2017). The European Union 

institutions addressed the rising concerns by preparing a legislative analysis for 

devising civil law rules regarding the smart autonomous systems (Nevejans, 2016) 

and, in 2019, presented ethical guidelines for trustworthy artificial intelligence 

(AI HLEG, 2019), which can also be applied when designing autonomous SAR 

robots. However, the discussed research initiatives do not define exact operative 

rules to follow but rather provide abstract guidelines that should be considered 

when practically designing autonomous robot systems. Therefore, the practical 

development of a decision-making strategy, including how the criteria and their 

relative importance are determined, is still an immense challenge due to the 

complexity of real-world situations. Moreover, the incomplete information about 

the environment and uncertainty that is associated with such information (Yager, 

2020) introduce additional complexity to the task, requiring a flexible approach 

for modelling robot navigational behaviour in SAR missions. 

The strategies that enable the flexible adjustment of autonomous SAR robot 

navigational behaviour could be based on the ethically adjustable design model 

proposed by Contissa et al. (2017). In general, by extending this design, the robots 

can be dynamically adjusted to adopt different behaviour models and, therefore, a 

more flexible approach can be exploited to solve complex navigational problems. 

This behaviour-based approach was somewhat indirectly tested in the research by 

Roesner et al. (2019), which proposes a controller for UAV-type swarms. In this 

research, agents either assist a detected survivor (act in an altruistic manner) or 

prioritise exploration and increase the robot’s operational time enabling it to act 

in an egoistic manner, highlighting the possibility of different robot behaviour 

model development. Also, if the previously discussed EU guidelines for 

trustworthy intelligent systems are considered (AI HLEG, 2019), the approach of 

modelling explicit altruistic and egoistic navigation strategies can provide a solid 

foundation for flexible, autonomous navigation strategy due to the inherent 

transparency of this approach. 
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1.2. Environment Exploration Strategies for 
Autonomous SAR Robots 

As a robot must navigate in an unknown environment, an important factor 

becomes not how the robot moves between the spatial targets (specifically, not 

how the concrete movement trajectories are planned (Ning et al., 2012)), but rather 

where it moves (what spatial targets the robot should select and reach) considering 

the high-level objective (Amigoni, Basilico & Quattrini Li, 2014). One can define 

the two common objectives given to the autonomous mobile robots as the 

coverage and the exploration of the environment. In coverage objectives, 

autonomous robots are required to navigate so in a known environment that would 

allow them to observe (or physically visit) all of the available locations within 

(Choset, 2001; Galceran & Carreras, 2013), whilst in the environment exploration 

tasks, autonomous robots are required to explore the initially unknown 

environment by discovering its features. 

In general, environment exploration strategies define how autonomous 

robots navigate and gather information within the given operating environment. 

The main factors that define the complexity of these strategies are the amount of 

the initially available information, the success conditions of the high-level 

objective, and the additional requirements that the robot must address during the 

exploration process (e.g., to create a representative map of the exploration 

environment, visit specific locations or landmarks, detect a number of task-related 

objects, deliver items to specified locations, etc.). It is also important to note that 

if search and rescue missions are considered, the primary objective is usually not 

to build an accurate environment map but rather to find as many survivors as 

possible within a limited time (Basilico & Amigoni, 2011). 

One of the main factors that define the applicability of autonomous 

navigation and environment exploration strategy is the amount of initially 

available information that could be provided to the exploring SAR robot. 

Depending on this parameter, the applied strategy can either be classed as offline 

or online (Amigoni, Basilico & Quattrini Li, 2014). 

In situations where the layout of the environment and other objective-related 

information is known in advance, global optimisation (offline) path planning 

strategies can be applied to find the optimal or near-optimal solution to the 

exploration process (Amigoni, Basilico & Quattrini Li, 2014). These methods can 

include classical approaches, such as A* or Dijkstra, sampling-based methods or 

bio-inspired neural networks (Kulvicius et al., 2021). Certainly, there are cases 

where path planning methods can compute every possible outcome for a finite 

number of actions and determine the optimal path. However, this depends on the 

complexity of the high-level objective and the supplementary tasks that the 

autonomous robot must complete. According to Galceran and Carreras (2013), 
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even the simplest path planning tasks for coverage objectives are related to the 

covering salesman problem and, therefore, are NP-hard. This means that in many 

scenarios, only the near-optimal solutions to the exploration problem can be 

achieved if the autonomous robot system is required to perform in real-time 

(online). 

Considering the environment coverage tasks, the computation of guided 

paths is a fast and simple framework that can be applied by the robot designer to 

enable autonomous robots to systematically cover the exploration environment by 

following pre-computed paths (e.g., spirals with an increasing radius (Choi et al., 

2009)). Some other examples of path planning methods can include strategies that 

define a set of priority locations (Roa-Borbolla et al., 2017) to be visited or 

avoided and strategies that implement wall following (González et al., 2005; 

Katsev et al., 2011). Although strategies that apply guided coverage paths are 

moderately easy to implement, their efficiency is arguable in situations where 

none or only partial information about the environment and its conditions can be 

presented to the robot in advance. In such cases, hybrid frameworks that 

incorporate environment exploration methods or a multiple robot cooperation 

approach can be applied to achieve better results. Several examples of such terrain 

coverage strategies can be found in the research of Zheng et al. (2005) and 

Senthilkumar and Bharadwaj (2008). 

However, in many real-world navigation and environment exploration 

scenarios, the application of offline global path planning and optimisation 

strategies is hardly possible. Due to the lack of initial information, the complete 

set of possible candidate locations for the robot to visit is unknown in advance, 

meaning that the decision-making module cannot optimise the robot’s path. 

Nevertheless, autonomous SAR robots are expected to explore the unknown 

environment and complete the given high-level objective without any (or only 

with minimal) intervention from human operators (Calisi et al., 2007; Akin et al., 

2013). To solve this problem, robot designers can utilise a variety of online 

autonomous navigation and environment exploration strategies, in which the 

initially unknown environment features are discovered by iteratively directing the 

autonomous robot to visit and observe the unknown portions of the search space. 

These online environment exploration strategies are commonly based on the 

greedy next-best-view approach, which interprets the robot-constructed map to 

determine a set of candidate locations within the partly explored search space and 

choose the one that should be visited by the robot (Basilico & Amigoni, 2011). 

By applying these strategies, the decision on where the robot should move next is 

made on the go and therefore depend only on the current state of the robot and the 

known environment information. In other words, instead of trying to optimise the 

exploration path globally by considering every possible outcome, the next-best-

view analysis and decision-making approach tries to optimise short-term 
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decisions by searching for the local maximums that best correspond to the given 

high-level objective at each decision-making step. The underlying idea of such 

navigation strategies is to increase the robot’s partial knowledge about the search 

space to make better decisions on where to move next. The general concept of 

such environment exploration strategies can be defined as provided in Fig. 1.1. 

 

 
Fig. 1.1. Schematical representation of a common autonomous robot navigation strategy 

At the start of autonomous navigation, the robot utilises the environment 

perception sensors and collects information about the environment features, such 

as physical obstacles and structures in its field of view. The newly acquired data 

is then stitched to the robot-constructed environment representation model. The 

robot applies self-localisation techniques and determines its position on the 

constructed map. This partial environment map is also used to determine a set of 

candidates that could be reached from the robot’s current position. The candidates 

are then compared based on the given high-level optimisation requirements. The 

highest-ranked is then chosen as the next goal for the robot to reach. Then, the 

autonomous robot moves to the selected candidate by applying path-planning and 

obstacle avoidance algorithms. This process is repeated from the first step until 

the mission termination conditions are met, e.g., there are no more unvisited 

candidate locations left, the robot battery is depleted, or the high-level objective 

is completed. 

In the context of this thesis, the most important segment of the online 

environment exploration process can be identified in the second and third steps of 

the navigation loop. To make an effective decision on where to move next, the 

robot has to build a list of reachable candidates, compare these candidates with 

each other and choose the most valuable one. 

Many different strategies can be applied to assess the candidate locations. 

For example, Yamauchi (1997) proposed a popular and easy-to-implement 

approach commonly used as a baseline for algorithm improvement and testing 

(Gomez, Hernandez & Barber, 2019; Juliá, Gil & Reinoso, 2012). It is based on 
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determining the distance to the frontier (the boundary region between the already 

explored and unknown space) and selecting the closest one. By following this 

approach, every time the robot reaches the selected frontier, newly discovered 

environment information is added to the robot-constructed map. Then, the list of 

available frontiers is updated, and the process of decision-making and moving to 

the selected goal is repeated. 

In theory, the simple approach of leading the robot to the closest frontier 

would be sufficient in eventually covering the whole exploration space. However, 

as the complexity of the task increases, so does the complexity of the candidate 

frontier assessment. For example, in tasks where the exploration speed and the 

size of the robot-observed environment are important conditions for the overall 

success of the high-level objective, the robot operators could prioritise visiting 

candidates that are expected to provide more information about the environment 

while also minimising the time needed to reach the candidate frontier. Therefore, 

in such cases applying a single criterion to determine where to move next is not 

sufficient when considering the complexity of these tasks. A more efficient 

approach could be assessing candidate locations by balancing several competing 

criteria that define the underlying high-level objective. In other words, multiple 

and often competing criteria can be applied to assess the candidate frontiers. 

Therefore, this problem can be viewed as a multi-criteria problem, where each 

candidate is evaluated by combining a set of task-related criteria to determine the 

one with the highest utility. This candidate frontier is then chosen by the robot as 

the next-best location that the exploring robot should reach. 

Several papers address this problem by introducing varying strategies for 

assessing the candidates. For example, González-Baños and Latombe (2002) 

proposed to assess the utility of a candidate location by measuring the distance 

between it and the robot while also estimating how much new information would 

be gained by reaching it. Makarenko et al. (2002) proposed to assess the candidate 

locations by the sum of the three utilities: the information gain utility, which is 

measured by estimating the amount of free grid-map cells around each candidate 

frontier; the utility of the cost of driving from the robot’s current location to the 

candidate location; and the localisation utility, which defines the expected 

precision of robot localisation in the candidate location. Amigoni and Gallo 

(2005) proposed considering the map overlap parameter, and Visser and Slamet 

(2008) also proposed expanding the criteria list for candidate assessment by 

considering the probability of communication. DasGupta et al. (2006) introduced 

an aggregation/refinement-based object search approach in which the exploration 

space is divided into a finite number of regions. In this strategy, each region is 

treated as a graph vertex with a set cost and reward value. A strategy on criteria 

value assessment for evaluating candidate locations is discussed by Potthast and 
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Sukhatme (2014), who proposed a probabilistic method to estimate the 

information that could be gained in extremely cluttered environments. 

 Basilico and Amigoni (2011) implemented a frontier-based environment 

exploration strategy and proposed to assess the utility of a candidate by estimating 

a set of commonly applied criteria, i.e., the distance to the candidate frontier, the 

estimated information gain, the probability of the robot to communicate (send 

information) after reaching the candidate frontier. Gomez et al. (2019) also 

introduced a frontier-based approach that incorporates semantic (transit area 

importance), geometric (size of the frontier) and topological (the distance that the 

robot has to travel) criteria for selecting the next candidate frontier. 

Ström et al. (2017) proposed a prediction-based exploration approach for 

autonomous navigation in enclosed environments, and Wang et al. (2018) 

proposed a collaborative environment exploration approach, in which aerial and 

ground robots are deployed for fast environment mapping objectives. However, 

the latter researchers applied a standard candidate frontier assessment 

methodology for evaluating the expected information gain versus the cost needed 

to obtain this information. 

Although different candidate assessment strategies can be employed in 

autonomous navigation and environment exploration tasks, the expectations 

triggered by autonomous systems and their applicability in no-win situations (that 

are typical in search and rescue missions) highlight that a clash of prioritisation 

ordering between competing options is inevitable in some real-world situations 

(McGrath and Gupta, 2018). In other words, the decision-making process is 

dependent on the assessment of multiple competing technical, social, economic, 

environmental, cultural, and religious belief-based criteria. As such, in the context 

of autonomous robot systems, candidate assessment problems can be thought of 

as multi-criteria decision-making problems that involve several competing 

optimisation priorities set by the robot designers or operators. 

In this thesis, the exploration of the search and rescue environments is 

considered when the environment information, such as the location of survivors 

and the current state of the exploration space, is unknown in advance. By 

considering the commonly applied next-best-view approach for exploring initially 

unknown environments and the criteria-based nature of the candidate assessment 

and selection problem, it can be argued that multi-criteria decision-making 

methods can be applied as an effective way of combining and comparing 

competing criteria sets that correspond to the underlying high-level objective. 

Therefore, the application of MCDM methods in autonomous navigation and 

environment exploration tasks is discussed next. 
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1.3. Multi-Criteria Decision-Making Approach for 
Autonomous Environment Exploration 

Considering decision-making problems typical in the real world, there can be an 

essentially unlimited number of competing criteria with different levels of 

importance that need to be assessed to make an optimal (or, in many real-world 

cases, just near-optimal) decision (Aruldoss et al., 2013). In other words, it is 

common that the dominant solution to the problem does not exist, and one must 

choose the best alternative from the available list while assessing the set of 

preferences and their importance to the high-level objective. 

With a finite number of alternatives to choose from and each alternative 

assessed by a finite number of task-related criteria, the problem can be simplified 

to the selection of the best alternative. In this sense, some assessment problems 

can be solved by linearly combining a set of criteria and assigning a crisp score 

value to each alternative. However, when the complexity of the task increases and 

the number of competing criteria is too big to handle, multi-criteria decision-

making methods come into the spotlight. And throughout the years, many 

different MCDM methods and their extensions were proposed (Mardani et al., 

2017), such as AHP, TOPSIS, ELECTRE, PROMETHEE, WPM, WSM, 

WASPAS, MULTIMOORA, COPRAS, VIKOR (Aruldoss et al., 2013; Kumar 

et al., 2017; Mardani et al., 2017; Zavadskas et al., 2012), just to name a few. 

Multi-criteria decision-making methods are exceptional tools that are 

commonly applied when aiming to model and solve complex decision-making 

problems in the economic, social, energy and engineering fields. For example, the 

problem of selecting a location for the waste incineration plants by the WASPAS 

MCDM method is discussed by Zavadskas et al. (2015a). The design selection 

problem of lead-zinc flotation circuits is considered by Zavadskas et al. (2016). 

The MULTIMOORA method was applied to a house-shape evaluation problem 

by Juodagalvienė et al. (2017). Stojić et al. (2018) proposed a methodology for 

supplier selection for manufacturing chains, and more recently, an MCDM-based 

safety evaluation methodology for urban parks was introduced by Zavadskas et al. 

(2019). The industrial robot selection problem was discussed by Keshavarz 

Ghorabaee (2016). Chandrawati et al. (2020) proposed to apply the WASPAS 

MCDM method to determine the most efficient evacuation route in the case of 

flooding disasters. 

As the MCDM methods are extremely flexible tools, there are also MCDM 

method application examples when considering real-world problems in the field 

of robotics and autonomous mobile systems. For example, a method for selecting 

an automatically guided vehicle for warehouse automation is proposed by 

Zavadskas et al. (2018). The problem of selecting the most appropriate manoeuvre 

for autonomous city vehicles is considered by Furda and Vlacic (2010) and solved 
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by applying the Simple Additive Weighting Method. Martín Ramos et al. (2010) 

applied MCDM methods for path selection for an autonomous mobile robot. 

Similarly, Jeddisaravi et al. (2016) proposed to utilise the ELECTRE I framework 

for time-limited environment coverage and exploration task. The proposed 

approach utilises the multi-criteria decision-making methods to select the pre-

computed route that maximises area coverage and minimises the visibility field 

overlap of the waypoints. However, the latter approaches by Martin Ramos and 

Jeddisaravi are a bit different in the sense that the decision-making method is 

applied for selecting the path that was computed by the offline strategy, rather 

than proposing the online autonomous navigation and environment exploration 

strategy. 

The explicit navigation strategy for the autonomous robot by multi-criteria 

decision-making methods for criteria combination and deciding on where to move 

next is proposed by Amigoni and Gallo (2005). Basilico and Amigoni (2011) 

propose to extend this research by applying the Choquet fuzzy integral for criteria 

combination to determine the best position to move to in search and rescue 

missions. The candidates are assessed by applying the standard criteria set of the 

expected information gain, the ability to communicate after reaching the candidate 

location, the distance to the candidate location, and the time that is needed to reach 

the candidate. The results of this research highlight the efficiency of MCDM 

methods when applied in the online decision-making approach compared to the 

standard ad hoc strategies. 

Following this research, a PROMETHEE II outranking method is proposed 

by Taillandier and Stinckwich (2011) to improve the robot’s decision-making 

ability. As in the previous research, the standard criteria of the distance to the 

candidate location, the ability to transmit information and the estimated amount 

of new information that would be gained after reaching the candidate were applied 

in the assessment process. In the recent research, the author of this thesis 

introduced several strategies for candidate frontier assessment by also considering 

robot safety-related criteria for the assessment of the candidate locations in the 

robot’s local space (Bausys, Cavallaro & Semenas, 2019). Polvara et al. (2020) 

proposed a strategy that, along with the set standard criteria, also considers battery 

status, sensing time and radio frequency identification (RFID) tag information 

gain. However, the latter method is created specifically for environment coverage 

problems for the discovery of RFID tags. Lastly, Zagradjanin et al. (2022) applied 

TOPSIS, SAW and COPRAS MCDM methods for selecting a candidate to be 

reached by the robot next. 

Although online next-best-view environment exploration strategies allow for 

the possibility to balance criteria that support the given high-level objective, the 

multi-criteria decision-making method application capabilities in complex 

scenarios are yet to be exhaustively studied, especially if search and rescue 



1. OVERVIEW OF THE AUTONOMOUS ROBOT NAVIGATION STRATEGIES 19 

 

missions are considered. Another prominent issue is unstable robot navigation and 

path planning performance, computation of the imperfect environment 

representation model and inaccurate robot sensors. Thus, the ability to consider 

the uncertain or imprecise input data characteristics applied to decide where the 

robot should move next in a partially explored environment is a prominent issue 

that prompts researchers to look for modern techniques when modelling such data 

in complex decision-making problems. 

1.4. Conclusions of Chapter 1 and the Formulation of 
the Thesis Tasks  

The key observations and conclusions were formulated following the literature 

review: 

1. Search and rescue missions are complex tasks in which autonomous 

robots can be used to collect on-scene information and reach additional 

objectives (e.g., establish communication with the detected survivors or 

mark dangerous events in the area) to increase the safety and efficiency 

of rescue teams, enabling them to make more informed decisions. 

However, it is common that in real-world situations, none (or little) a 

priori information about the environment can be provided to the robot, 

meaning that only the near-optimal solutions to the autonomous 

navigation and environment exploration problem can be achieved. Thus, 

a popular approach to this problem is the application of online candidate 

assessment strategies. 

2. The candidate assessment problem can be viewed from the multi-criteria 

decision-making perspective. Specifically, the competing optimisation 

priorities (or high-level objectives) that define the core of the candidate 

assessment strategy can be modelled by a group of maximised and 

minimised criteria. Then, the multi-criteria decision-making methods can 

be applied to assess the utility of each candidate. However, generally 

applied candidate assessment strategies fail to address the issues of the 

inaccurate input data characteristics when deciding on where the robot 

should move next. Therefore, effective methods that can consider this 

decision-making issue are needed. 

3. Presently, common candidate assessment strategies are based on the cost–

benefit approach that considers mainly the technical environment 

exploration parameters, including the distance from the robot to the 

candidate, the time needed to reach the candidate, the ability to transmit 

information after reaching the candidate, and the estimated amount of new 
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information that could be discovered. However, these strategies fail to 

consider the safety, social and other factors of the autonomous SAR 

missions. Also, as international organisations require to ensure the 

transparency and flexibility of autonomous systems, novel autonomous 

navigation and environment exploration methods that would consider 

these requirements are needed. 

4. Additionally, commonly applied candidate assessment strategies are 

modelled on the notion that the rules governing the decision-making 

process do not change throughout the environment exploration. 

Therefore, an adaptive autonomous navigation strategy capable of 

switching between the rules that govern the candidate assessment process 

could show potential in SAR missions. 

 

Based on the performed literature survey, the following tasks were 

formulated to achieve the aims of the study: 

1. To develop novel candidate assessment strategies considering common 

limitations of the candidate-assessment-based autonomous navigation 

and environment exploration strategies. 

2. To develop an adaptive autonomous navigation strategy that allows 

switching between the rules governing the candidate assessment process. 

3. To develop novel extensions of the multi-criteria decision-making 

methods, able to consider the inaccurate input data characteristics. 

4. To evaluate the performance of the developed multi-criteria decision-

making method extensions. 

5. To investigate the performance of the proposed autonomous navigation 

strategies in simulated search and rescue missions.



 

21 

 

2 
Neutrosophic Multi-Criteria Decision-

Making Methods for Autonomous 
Robot Navigation 

This chapter discusses the environment exploration strategy based on multi-

criteria decision-making (MCDM). It defines the candidate assessment problem 

and introduces novel extensions for the state-of-the-art WASPAS MCDM 

methods, i.e., the WASPAS-IVNS method modelled under the interval-valued 

neutrosophic set environment, and the WASPAS-mGqNS method modelled under 

the m-generalised q-neutrosophic set environment. Also, the chapter introduces 

the approach for switching between the strategies governing the candidate 

assessment process and, finally, offers conclusions. 

Parts of this chapter were published in articles (Bausys, Cavallaro & 

Semenas, 2019; Semenas & Bausys, 2020; Semenas & Bausys, 2021; Semenas, 

Bausys, & Zavadskas, 2021; Semenas & Bausys, 2022). 
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2.1. Autonomous Robot Navigation using  
Multi-Criteria Decision-Making Approach 

As motivated in the previous section of this thesis, the proposed autonomous 

navigation and environment exploration strategy is based on the robot’s ability to 

make an effective decision on where to move next. This decision is made by 

applying an online approach to evaluate the discovered environment information, 

robot state and the candidate’s performance according to the considered 

optimisation priorities. Thus, the preliminaries of the proposed environment 

exploration strategy are presented, and the approach to the candidate assessment 

is discussed from the theoretical perspective. As the considered environment 

exploration approach extends the frontier-assessment-based strategy (Yamauchi, 

1997), the candidates the robot can reach can also be referred to as frontiers. 

Considering the developed environment exploration strategy, the decision on 

where to move next is made by measuring the utility 𝑈 of each candidate frontier 

𝑝𝑓(𝑥, 𝑦). This value is computed by applying a group of unique, problem-related 

criteria 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} and their relative weights 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛}, 

corresponding to the optimisation priorities given to the autonomous search and 

rescue robot. In other words, the optimisation priorities can be defined by a 

collection of competing functional, economic, social, ethical, environmental or 

other requirements, which are either maximised or minimised. By measuring the 

utility of each candidate, the robot can then choose the next short-term goal. 

A group of candidate frontiers 𝑃𝑓 = {𝑝𝑓(𝑥, 𝑦) 1, 𝑝𝑓(𝑥, 𝑦)2, … , 𝑝𝑓(𝑥, 𝑦)𝑚} is 

determined in the proposed approach whenever new environment information is 

added to the partial environment representation model. Thus, each time the robot 

discovers new information (e.g., a new frontier, a survivor or a dangerous object), 

criteria values are recalculated, and the utilities of candidate frontiers are re-

assessed. As the map is updated once every second by attaching newly discovered 

information, new frontiers may be discovered at this frequency. Therefore, in this 

thesis, frontier detection and utility assessment processes are performed at 

persistent time intervals. This approach helps to reduce the number of 

computations during runtime, to prevent indecisive robot behaviour, and also 

enables the robot to change its movement direction if a frontier with higher utility 

is detected while moving to the previously selected candidate. 

Throughout the frontier assessment process, a vector of optimisation-related 

criteria values 𝑐 ∈ 𝐶 is mapped to the candidate frontier 𝑝𝑓(𝑥, 𝑦)𝑖 as 𝑝𝑓 =

{𝑐1(𝑝𝑓(𝑥, 𝑦)𝑖), 𝑐2(𝑝𝑓(𝑥, 𝑦)𝑖), … , 𝑐𝑛(𝑝𝑓(𝑥, 𝑦)𝑖)}. Then, by applying multi-criteria 

decision-making methods, utility 𝑈(𝑝𝑓(𝑥, 𝑦)𝑖) of a candidate frontier 𝑝𝑓(𝑥, 𝑦)𝑖 ∈

𝑃𝑓 is assessed, and the one with the highest utility 𝑈(𝑝𝑓(𝑥, 𝑦)∗) is selected as a 

new goal for the autonomous robot to reach. 
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2.2. Criteria Weight Assessment by SWARA Method 

In general, criteria weights indicate the direction of optimum prioritisation and 

showcase how the importance of one criterion is compared to another. Thus, the 

deliberate criteria weight assessment is essential to efficiently solve the given 

decision-making problem (in the context of this thesis, deciding where the robot 

should move next). As different stakeholders can prioritise different criteria 

(Harbers et al., 2017) in these scenarios, the Stepwise Weights Assessment Ratio 

Analysis (SWARA) method can be applied to normalise tensions between the 

stakeholders and determine criteria weights. This process can be defined by the 

six following steps (Keršulienė et al., 2010): 

1. The list of objective-related criteria is constructed. 

2. The criteria are ranked by their significance in descending order. 

3. The comparative importance of the average value 𝑠𝑗 is measured. 

4. The characteristics of the comparative importance are determined by 

𝑘𝑗 =  𝑠𝑗 + 1. 

5. Then, intermediate weights are determined by 𝑞𝑗 =  
𝑞𝑗−1

𝑘𝑗
 . 

6. The final weights are determined by 𝑤𝑖 =
𝑞𝑖

∑ 𝑞𝑗
𝑛
𝑗=1

. 

2.3. Proposed WASPAS Method Extensions for 
Candidate Assessment Task 

The original Weighted Aggregated Sum Product Assessment method, namely 

WASPAS, was first proposed by Zavadskas et al. (2012). This state-of-the-art 

multi-criterion decision-making method aggregates the Weighted Product Model 

(WPM) and the Weighted Sum Model (WSM) to construct a universal decision-

making strategy. However, as researchers pushed to develop new methods for the 

assessment of incomplete or uncertain input data characteristics, the original 

WASPAS method was extended several times by applying fuzzy sets, as the fuzzy 

set theory (Zadeh, 1965) is considered an efficient method to model input data 

characteristics and found many applications in practical and theoretical studies 

(Kalibatiene & Miliauskaite, 2021). In fuzzy sets, a single input data object 𝑥 is 

modelled as a value 𝜇(𝑥) ∈ [0,1] that represents its membership degree in the 

object universe 𝑋 (Wang et al., 2005). However, the classical fuzzy sets are 

limited when the decision-making problems with the inaccurate input data 
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characteristics are considered, as the input values can be modelled not only by 

membership and non-membership degrees. 

The intuitionistic fuzzy set was introduced by Atanassov (1986) as the 

generalised fuzzy set incorporating the hesitation degree. This approach allows 

considering situations in which the sum of membership and non-membership 

degrees are unequal to one. Methods that are based on the fuzzy set theory were 

further extended when Pythagorean fuzzy sets were introduced by Yager (2013) 

to address the issue of imprecise membership degrees in the decision-making 

problems, and the q-Rung orthopair fuzzy sets (Yager, 2017) were introduced to 

increase the space of the acceptable values in membership degrees of the input 

data characteristics. 

The neutrosophic sets and the neutrosophic set logic were first proposed by 

Smarandache (1999) as the generalisation of fuzzy and intuitionistic fuzzy sets. In 

neutrosophic set logic, the input data characteristics are defined by the truly 

independent truth membership degree, T, indeterminacy membership degree, I, 

and falsity membership degree, F. The inclusion of the indeterminacy membership 

degree and the ability to model these memberships independently differentiates 

the neutrosophic set from other fuzzy sets. Due to these advantages, neutrosophic 

sets and neutrosophic set logic were successfully applied in multiple real world 

decision-making problems, where the ambiguity and inaccuracy of the input data 

characteristics are considered (e.g., Zavadskas et al., 2015; Zavadskas et al., 

2020b; etc.). However, as argued by Smarandache (2019), the neutrosophic set 

also generalises the intuitionistic fuzzy set, spherical and n-hyperspherical fuzzy 

sets, the Pythagorean fuzzy set, and the q-rung orthopair fuzzy set. Therefore, it 

is possible to unite these fuzzy sets under the m-generalised q-neutrosophic set 

(mGqNS) and implement all the benefits of the generalised fuzzy sets. This 

generalisation could then be applied to model flexible strategies for real-world 

decision-making problems (Saha et al., 2020; Zavadskas et al., 2020a). 

As neutrosophic sets (Wang et al., 2005) allow to deal with incomplete or 

uncertain input data characteristics in a more flexible way, and the membership 

degrees can be modelled independently, two novel state-of-the-art WASPAS 

method extensions that include these modern neutrosophic sets are proposed for 

the considered candidate assessment task. The WASPAS method is chosen as a 

base for the proposed improvement due to the stability and wide application of 

this MCDM method in multiple real-world decision-making tasks (e.g., 

Zavadskas, Kalibatas & Kalibatiene, 2016; Zavadskas, Đalić & Stević, 2021). 

Further sections of this thesis discuss the preliminaries of the proposed WASPAS 

extensions by the interval-valued neutrosophic set (IVNS) (Zhang et al., 2014) 

and the m-generalised q-neutrosophic sets (mGqNS). Also, the state-of-the-art 

WASPAS method, modelled under the single-valued neutrosophic set (SVNS), is 

presented. 
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2.4. Single-Valued Neutrosophic WASPAS Method 

In 2014, the WASPAS extension modelled under the interval-valued intuitionistic 

fuzzy sets was developed by Zavadskas et al. (2014) and referred to as WASPAS-

IVIF. Zavadskas et al. (2015b) also proposed an innovative approach to consider 

the uncertainties in the input data characteristics and improve the accuracy of a 

decision-making process by introducing the Weighted Aggregated Sum Product 

Assessment method with grey attribute scores, namely WASPAS-G. In the same 

year, Turskis et al. (2015) proposed a fuzzy multi-attribute performance 

measurement method allowing to naturally model the qualitative parameters 

under uncertainty. Lastly, a novel extension to the WASPAS method, modelled 

under the single-valued neutrosophic environment (WASPAS-SVNS), was 

proposed by Zavadskas et al. (2015a) to provide the tools for modelling the 

uncertain input data characteristics. 

2.4.1. Preliminaries of the WASPAS-SVNS Method 

First, the definitions of neutrosophic set logic applied by the WASPAS-SVNS 

method are presented: 

Definition 1.1. The neutrosophic set 𝑁𝑆 is defined by the three independent 

membership functions: truth membership function, T, indeterminacy function, I, 

and the falsity function, F. 

Definition 1.2. Let the set of objects in the decision-making problem be 

denoted by 𝑋, where 𝑥 ∈ 𝑋 is a single object. Specifically, 𝑋 defines a set of 

criteria applied for candidate frontier assessment and 𝑥 is a measure of a single 

criterion. Thus, the single-valued neutrosophic set (SVNS) is defined as: 

𝑆𝑉𝑁𝑆 = {〈𝑇𝑠𝑣(𝑥), 𝐼𝑠𝑣(𝑥), 𝐹𝑠𝑣(𝑥)〉 ∶ 𝑥 ∈ 𝑋}, (2.1) 

where the three membership functions follow the conditions of: 

0 ≤  𝑇𝑠𝑣(𝑥), 𝐼𝑠𝑣(𝑥), 𝐹𝑠𝑣(𝑥) ≤ 1; (2.2) 

0 ≤  𝑇𝑠𝑣(𝑥) + 𝐼𝑠𝑣(𝑥) + 𝐹𝑠𝑣(𝑥) ≤ 3. (2.3) 

Definition 1.3. The single-valued neutrosophic number (SVNN) is defined 

as follows: 

𝑁𝑠𝑣 = 〈𝑡𝑠𝑣 , 𝑖𝑠𝑣 , 𝑓𝑠𝑣〉. (2.4) 

Definition 1.4. In this thesis, the neutrosophication of sensor input data is 

achieved by applying the methodology defined by Zavadskas et al. (2015a). 

 



26 2. NEUTROSOPHIC MULTI-CRITERIA DECISION-MAKING METHODS FOR…  

 

Definition 1.5. If 𝑁𝑠𝑣1
=  〈𝑡𝑠𝑣1

, 𝑖𝑠𝑣1
, 𝑓𝑠𝑣1

〉 and 𝑁𝑠𝑣2
=  〈𝑡𝑠𝑣2

, 𝑖𝑠𝑣2
, 𝑓𝑠𝑣2

〉 are 

two single-valued neutrosophic numbers, then the summation operation between 

them can be defined by: 

𝑁𝑠𝑣1
⊕ 𝑁𝑠𝑣2

=  〈𝑡𝑠𝑣1
+ 𝑡𝑠𝑣2

− 𝑡𝑠𝑣1
𝑡𝑠𝑣2

, 𝑖𝑠𝑣1
𝑖𝑠𝑣2

, 𝑓𝑠𝑣1
𝑓𝑠𝑣2

〉. (2.5) 

Definition 1.6. If 𝑁𝑠𝑣1
=  〈𝑡𝑠𝑣1

, 𝑖𝑠𝑣1
, 𝑓𝑠𝑣1

〉 and 𝑁𝑠𝑣2
=  〈𝑡𝑠𝑣2

, 𝑖𝑠𝑣2
, 𝑓𝑠𝑣2

〉 are 

two single-valued neutrosophic numbers, then the multiplication operation 

between them can be defined by: 

𝑁𝑠𝑣1
⊗ 𝑁𝑠𝑣2

=  〈𝑡𝑠𝑣1
𝑡𝑠𝑣2

, 𝑖𝑠𝑣1
+ 𝑖𝑠𝑣1

− 𝑖𝑠𝑣1
𝑖𝑠𝑣2

, 𝑓𝑠𝑣1
+ 𝑓𝑠𝑣2

−

𝑓𝑠𝑣1
𝑓𝑠𝑣2

〉. 
(2.6) 

Table 2.1. Neutrosophication grades applied in this thesis (Zavadskas et al., 2015a) 

Crisp normalised terms SVNNs 

Extremely good (EG) / 1.0 

Very very good (VVG) / 0.9 

Very good (VG) / 0.8 

Good (G) / 0.7 

Medium good (MG) / 0.6 

Medium (M) / 0.5 

Medium bad (MB) / 0.4 

Bad (B) / 0.3 

Very bad (VB) / 0.2 

Very very bad (VVB) / 0.1 

Extremely bad (EB) / 0.0 

(1.00, 0.00, 0.00) 

(0.90, 0.10, 0.10) 

(0.80, 0.15, 0.20) 

(0.70, 0.25, 0.30) 

(0.60, 0.35, 0.40) 

(0.50, 0.50, 0.50) 

(0.40, 0.65, 0.60) 

(0.30, 0.75, 0.70) 

(0.20, 0.85, 0.80) 

(0.10, 0.90, 0.90) 

(0.00, 1.00, 1.00) 

 

Definition 1.7. If 𝑁𝑠𝑣1
=  〈𝑡𝑠𝑣1

, 𝑖𝑠𝑣1
, 𝑓𝑠𝑣1

〉 is a single-valued neutrosophic 

number and 𝜆 is a real number that follows the condition of 𝜆 > 0, then the 

multiplication operation between them can be defined by: 

𝑁𝑠𝑣 ⋅ 𝜆 =  〈1 − (1 − 𝑡𝑠𝑣)𝜆, 𝑖𝑠𝑣
𝜆 , 𝑓𝑠𝑣

𝜆 〉.  (2.7) 

Definition 1.8. If 𝑁𝑠𝑣1
=  〈𝑡𝑠𝑣1

, 𝑖𝑠𝑣1
, 𝑓𝑠𝑣1

〉 is a single-valued neutrosophic 

number and 𝜆 is a real number which follows the condition of 𝜆 > 0, then the 

power operation between them can be defined by: 

𝑁𝑠𝑣
𝜆 =  〈𝑡𝑠𝑣

𝜆 , 1 − (1 − 𝑖𝑠𝑣)𝜆, 1 − (1 − 𝑓𝑠𝑣)𝜆〉. (2.8) 
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Definition 1.9. If 𝑁𝑠𝑣1
=  〈𝑡𝑠𝑣1

, 𝑖𝑠𝑣1
, 𝑓𝑠𝑣1

〉 is a single-valued neutrosophic 

number, then the complementary neutrosophic number component can be defined 

as follows: 

𝑁𝑠𝑣
𝑐 =  〈𝑓𝑠𝑣 , 1 − 𝑖𝑠𝑣 , 𝑡𝑠𝑣〉. (2.9) 

Definition 1.10. The score value S(N) is determined by: 

𝑆(𝑁𝑠𝑣) =
3+𝑡𝑠𝑣−2𝑖𝑠𝑣−𝑓𝑠𝑣

4
. (2.10) 

2.4.2. Formulation of the WASPAS-SVNS Method 

Following the general form of the original WASPAS method, the WASPAS-

SVNS method can be defined by the following seven steps (Zavadskas et al., 

2015a): 

Step 1. The decision matrix 𝐷𝑠𝑣 is constructed from a set of available 

candidate frontiers in accordance with the criteria set by the high-level objective. 

Members of this matrix can be denoted as [𝑑𝑠𝑣]𝑖𝑗, where 𝑖 = 1, 2, … , 𝑛 are indexes 

of the candidate frontier and 𝑗 = 1, 2, … , 𝑚 are the indexes of the criteria. 

 

Step 2. To compare different input data objects, one must first normalise the 

members of the decision matrix by applying the vector normalisation approach as 

follows: 

[𝑑𝑠𝑣]𝑖𝑗 =
[𝑑𝑠𝑣]𝑖𝑗

√∑ ([𝑑𝑠𝑣]𝑙𝑗)𝑚
𝑙=1

2
. (2.11) 

Step 3. The members of the decision matrix are converted to the neutrosophic 

form by applying the conversion table presented in definition 1.4. After this step, 

matrix members obtain the general SVNN form of [𝑑̅𝑠𝑣]
𝑖𝑗

= 〈𝑡𝑠𝑣𝑖𝑗
, 𝑖𝑠𝑣𝑖𝑗

, 𝑓𝑠𝑣𝑖𝑗
〉 as 

presented in definition 1.3. 

 

Step 4. Values of the first objective of the m-generalised q-neutrosophic 

WASPAS method are determined for each candidate frontier by applying the 

following equation: 

𝑄𝑖
(1)

= (∑ [𝑑̅𝑠𝑣]
𝑖𝑗

⋅ 𝑤𝑗
𝑂𝑚𝑎𝑥
𝑗=1 ) + (∑ [𝑑̅𝑠𝑣]

𝑖𝑗
⋅ 𝑤𝑗

𝑂𝑚𝑖𝑛
𝑗=1 )

𝑐
. (2.12) 

Here, 𝑂𝑚𝑎𝑥 and 𝑂𝑚𝑖𝑛 represent the set of maximised and minimised criteria, 

respectively. And 𝑐 represents the complementary set member. 
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Step 5. Values of the second objective of the m-generalised q-neutrosophic 

WASPAS method are determined for each candidate frontier by applying the 

following equation: 

𝑄𝑖
(2)

= (∏ ([𝑑̅𝑠𝑣]
𝑖𝑗

)𝑤𝑗  𝑂𝑚𝑎𝑥
𝑗=1 ) ⋅ (∏ ([𝑑̅𝑠𝑣]

𝑖𝑗
)𝑤𝑗  𝑂𝑚𝑖𝑛

𝑗=1 )
𝑐
. (2.13) 

Here, the equation definitions correspond to the ones presented in Step 4. 

 

Step 6. The joint generalised value that incorporates the results obtained from 

steps 4 and 5 is determined by the following equation: 

𝑄𝑖 = 0.5𝑄𝑖
(1)

+ 0.5𝑄𝑖
(2)

. (2.14) 

Step 7. The final rankings of candidate frontiers are assessed by applying the 

score function presented in definition 1.10. The candidate frontier with the highest 

utility is then considered as the next location the robot should visit. 

 

Next, the developed extensions of the state-of-the-art WASPAS MCDM 

method are discussed. 

2.5. Interval-Valued Neutrosophic WASPAS Method 

One of the major issues in the decision-making process by autonomous robots is 

the incomplete and imprecise sensor data (e.g., measurement errors introduced by 

the sensors or errors in the environment representation model) used to determine 

the utility of candidate frontiers. The proposed WASPAS extension modelled 

under the interval-valued neutrosophic set environment, namely WASPAS-IVNS, 

enables the robot to consider the inaccurate input data characteristics. By 

considering this issue, the proposed WASPAS extension is expected to provide 

additional reliability when comparing similar candidates. 

2.5.1. Preliminaries of the WASPAS-IVNS Method 

The definitions of the applied interval-valued neutrosophic logic (Zhang et al., 

2014), applied to model the WASPAS-IVNS method, are presented: 

Definition 2.1. Following the properties of the single-valued neutrosophic 

set, the interval-valued neutrosophic set 𝐼𝑉𝑁𝑆 is defined as: 

𝐼𝑉𝑁𝑆 = {〈𝑇𝑖𝑣(𝑥), 𝐼𝑖𝑣(𝑥), 𝐹𝑖𝑣(𝑥)〉 ∶ 𝑥 ∈ 𝑋}, (2.15) 

where the three membership functions follow the conditions of: 



2. NEUTROSOPHIC MULTI-CRITERIA DECISION-MAKING METHODS FOR… 29 

 

𝑇𝑖𝑣(𝑥) = [𝑇𝑖𝑣(𝑥)−, 𝑇𝑖𝑣(𝑥)+] ⊆ [0,1]; (2.16) 

𝐼𝑖𝑣(𝑥) = [𝐼𝑖𝑣(𝑥)−, 𝐼𝑖𝑣(𝑥)+] ⊆ [0,1]; (2.17) 

𝐹𝑖𝑣(𝑥) = [𝐹𝑖𝑣(𝑥)−, 𝐹𝑖𝑣(𝑥)+] ⊆ [0,1]; (2.18) 

0 ≤  𝑇𝑖𝑣(𝑥)+ + 𝐼𝑖𝑣(𝑥)+ + 𝐹𝑖𝑣(𝑥)+ ≤ 3. (2.19) 

Definition 2.2. The interval-valued neutrosophic number (IVNN) is defined 

as follows: 

𝑁𝑖𝑣 = 〈[𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ], [𝑖𝑖𝑣
− , 𝑖𝑖𝑣

+ ], [𝑓𝑖𝑣
−, 𝑓𝑖𝑣

+]〉. (2.20) 

Definition 2.3. If 𝑁𝑖𝑣1
= 〈[𝑡𝑖𝑣

−
1

, 𝑡𝑖𝑣
+

1
], [𝑖𝑖𝑣

−
1

, 𝑖𝑖𝑣
+

1
], [𝑓𝑖𝑣

−
1

, 𝑓𝑖𝑣
+

1
]〉 and 𝑁𝑖𝑣2

=

〈[𝑡𝑖𝑣
−

2
, 𝑡𝑖𝑣

+
2

], [𝑖𝑖𝑣
−

2
, 𝑖𝑖𝑣

+
2

], [𝑓𝑖𝑣
−

2
, 𝑓𝑖𝑣

+
2

]〉 are two interval-valued neutrosophic 

numbers, then the summation operation between them can be defined by: 

𝑁𝑖𝑣1
⊕ 𝑁𝑖𝑣2

=  〈
[𝑡𝑖𝑣

−
1

+ 𝑡𝑖𝑣
−

2
− 𝑡𝑖𝑣

−
1

𝑡𝑖𝑣
−

2
, 𝑡𝑖𝑣

+
1

+ 𝑡𝑖𝑣
+

2
− 𝑡𝑖𝑣

+
1

𝑡𝑖𝑣
+

2
],

[𝑖𝑖𝑣
−

1
𝑖𝑖𝑣

−
2

, 𝑖𝑖𝑣
+

1
𝑖𝑖𝑣

+
2

], [𝑓𝑖𝑣
−

1
𝑓𝑖𝑣

−
2

, 𝑓𝑖𝑣
+

1
𝑓𝑖𝑣

+
2

]
〉 . (2.21) 

Definition 2.4. If 𝑁𝑖𝑣1
= 〈[𝑡𝑖𝑣

−
1

, 𝑡𝑖𝑣
+

1
], [𝑖𝑖𝑣

−
1

, 𝑖𝑖𝑣
+

1
], [𝑓𝑖𝑣

−
1

, 𝑓𝑖𝑣
+

1
]〉 and 𝑁𝑖𝑣2

=

〈[𝑡𝑖𝑣
−

2
, 𝑡𝑖𝑣

+
2

], [𝑖𝑖𝑣
−

2
, 𝑖𝑖𝑣

+
2

], [𝑓𝑖𝑣
−

2
, 𝑓𝑖𝑣

+
2

]〉 are two interval-valued neutrosophic 

numbers, then the summation operation between them can be defined by: 

𝑁𝑖𝑣1
⊗ 𝑁𝑖𝑣2

=  〈

[𝑡𝑖𝑣
−

1
𝑡𝑖𝑣

−
2

, 𝑡𝑖𝑣
+

1
𝑡𝑖𝑣

+
2

],

[𝑖𝑖𝑣
−

1
+ 𝑖𝑖𝑣

−
2

− 𝑖𝑖𝑣
−

1
𝑖𝑖𝑣

−
2

, 𝑖𝑖𝑣
+

1
+ 𝑖𝑖𝑣

+
2

− 𝑖𝑖𝑣
+

1
𝑖𝑖𝑣

+
2

],

[𝑓𝑖𝑣
−

1
+ 𝑓𝑖𝑣

−
2

− 𝑓𝑖𝑣
−

1
𝑓𝑖𝑣

−
2

, 𝑓𝑖𝑣
+

1
+ 𝑓𝑖𝑣

+
2

− 𝑓𝑖𝑣
+

1
𝑓𝑖𝑣

+
2

]

〉 . (2.22) 

Definition 2.5. If 𝑁𝑖𝑣 = 〈[𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ], [𝑖𝑖𝑣
− , 𝑖𝑖𝑣

+ ], [𝑓𝑖𝑣
−, 𝑓𝑖𝑣

+]〉 is an interval-valued 

neutrosophic number and 𝜆 is a real number that follows the condition of 𝜆 > 0, 

then the multiplication operation between them can be defined by: 

𝑁𝑖𝑣 ⋅ 𝜆 =  〈
[1 − (1 − 𝑡𝑖𝑣

− )𝜆, 1 − (1 − 𝑡𝑖𝑣
+ )𝜆],

[(𝑖𝑖𝑣
− )𝜆, (𝑖𝑖𝑣

+ )𝜆], [(𝑓𝑖𝑣
−)𝜆, (𝑓𝑖𝑣

+)𝜆]
〉. (2.23) 

Definition 2.6. If 𝑁𝑖𝑣 = 〈[𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ], [𝑖𝑖𝑣
− , 𝑖𝑖𝑣

+ ], [𝑓𝑖𝑣
−, 𝑓𝑖𝑣

+]〉 is the interval-valued 

neutrosophic number and 𝜆 is a real number which follows the condition of 𝜆 >
0, then the power operation between them can be defined by: 

𝑁𝑖𝑣
𝜆  =  〈

[(𝑡𝑖𝑣
− )𝜆, (𝑡𝑖𝑣

+ )𝜆], [1 − (1 − 𝑖𝑖𝑣
− )𝜆, 1 − (1 − 𝑖𝑖𝑣

+ )𝜆],

[1 − (1 − 𝑓𝑖𝑣
−)𝜆, 1 − (1 − 𝑓𝑖𝑣

+)𝜆]
〉. (2.24) 
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Definition 2.7. If 𝑁𝑖𝑣 = 〈[𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ], [𝑖𝑖𝑣
− , 𝑖𝑖𝑣

+ ], [𝑓𝑖𝑣
−, 𝑓𝑖𝑣

+]〉 is an interval-valued 

neutrosophic number, then the complementary neutrosophic number component 

can be defined by: 

𝑁𝑖𝑣
𝑐 =  〈[𝑓𝑖𝑣

−, 𝑓𝑖𝑣
+], [1 − 𝑖𝑖𝑣

+ , 1 − 𝑖𝑖𝑣
− ], [𝑡𝑖𝑣

− , 𝑡𝑖𝑣
+ ]〉 . (2.25) 

Definition 2.8. The interval-valued neutrosophic numbers are compared by 

applying comparison functions: the score function denoted as 𝑆(𝑄), the accuracy 

function denoted by 𝑎(𝑄), and the certainty function denoted as 𝑐(𝑄). These 

functions are defined as follows: 

𝑆(𝑄) = [𝑡𝑖𝑣
− + 1 − 𝑖𝑖𝑣

+ + 1 − 𝑓𝑖𝑣
+, 𝑡𝑖𝑣

+ + 1 − 𝑖𝑖𝑣
− + 1 − 𝑓𝑖𝑣

−]; (2.26) 

𝑎(𝑄) = [𝑚𝑖𝑛{𝑡𝑖𝑣
− − 𝑓𝑖𝑣

−, 𝑡𝑖𝑣
+ − 𝑓𝑖𝑣

+}, 𝑚𝑎𝑥{𝑡𝑖𝑣
− − 𝑓𝑖𝑣

−, 𝑡𝑖𝑣
+ − 𝑓𝑖𝑣

+}]; (2.27) 

𝑐(𝑄) = [𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ]. (2.28) 

Then, the comparison between the two IVNNs by score function can be 

completed by applying the following rules: 

− If 𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) > 0.5, then 𝑄1 ≻ 𝑄2, or 𝑄1 is superior to 𝑄2.    

− If 𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) = 0.5 and 𝑝(𝑎(𝑄1) ≥ 𝑎(𝑄2)) > 0.5, then 

𝑄1 ≻  𝑄2, or 𝑄1 is superior to 𝑄2.    

− If 𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) = 0.5 and 𝑝(𝑎(𝑄1) ≥ 𝑎(𝑄2)) = 0.5, and 

𝑝(𝑐(𝑄1) ≥ 𝑐(𝑄2)) > 0.5, then 𝑄1 ≻ 𝑄2, or 𝑄1 is superior to 𝑄2.    

− If 𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) = 0.5 and 𝑝(𝑎(𝑄1) ≥ 𝑎(𝑄2)) = 0.5, and 

𝑝(𝑐(𝑄1) ≥ 𝑐(𝑄2)) = 0.5, then 𝑄1 ∼ 𝑄2, or 𝑄1 is equal to 𝑄2.    

 

Here, 𝑝 represents the degree of possibility, determined by the following 

equation:  

𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) = 

𝑚𝑎𝑥 {1 − 𝑚𝑎𝑥 (
𝑆(𝑄2)+−𝑆(𝑄1)−

(𝑆(𝑄1)+−𝑆(𝑄1)−)+(𝑆(𝑄2)+−𝑆(𝑄2)−)
, 0) , 0}. 

(2.29) 

 The comparison by accuracy and certainty functions are completed by 

applying an identical approach. 

2.5.2. Formulation of the WASPAS-IVNS Method 

Following the general form of the original WASPAS method, the proposed 

WASPAS-IVNS method is defined by the previously introduced seven steps: 

Step 1. The decision matrix 𝐷𝑖𝑣 is constructed from a set of available 

candidate frontiers in accordance with the criteria set by considering the strategy 
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optimisation priorities. Members of this matrix can be denoted as [𝑑𝑖𝑣]𝑖𝑗, where 

𝑖 = 1, 2, … , 𝑛 are indexes of the candidate frontier and 𝑗 = 1, 2, … , 𝑚 are the 

indexes of the criteria. 

Step 2. The members of the decision matrix are normalised by applying the 

following normalisation approach: 

[𝑑𝑖𝑣]𝑖𝑗
−  =

[𝑑𝑖𝑣]𝑖𝑗
−  

max[𝑑𝑖𝑣]𝑖𝑗√𝑚
, [𝑑𝑖𝑣]𝑖𝑗

+  =
[𝑑𝑖𝑣]𝑖𝑗

+  

max[𝑑𝑖𝑣]𝑖𝑗√𝑚
. (2.30) 

Step 3. The members of the decision matrix are converted to the neutrosophic 

form by applying the conversion table presented in definition 1.4. After this step, 

matrix members obtain the general IVNS form of [𝑑̅𝑖𝑣]
𝑖𝑗

=

〈[𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ], [𝑖𝑖𝑣
− , 𝑖𝑖𝑣

+ ], [𝑓𝑖𝑣
−, 𝑓𝑖𝑣

+]〉 as presented in definition 2.2. 

Step 4. Values of the first objective of the m-generalised q-neutrosophic 

WASPAS method are determined for each candidate frontier by applying the 

following equation: 

𝑄𝑖
(1)

= (∑ [𝑑̅𝑖𝑣]
𝑖𝑗

⋅ 𝑤𝑗
𝑂𝑚𝑎𝑥
𝑗=1 ) + (∑ [𝑑̅𝑖𝑣]

𝑖𝑗
⋅ 𝑤𝑗

𝑂𝑚𝑖𝑛
𝑗=1 )

𝑐
. (2.31) 

Step 5. Values of the second objective of the m-generalised q-neutrosophic 

WASPAS method are determined for each candidate frontier by applying the 

following equation: 

𝑄𝑖
(2)

= (∏ ([𝑑̅𝑖𝑣]
𝑖𝑗

)𝑤𝑗  𝑂𝑚𝑎𝑥
𝑗=1 ) ⋅ (∏ ([𝑑̅𝑖𝑣]

𝑖𝑗
)𝑤𝑗  𝑂𝑚𝑖𝑛

𝑗=1 )
𝑐
. (2.32) 

Step 6. The joint generalised value that incorporates the results obtained from 

steps 4 and 5 is determined by the following equation: 

𝑄𝑖 = 0.5𝑄𝑖
(1)

+ 0.5𝑄𝑖
(2)

. (2.33) 

Step 7. The final rankings of candidate frontiers are assessed by applying the 

IVNN comparison methodology presented in definition 2.8. The candidate 

frontier with the highest utility is then considered as the next observation location. 

2.6. m-Generalised q-Neutrosophic WASPAS Method 

Next, the discussion focuses on preliminaries for m-generalised q-neutrosophic 

sets that are relevant to the proposed WASPAS-mGqNS method. The m-

generalised q-neutrosophic set environment enables the robot operator to flexibly 

apply a number of different fuzzy sets for the assessment of candidate frontiers. 

This adjustment is made by defining m and q parameters. For example, the 𝑚 

value of 3 and 𝑞 value of 1 define a classic fuzzy set (when I membership is 
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disregarded), but 𝑚 value of 1 and 𝑞 value of 1 define the standard neutrosophic 

set. 

2.6.1. Preliminaries of the WASPAS-mGqNS Method 

Definition 3.1. Following the properties of the neutrosophic sets, the m-

generalised q-neutrosophic set 𝑚𝐺𝑞𝑁𝑆 is defined as: 

𝑚𝐺𝑞𝑁𝑆 = {< 𝑇𝑚𝑞(𝑥), 𝐼𝑚𝑞(𝑥), 𝐹𝑚𝑞(𝑥) >∶ 𝑥 ∈ 𝑋}, (2.34) 

where the three membership functions follow the conditions: 

𝑇𝑚𝑞(𝑥), 𝐼𝑚𝑞(𝑥), 𝐹𝑚𝑞(𝑥): 𝑋 → [0, 𝑟], (0 ≤ 𝑟 ≤ 1); (2.35) 

0 ≤  (𝑇𝑚𝑞(𝑥))𝑞  + (𝐼𝑚𝑞(𝑥))𝑞 + (𝐹𝑚𝑞(𝑥))𝑞 ≤
3

𝑚
; (2.36) 

𝑚 = 1 𝑜𝑟 3;  𝑞 ≥ 1. (2.37) 

Definition 3.2. The m-generalised q-neutrosophic number (mGqNN) is 

defined as: 

𝑁𝑚𝑞 = 〈𝑡𝑚𝑞 , 𝑖𝑚𝑞 , 𝑓𝑚𝑞〉. (2.38) 

Definition 3.3. If 𝑁𝑚𝑞1
=  〈𝑡𝑚𝑞1

, 𝑖𝑚𝑞1
, 𝑓𝑚𝑞1

〉 and 𝑁𝑚𝑞2 =

〈𝑡𝑚𝑞2
, 𝑖𝑚𝑞2

, 𝑓𝑚𝑞2
〉 are two single-valued neutrosophic numbers, then the 

summation operation between them can be defined by: 

𝑁𝑚𝑞1
⊕ 𝑁𝑚𝑞2

=  〈(1 − (1 − 𝑡𝑚𝑞
𝑞

2
) (1 − 𝑡𝑚𝑞

𝑞

2
))

1

𝑞
,

𝑖𝑚𝑞1
𝑖𝑚𝑞2

, 𝑓𝑚𝑞1
𝑓𝑚𝑞2

〉 . (2.39) 

Definition 3.4. If 𝑁𝑚𝑞1
=  〈𝑡𝑚𝑞1

, 𝑖𝑚𝑞1
, 𝑓𝑚𝑞1

〉 and 𝑁𝑚𝑞2 =

 〈𝑡𝑚𝑞2
, 𝑖𝑚𝑞2

, 𝑓𝑚𝑞2
〉 are two single-valued neutrosophic numbers, then the 

multiplication operation between them can be defined by: 

𝑁𝑚𝑞1
⊗ 𝑁𝑚𝑞2

=  〈
𝑡𝑚𝑞1

𝑡𝑚𝑞2
, (1 − (1 − 𝑖𝑚𝑞

𝑞

2
) (1 − 𝑖𝑚𝑞

𝑞

2
))

1

𝑞
,

(1 − (1 − 𝑓𝑚𝑞
𝑞

2
) (1 − 𝑓𝑚𝑞

𝑞

2
))

1

𝑞
 

〉. (2.40) 

Definition 3.5. If 𝑁𝑚𝑞 =  〈𝑡𝑚𝑞 , 𝑖𝑚𝑞 , 𝑓𝑚𝑞〉 is an m-generalised q-neutrosophic 

number and 𝜆 is a real number that follows the condition of 𝜆 > 0, then the 

multiplication operation between them can be defined by: 
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𝑁𝑚𝑞 ⋅ 𝜆 =  〈(1 − (1 − 𝑡𝑚𝑞
𝑞

)
𝜆

)

1

𝑞
, 𝑖𝑚𝑞

𝜆 , 𝑓𝑚𝑞
𝜆 〉 . (2.41) 

Definition 3.6. If 𝑁𝑚𝑞 =  〈𝑡𝑚𝑞 , 𝑖𝑚𝑞 , 𝑓𝑚𝑞〉 is a single-valued neutrosophic 

number and 𝜆 is a real number that follows the condition of 𝜆 > 0, then the power 

operation between them can be defined by: 

𝑁𝑚𝑞
𝜆 =  〈𝑡𝑚𝑞

𝜆 , (1 − (1 − 𝑖𝑚𝑞)
𝜆

)

1

𝑞
 , (1 − (1 − 𝑓𝑚𝑞)

𝜆
)

1

𝑞
〉. (2.42) 

Definition 3.7. If 𝑁𝑚𝑞 =  〈𝑡𝑚𝑞 , 𝑖𝑚𝑞 , 𝑓𝑚𝑞〉 is a single-valued neutrosophic 

number, the complementary neutrosophic number component can be defined as: 

𝑁𝑚𝑞
𝑐 =  〈𝑓𝑚𝑞, 1 − 𝑖𝑚𝑞 , 𝑡𝑚𝑞〉. (2.43) 

Definition 3.8. The score value 𝑆(𝑁𝑚𝑞) for mGqNS is determined by: 

𝑆(𝑁𝑚𝑞) =
3+3𝑡𝑚𝑞

𝑞
−2𝑖𝑚𝑞

𝑞
−𝑓𝑚𝑞

𝑞
 

6
. (2.44) 

If 𝑁𝑚𝑞1
=  〈𝑡𝑚𝑞1

, 𝑖𝑚𝑞1
, 𝑓𝑚𝑞1

〉 and 𝑁𝑚𝑞2
=  〈𝑡𝑚𝑞2

, 𝑖𝑚𝑞2
, 𝑓𝑚𝑞2

〉 are two m-

generalised q-neutrosophic numbers, the ranking of them is performed by: 

If 𝑆(𝑁𝑚𝑞1
) > 𝑆(𝑁𝑚𝑞2

), then 𝑁𝑚𝑞1
> 𝑁𝑚𝑞2

; (2.45) 

If 𝑆(𝑁𝑚𝑞1
) = 𝑆(𝑁𝑚𝑞2

), then 𝑁𝑚𝑞1
= 𝑁𝑚𝑞2

. (2.46) 

2.6.2. Formulation of the WASPAS-mGqNS Method 

Following the general form of the original WASPAS method, the proposed 

WASPAS-mGqNS method is defined by the previously introduced seven steps:  

 

Step 1. The decision matrix 𝐷𝑚𝑞 is constructed from a set of available 

candidate frontiers in accordance with the criteria set by the high-level objective. 

Members of this matrix can be denoted as [𝑑𝑚𝑞]
𝑖𝑗

, where 𝑖 = 1, 2, … , 𝑛 are 

indexes of the candidate frontier and 𝑗 = 1, 2, … , 𝑚 are the indexes of the criteria. 

 

Step 2. The members of the decision matrix are normalised by applying the 

vector normalisation approach: 

[𝑑𝑚𝑞]
𝑖𝑗

=
[𝑑𝑚𝑞]

𝑖𝑗

√∑ ([𝑑𝑚𝑞]
𝑙𝑗

)𝑚
𝑙=1

2
. (2.47) 



34 2. NEUTROSOPHIC MULTI-CRITERIA DECISION-MAKING METHODS FOR…  

 

Step 3. The members of the decision matrix are converted to the neutrosophic 

form by applying the conversion table presented in definition 1.4. After this step, 

matrix members obtain the general mGqNN form of [𝑑̅𝑚𝑞]
𝑖𝑗

=

〈𝑡𝑚𝑞𝑖𝑗
, 𝑖𝑚𝑞𝑖𝑗

, 𝑓𝑚𝑞𝑖𝑗
〉 as presented in definition 3.2. 

Step 4. Values of the first objective of the m-generalised q-neutrosophic 

WASPAS method are determined for each candidate frontier by applying the 

following equation: 

𝑄𝑖
(1)

= (∑ [𝑑̅𝑚𝑞]
𝑖𝑗

⋅ 𝑤𝑗
𝑂𝑚𝑎𝑥
𝑗=1 ) + (∑ [𝑑̅𝑚𝑞]

𝑖𝑗
⋅ 𝑤𝑗

𝑂𝑚𝑖𝑛
𝑗=1 )

𝑐
. (2.48) 

Step 5. Values of the second objective of the m-generalised q-neutrosophic 

WASPAS method are determined for each candidate frontier by applying the 

following equation: 

𝑄𝑖
(2)

= (∏ ([𝑑̅𝑚𝑞]
𝑖𝑗

)𝑤𝑗  𝑂𝑚𝑎𝑥
𝑗=1 ) ⋅ (∏ ([𝑑̅𝑚𝑞]

𝑖𝑗
)𝑤𝑗  𝑂𝑚𝑖𝑛

𝑗=1 )
𝑐
. (2.49) 

Step 6. The joint generalised value that incorporates the results obtained from 

steps 4 and 5 is determined by the following equation: 

𝑄𝑖 = 0.5𝑄𝑖
(1)

+ 0.5𝑄𝑖
(2)

. (2.50) 

Step 7. The final rankings of candidate frontiers are assessed by applying the 

score function presented in definition 3.8. The candidate frontier with the highest 

utility is then considered the next observation location. 

2.7. Adaptive Environment Exploration by Fuzzy 
Logic Controller 

The proposed WASPAS-IVNS and WASPAS-mGqNS multi-criteria decision-

making methods define only one part of the proposed environment exploration 

strategy. Differently weighted criteria groups can essentially define different 

optimisation priorities and, with this, different candidate assessment strategies 

(e.g., enable more altruistic or egoistic robot behaviour in SAR missions). Thus, 

a set of strategies that govern the proposed adaptive autonomous environment 

exploration approach can be denoted as 𝑆𝑇 = {𝑆𝑡1(𝐶1, 𝑊1),  𝑆𝑡2(𝐶2, 𝑊2), … ,
𝑆𝑡𝑘(𝐶𝑘, 𝑊𝑘)}. Here, 𝑆𝑡𝑖(𝐶𝑖, 𝑊𝑖) defines a single candidate frontier assessment 

strategy and 𝑘 is the number of strategies in the 𝑆𝑇 set. The decision on which 

strategy 𝑆𝑡 to apply from the 𝑆𝑇 set is made by applying the fuzzy logic controller. 

The selected 𝑆𝑇 strategy is then applied by the designated decision-making 

method to assess the utility of currently available candidate frontiers. The 
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proposed adaptive autonomous navigation and environment exploration strategy 

is schematically presented in Fig. 2.1. 

It is also worth noting that the proposed approach differs from the similar 

approaches in the sense that a fuzzy logic controller does not directly control robot 

movements (e.g., Abiyev et al., 2016; Omrane et al., 2016; Chen et al., 2017)), 

but rather activates the set of rules (or in other words, strategies) that govern 

autonomous navigation process in SAR missions. Also, differently from the 

common approach of applying the same strategy at every decision-making 

iteration (e.g., Yamauchi, 1997; Taillandier & Stinckwich, 2011; etc.), the 

strategies are switched depending on the current state of the robot and the 

exploration space). 

 

Fig. 2.1. Proposed adaptive environment exploration strategy. Here, 𝐸(𝑠) represents the 

distance from the robot to the hypothesised survivor, 𝐸(𝑑) represents the distance from 

the robot to the dangerous object, 𝑆 represents the selected candidate assessment 

strategy, P is the list of available candidates and 𝑈(𝑝∗) is the utility of a candidate 

(Semenas & Bausys, 2021)  

By applying the proposed environment exploration strategy, the autonomous 

robot starts the search and rescue mission at the set coordinate location 

𝑝𝑟(𝑥: 0, 𝑦: 0). This location is a reference point around which the environment 

representation model is built. First, the input data from robot sensors is collected, 

as portrayed in Fig. 2.1. The obtained environment information is then added to 

the constructed partial map, and the robot estimates its position in relation to the 

physical obstacles and structures by applying the ROS provided gmapping 

package for laser-based self-localisation (ROS Gmapping, 2020). Next, the list of 

candidate frontiers is computed by detecting the connected chains of free grid-

map cells that are adjacent to the cells that are yet unknown (undiscovered). Then, 

the centre point coordinates are calculated for each frontier 𝑝𝑓 (𝑥, 𝑦)𝑖, and any 
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frontier that is considered as not reachable or too small to traverse by the SAR 

robot is discarded from the further utility assessment process.  

The three main parameters considered in the next step are the distance from 

the robot to the hypothesised survivor, 𝐸(𝑠), the distance from the robot to the 

dangerous object, 𝐸(𝑑), and the list of currently available frontiers, 𝑃𝑓, which is 

computed by analysing the partial grid map information. The first two parameters 

are forwarded to the fuzzy logic controller, where their values are fuzzified, the 

fuzzy rule base is applied, and the output value is provided by the defuzzification 

module (which applies the centre of sums method). This value is then mapped to 

the environment exploration strategy 𝑆𝑡 that is applied for candidate assessment 

by the search and rescue robot. Finally, the designated MCDM method is applied 

to determine the utility 𝑈(𝑝𝑓(𝑥, 𝑦)∗) of each candidate frontier 𝑝𝑓(𝑥, 𝑦)𝑖 ∈ 𝑃𝑓 

according to the selected strategy 𝑆𝑡.  

When the decision on where to move next is made, the robot applies the path 

planning algorithm. Although there are many different methods to choose from 

(e.g., Kulvicius et al., 2021), this thesis applied the classical A* and Dijkstra 

algorithms that are provided within the ROS Nav_core package (ROS Nav_core, 

2020) to determine the path to the selected frontier 𝑅(𝑝𝑓(𝑥, 𝑦)∗) =

{𝑝𝑟, 𝑤𝑝1, 𝑤𝑝2, … , 𝑤𝑝𝑙 , 𝑝𝑓(𝑥, 𝑦)∗}. Here 𝑝𝑟 is the current robot position within the 

exploration space, 𝑤𝑝 are the waypoints returned by the path planning algorithm, 

and 𝑝𝑓(𝑥, 𝑦)∗ is the highest valued frontier. If any new information about the 

environment is obtained during the movement process, the robot’s decision-

making module re-evaluates partial environment information and reassess utility 

values for all available candidate frontiers. This process is repeated until the 

exploration objective is completed or mission termination conditions are met. It is 

worth noting that although the proposed fuzzy logic controller and MCDM 

methods together define the proposed adaptive autonomous environment 

exploration strategy, they can also be applied separately or be transferred between 

different robot systems. 

2.8. Conclusions of Chapter 2 

1. The state-of-the-art WASPAS MCDM method is extended by modelling 

it under the interval-valued neutrosophic (WASPAS-IVNS) and m-

generalised q-neutrosophic (WASPAS-mGqNS) environments. The 

WASPAS-IVNS extension is expected to enable the robot to consider 

inaccurate input data characteristics when deciding where to move next. 

The WASPAS-mGqNS method provides additional flexibility by 
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allowing the robot operators to choose between the generalised fuzzy sets 

applied in the decision-making process. 

2. Different candidate assessment strategies can be defined by differently 

weighted and optimised criteria sets. This feature can be applied to model 

more altruistic or egoistic robot behaviour in SAR missions.  

3. As multiple stakeholders can suggest different criteria weights to solve 

the same problem, the state-of-the-art SWARA method can be used to 

efficiently normalise the tensions between the stakeholders and determine 

criteria weights. 

4. The decision on which candidate frontier assessment strategy to apply can 

be made by the fuzzy logic controller. Differently from the standard 

approach in which fuzzy logic is applied to control the robot movements, 

this approach does not directly control the movement of the robot but 

enables the robot to switch between the rules that govern the candidate 

assessment process. The proposed strategy is modelled to address the 

adaptivity requirements of the autonomous SAR robot.





 

39 

3 
Assessment of the Proposed 

Autonomous Robot Navigation 
Strategies 

This chapter presents an investigation of the performance of the proposed adaptive 

environment exploration strategy and the novel WASPAS-IVNS and WASPAS-

mGqNS methods introduced in the second chapter of this thesis. Novel candidate 

assessment and environment exploration strategies are developed to address 

multiple issues the SAR missions present, i.e., robot safety, detected survivor 

visitation, exploration around the prioritised environment areas, and the 

adaptability of an autonomous robot. The research results obtained by assessing 

the proposed environment exploration strategies are discussed in detail. 

Parts of this chapter were published (Bausys, Cavallaro & Semenas, 2019; 

Semenas & Bausys, 2020; Semenas & Bausys, 2021; Semenas, Bausys & 

Zavadskas, 2021; and Semenas & Bausys, 2022). 
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3.1. Candidate Assessment Strategy by  
WASPAS-SVNS Method 

The multi-criteria decision-making methods modelled under the neutrosophic set 

environment can be applied to extend standard navigation and environment 

exploration strategies that are based on the candidate assessment approach. 

However, this extension could be considered from the two viewpoints: 

1. Criteria that are applied to decide on where to move next (in other words, 

what strategy is applied when assessing a candidate). 

2. Criteria aggregation methods that are applied to measure the utility of a 

candidate. 

At this time, prevalent strategies that are applied to decide on where the 

autonomous robot should move next are generally based on the technical 

navigation and environment exploration requirements, which consider the utility 

of a candidate only from the cost–gain viewpoint. For example, a common 

approach to the candidate assessment problem is to determine the ratio between 

the distance the robot has to travel (cost) and the size of the area that is expected 

to be discovered after reaching the candidate (gain). However, complex 

environment exploration tasks, especially those performed in disaster sites, 

introduce dangerous conditions that should be addressed when designing the 

autonomous navigation and environment exploration strategy. Strictly speaking, 

the strategy applied in the candidate assessment task should not only consider the 

technical parameters of the candidate assessment task but also be capable of 

determining if reaching the candidate is safe from the robot’s perspective. 

3.1.1. Candidate Assessment in the Robot’s Field of View 

The proposed novel candidate assessment strategy not only considers the standard 

cost and benefit aspects but also the safety factors of autonomous environment 

exploration. Also, the proposed environment exploration strategy is constructed 

on the premise that the decision on where to move next is made by considering 

only the information available within the robot’s current field of view. This 

approach is expected to aid the robot in the assessment of its nearby environment 

and in making decisions on where to move next. The robot’s field of view (which 

is 180° at a 15 m distance) is segmented into traversable zones that correspond to 

the currently visible spatial data. The candidate the robot could reach is thus 

placed at the centre of each traversable zone at the 1 m distance from the robot, as 

schematically presented in Fig. 3.1.  
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The proposed candidate assessment strategy is constructed from two criteria 

sets: three standard criteria regularly applied for candidate assessment tasks and 

three new criteria constructed to specifically address the safety factors of an 

autonomous SAR mission. The first criteria set includes the criteria of the 

estimated amount of information that would be gained by reaching the candidate, 

the length of the collision-free path the robot could travel, and the battery 

consumption rate, which is modelled as the time needed to reach the candidate.  

The estimated amount of new information that is expected to be discovered 

by the robot considers the discovered spatial information and the robot’s field of 

view. An estimate of the information gain can be obtained by subtracting the size 

of the already-discovered area from the sampled area that would be visible to the 

robot after reaching the candidate location. However, it is worth noting that this 

estimate can differ from the actual results. These results strongly depend on how 

cluttered the environment is within the space that is not visible to the autonomous 

robot. Nonetheless, the criterion is maximised and is expected to direct the robot 

to the mostly unexplored areas. 

The length of the collision-free path the robot could travel is measured by the 

Euclidean distance between the current robot position and the end of a centre line 

within the computed traversable zone. This criterion is applied and maximised to 

direct the robot to areas that are expected to lead the robot out of the current 

exploration space. 

The time needed to reach the candidate can be minimised to balance the cost 

of reaching the candidate, and the expected maximum distance robot could travel. 

The introduction of this criterion is expected to normalise robot rotational 

behaviour when multiple traversable zones are detected with similar maximum 

collision-free paths. In this situation, the robot should continue following the 

previously selected movement trajectory. The criteria value is measured by the 

following equation: 

 
Fig. 3.1. Segmentation of the robot’s field of view. Red markers represent dangerous 

objects. Green markers represent the assessed candidates. The computed traversable 

zones are marked blue and orange 
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𝑡𝑖 =
𝑑

𝑣𝑚
+

𝑝𝛼

𝑣𝑟
, (3.1) 

 

where d is the distance to the candidate, 𝑝𝛼 is the corner between the robot and 

the candidate. 𝑣𝑚 and 𝑣𝑟 are the movement and rotation velocities that are defined 

by considering the robot setup parameters. 

However, although the discussed technical criteria are frequently applied in 

candidate assessment tasks, they are not sufficient for harsh-environment 

exploration. The inability to identify hazardous obstacles and evaluate their 

impact on the robot system is a major design flaw that could be addressed from 

the candidate assessment point of view. Therefore, in the context of this research, 

the candidate assessment strategy is expanded by introducing the criteria of the 

ratio between the detected drive-through region and standard door size, the 

distance to the detected dangerous obstacle, and the distance to the nearest vision-

occluding object. 

The ratio between the detected drive-through region and the standard door 

size is expected to support the length of the collision-free path criterion by 

estimating if the lengthy traversable zone could be, in fact, a doorway that leads 

to different areas of the explored environment. The criteria value is determined by 

applying the following equation: 

𝑐 =  
𝛿

𝑙𝑑
, (3.2) 

where 𝛿 = 0.762 is a constant value, representing the width of a door, and 𝑙𝑑 is 

the width of a detected drive-through. For computational purposes, the robot only 

uses 𝑙𝑑 values that are larger than its width. 

 The distance to the nearest dangerous object is measured by the Euclidean 

distance between it and the assessed candidate. This criterion is proposed to model 

the safety concerns of the autonomous SAR robot. Although in real-world 

scenarios, there are numerous ways to damage the robot, in this model, a 

dangerous stationary object is considered. It is expected that by applying the 

proposed criterion, the robot will actively avoid any danger within its field of 

view. Similarly, the distance to the nearest vision occluding object is also 

considered in the proposed candidate assessment strategy, as the probability of 

colliding with the unseen dynamic object can also put the autonomous robot in 

danger. The criterion value is estimated by measuring the length of the sides of 

the adjacent traversable zones and referring to the shortest one. It is expected that 

by applying this criterion, the autonomous robot will keep further away from sharp 

corners, thus, leaving enough time for collision avoidance manoeuvres. 

The complete criteria list applied in the proposed candidate assessment 

strategy is presented in Table 3.1. 
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Table 3.1. Proposed candidate assessment strategy 

Criterion Criterion name Optimum Weight 

𝑐1 
The distance to the nearest dangerous 

object, m. 
Max 0.31 

𝑐2 

The ratio between the standard door size 

and the detected drive-through region 

width, %. 

Max 0.26 

𝑐3 
The estimated amount of new 

information that could be gained, m2. 
Max 0.17 

𝑐4 
The length of a visible collision-free 

path, m. 
Max 0.11 

𝑐5 
The time needed to reach the candidate 

frontier, s. 
Min 0.08 

𝑐6 
The distance to the nearest vision-

occluding object, m. 
Max 0.07 

 

The criteria weights and optimums presented in Table 3.1 are used in the 

candidate assessment task and are determined by applying the SWARA method 

introduced in the second chapter of this thesis. As the SWARA method is applied 

to determine the criteria weights in all of the considered experiments and strategy 

assessment tasks of this thesis, the example of the criteria weight computation 

process is presented in detail. The pairwise comparison of the relative importance 

of criteria is presented in Table 3.2. 

Table 3.2. Pairwise comparison of the relative importance of criteria 

Stakeholder 
Pairwise comparison values of the relative importance of criteria 

𝑐1 ↔ 𝑐2 𝑐2 ↔ 𝑐3 𝑐3 ↔ 𝑐4 𝑐4 ↔ 𝑐5 𝑐5 ↔ 𝑐6 

1 0.50 0.25 0.25 0.10 0.30 

2 0.20 0.65 0.40 0.20 0.20 

3 0.00 0.45 0.15 0.60 0.25 

4 0.20 0.30 0.40 0.30 0.15 

5 0.20 0.25 0.85 0.60 0.20 

6 0.10 0.85 0.50 0.45 0.15 

7 0.35 0.90 0.50 0.50 0.00 

8 0.10 0.55 0.75 0.30 0.10 

9 0.20 0.30 0.25 0.50 0.20 

10 0.10 0.70 0.80 0.20 0.75 
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Then, the average value of comparative importance is determined. By 

applying the SWARA method, the final criteria values are computed and 

presented in Table 3.3. 

Table 3.3. Pairwise comparison of the relative importance of criteria 

Criterion 

Average value of 

comparative 

importance 

Coefficients of 

comparative 

importance 

Recalculated 

weights 
Final weight 

𝑐1 − 1.000 1.000 0.31 

𝑐2 0.195 1.195 0.837 0.26 

𝑐3 0.520 1.520 0.551 0.17 

𝑐4 0.485 1.485 0.371 0.11 

𝑐5 0.375 1.375 0.270 0.08 

𝑐6 0.230 1.230 0.220 0.07 

− 3.249 − 

 

Once competing stakeholder opinions are modelled into a well-defined 

weight set, the proposed candidate assessment strategy can be applied by the 

autonomous robot to evaluate candidates located in its field of view. In this case, 

the key improvement of the proposed autonomous navigation strategy compared 

to the standard approach is the implementation of additional technical and safety-

related criteria. This improvement is expected to enable the autonomous robot to 

better interpret discovered spatial information and assist it in avoiding dangerous 

objects without the additional navigation rules. 

3.1.2. Evaluation of the Proposed Candidate Assessment 
Strategy in the Robot’s Field of View 

The considered candidate assessment strategy is tested in a simulated indoor 

environment by applying the dedicated Gazebo simulation software (Gazebo, 

2021). The proposed strategy is implemented into the turtle-bot-like robot system, 

which is controlled by applying the Robot operating system ROS (ROS, 2020). 

The utility of each candidate is measured by applying the state-of-the-art 

WASPAS-SVNS method. The goal of this test is to determine if the inclusion of 

safety concerns in the applied environment exploration strategy can influence the 

robot movement trajectory. Thus, the example solution to one of the decision-

making problems is provided. The initial decision matrix of the sample decision-

making iteration is presented in Table 3.4. The utility of each candidate (denoted 
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as A1, A2, …, A6) is measured by applying the WASPAS-SVNS method and 

presented in Table 3.5. 

Table 3.4. Initial decision matrix of the sample iteration 

Criterion 
Candidate frontier 

A1 A2 A3 A4 A5 A6 

𝑐1 2.3608 2.2629 1.9455 1.2639 2.7165 3.9915 

𝑐2 0.0100 0.8968 0.0995 0.0100 0.3886 0.4274 

𝑐3 26.8296 43.6107 17.9941 9.7133 39.6498 5.3125 

𝑐4 9.1394 12.5583 6.9450 4.4250 11.8150 2.7498 

𝑐5 21.5175 20.7496 17.3396 6.7615 2.5623 17.7558 

𝑐6 0.0100 8.7569 5.7627 0.0100 2.6942 1.3109 

Table 3.5. Results provided by WASPAS-SVNS method for sample iteration 

Method 

results 

Candidate frontier 

A1 A2 A3 A4 A5 A6 

𝑄𝑖
(2)

 

(0.7195, 

0.2986, 

0.2805) 

(0.8059, 

0.1909, 

0.1941) 

(0.7526, 

0.2435, 

0.2474) 

(0.8410, 

0.1437, 

0.1590) 

(0.9268, 

0.0745, 

0.0732) 

(0.7933, 

0.1924, 

0.2067) 

𝑄𝑖
(2)

 

(0.0142, 

0.9871, 

0.9858) 

(0.1042, 

0.8944, 

0.8958) 

(0.0339, 

0.9700, 

0.9661) 

(0.0085, 

0.9927, 

0.9915) 

(0.0691, 

0.9356, 

0.9309) 

(0.0431, 

0.9581, 

0.9569) 

𝑄𝑖  

(0.7235, 

0.2948, 

0.2765) 

(0.8262, 

0.1707, 

0.1738) 

(0.7610, 

0.2362, 

0.2390) 

(0.8424, 

0.1427, 

0.1576) 

(0.9318, 

0.0697, 

0.0682) 

(0.8022, 

0.1844, 

0.1978) 

𝑆(𝑄𝑖) 0.7144 0.8277 0.7624 0.8498 0.9311 0.8089 

Rank 6 3 5 2 1 4 

 

The provided example demonstrates that the robot is capable of balancing the 

competing optimisation priorities modelled by the proposed criteria set. 

Considering the 𝑐1 criterion that corresponds to the robot’s safety, the candidate 

denoted as A5 is the second-best option within the list and A4 is last. However, 

the results obtained by applying the WASPAS-SVNS method indicate that A5 is 

ranked the best candidate and A4 is the second-best. In this case, the standard 𝑐3, 

𝑐4 and 𝑐5 criteria outweigh the proposed 𝑐1 criterion. This result highlights how 

the optimisation priorities are balanced by applying the MCDM approach and 

indicates that robot safety issues can be effectively addressed when applying the 
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proposed candidate assessment strategy. The robot’s ability to evade dangerous 

objects is also illustrated in Fig. 3.2. 

 

 
The robot movement trajectory (black line in Fig. 3.2) suggests that by 

applying the proposed candidate assessment strategy, the robot is actively 

avoiding dangerous objects (red markers in Fig. 3.2). Also, the robot is attracted 

to areas considered to lead the robot out of the current exploration space. 

Although the proposed method demonstrates stability and the ability to avoid 

dangerous objects, some improvements can be considered. For example, the 

assessment of the candidates that are only in the robot’s field of view can reduce 

the efficiency of the environment exploration process as the decisions on where 

to move next might not be efficient on the global scale. Thus, further development 

of the environment exploration strategies is presented in the next chapters of this 

thesis. 

3.2. Frontier Assessment Strategy by WASPAS-IVNS 
Method 

Although the previously proposed strategy for candidate assessment in the robot’s 

field of view shows potential, the application of the MCDM approach for the 

global candidate assessment task could increase the robot’s performance when 

considering the size of the area that was searched by the robot. Differently from 

the previously discussed strategy, in this approach, the robot determines a set of 

possible candidates that could be reached by considering not the current field of 

  
a) b) 

Fig. 3.2. Robot movement trajectory: (a) the robot movement trajectory when 

applying the proposed candidate assessment strategy; (b) the robot movement 

trajectory, when applying only the 𝑐3, 𝑐4 and 𝑐5 criteria. The red markers represent 

dangerous objects the robot should avoid, the black line indicates the robot’s 

movement trajectory 
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view but rather all available environment information. Specifically, a frontier 

assessment-based strategy is considered (Yamauchi, 1997). 

In general, a frontier can be defined as a region between the currently 

discovered and the unknown environment. By directing the robot to these areas, 

new environment information can be discovered and added to the partial 

environment representation model (in the case of this thesis, a grid map (ROS 

Gmapping, 2020)). Then, a list of reachable frontiers is determined once again, 

and the robot is directed to the one with the highest utility score, considering the 

applied candidate assessment strategy. 

However, the imprecise robot movements and small measurement variations 

obtained by robot sensors can have a significant impact on the autonomous 

environment exploration quality and, therefore, should be addressed while 

designing environment exploration strategies. Thus, the proposed WASPAS 

method extension, modelled under the interval-valued neutrosophic environment 

(WASPAS-IVNS) is implemented into the autonomous robot decision-making 

module. The proposed decision-making method provides additional reliability 

when comparing and ranking candidate frontiers by addressing the plausible 

measurement errors in the input data characteristics. 

3.2.1. Candidate Frontier Assessment Strategy 

Compared to the previously discussed approach, the proposed novel candidate 

assessment strategy is developed to consider not only the technical and safety 

requirements of an autonomous robot but also the social aspects of the SAR 

mission. Also, each criterion measurement approach is adjusted to support the 

environment exploration strategy based on the frontier evaluation. 

The proposed strategy is developed by combining six criteria that expand the 

standard environment exploration strategies, including the previously discussed 

safety requirements for SAR robots and address the situations in which survivors 

are detected. Thus, the candidates are assessed by applying the criteria of the 

estimated distance from the candidate frontier to the robot control station, the 

estimated amount of new information that is considered to be gained after 

reaching the candidate frontier, the estimated energy needed to reach the candidate 

frontier (measured by the time needed to reach the candidate), the distance from 

the robot to candidate frontier location, the estimated danger to the hypothesised 

survivor, and the estimated danger to the robot for following the computed path. 

The first criterion, the estimated distance from the candidate frontier to the 

robot control station, is a technical criterion that defines the robot’s ability to 

transmit information after reaching the candidate frontier (Visser & Slamet, 

2008). If the maximum transmission distance is known in advance and the robot 

control station is located at the unchanging position 𝑝𝑠(𝑥, 𝑦), the criterion value 



48 3. ASSESSMENT OF THE PROPOSED AUTONOMOUS ROBOT NAVIGATION… 

 

can be estimated as the Euclidean distance between the control station and the 

candidate frontier 𝑝𝑓(𝑥, 𝑦) in 𝑃𝑓. This criterion can be minimised to prioritise 

frontiers that are close to the robot’s starting location to perform more structured 

exploration while also enabling the robot to transmit the data to the robot 

operators. However, if this criterion is maximised, the further located frontiers 

will be preferred by the decision-making module. This can be applied to perform 

a faster environment exploration (nevertheless, robot operators should consider 

the possibility of losing communication with the robot and, thus, add restrictive 

rules that prohibit the robot from leaving the designated search area). Considering 

the operational parameters set to the simulated robot path planning algorithm, the 

estimated measurement variance for this criterion is set to ±1 m. 

The estimated amount of new information considered to be gained after 

reaching the candidate frontier (expressed by the estimated length of the frontier) 

expresses the belief that the length of the frontier can be applied to estimate how 

much spatial information can be observed from the candidate frontier 𝑝𝑓(𝑥, 𝑦) 

(Gomez et al., 2019). Specifically, lengthier frontiers may indicate that they 

border wide-open spaces, whereas short frontiers could indicate their position near 

corners or cluttered spaces. When maximised, this criterion is expected to direct 

the robot towards the open spaces, enabling it to discover more of the search and 

rescue environment. Therefore, this exploration behaviour could be applied to 

quickly obtain the base layout of the environment, which, in return, can help the 

first responders to plan their actions (De Cubber et al., 2017). However, it is worth 

noting that the estimation can differ from the actual result. This strongly depends 

on the spatial information which is unknown to the robot. For example, the 

environment can be cluttered around the candidate frontier, shaping a dead-end 

structure. However, this clutter may not be visible to the robot before it actually 

moves to the frontier. Considering the deployed autonomous robot, in this 

research, the estimated measurement variance of this criterion is set to ±0.1 m. 

The estimated distance from the robot to the candidate frontier is measured 

by the Euclidean distance between the current robot position 𝑝𝑟(𝑥, 𝑦) and the 

candidate frontier 𝑝𝑓(𝑥, 𝑦)𝑖. The criterion is expected to direct the robot to the 

frontiers that are within the nearby exploration space. 

The estimated time needed to reach the candidate frontier is applied to 

prioritise candidate frontiers that are reachable by straight and short paths. The 

criterion value is estimated by applying the approach proposed by Basilico and 

Amigoni (2011). More specifically, the criteria value 𝑡(𝑝𝑖) is determined by 

evaluating individual paths 𝑅(𝑝𝑓(𝑥, 𝑦)𝑖) = {𝑝𝑟, 𝑤𝑝1, 𝑤𝑝2, … , 𝑤𝑝𝑙 , 𝑝𝑓(𝑥, 𝑦)𝑖} to 

each candidate frontier 𝑝𝑓(𝑥, 𝑦)𝑖 in the currently available set 𝑃𝑓. Starting from 

the current robot position 𝑝𝑟 to the candidate frontier 𝑝𝑓(𝑥, 𝑦)𝑖, two connecting 

waypoints 𝑤𝑝𝑙 and 𝑤𝑝𝑙+1 create a path segment, returned by the robot path 
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planning algorithm. Therefore, the distance between two waypoints can be 

denoted as 𝑑(𝑤𝑝𝑙−1, 𝑤𝑝𝑙) and the corner between two segments can be denoted 

as 𝛼(𝑤𝑝𝑙−1, 𝑤𝑝𝑙 , 𝑤𝑝𝑙+1). As such, the criterion value can be determined by the 

following equation: 

𝑡(𝑝𝑓(𝑥, 𝑦)𝑖) =
∑ 𝑑(𝑤𝑝𝑙−1,𝑤𝑝𝑙)𝑚

𝑙=1

𝑣𝑚
+

∑ 𝛼(𝑤𝑝𝑙−1,𝑤𝑝𝑙,𝑤𝑝𝑙+1)𝑚
𝑙=1

𝑣𝑟
, (3.3) 

where 𝑣𝑚 = 0.1 𝑚/𝑠 and 𝑣𝑟 = 0.1 °/𝑠 are the minimum robot movement and 

rotation speed, respectively (here, the constant rotation and movement speed is 

assumed for criteria value estimation). Considering the robot operational 

parameters, the estimated measurement variance applied for this criterion is set to 

be equal to ±10 s. 

Disaster sites can have objects threatening the autonomous robot (e.g., fire or 

radiation sources (Wang et al., 2017; Zakaria et al., 2017; Tsitsimpelis et al., 

2019)), making it unable to continue the mission. Therefore, the criterion of the 

estimated penalty for following the computed path is introduced to address the 

robot’s safety requirements. The penalty system is introduced to define the danger 

of following the planned path to the candidate frontier. The criterion value is 

determined by assessing the distance from the planned path to the nearby 

dangerous objects and converting the distances to a point-based penalty by the 

following equation: 

𝑃𝑖 = ∑ ∑ 𝑑𝑝(𝑤𝑝𝑖, 𝑜𝑑𝑗)𝑚
𝑖=1

𝑛
𝑗=1 , (3.4) 

where 𝑑𝑝(𝑤𝑝𝑖 , 𝑜𝑑𝑗) = 3 − 𝑑𝑑(𝑤𝑝𝑖, 𝑜𝑑𝑗) if 𝑑𝑑(𝑤𝑝𝑖, 𝑜𝑑𝑗) < 3. The partial 

penalty is defined as 𝑑𝑝 estimated by measuring the Euclidean distances between 

𝑤𝑝𝑖 and 𝑜𝑑𝑗. If this distance 𝑑𝑑 from each waypoint 𝑤𝑝 in a path 𝑅(𝑝𝑓(𝑥, 𝑦)𝑖) to 

all currently known dangerous areas in a set 𝑂𝑑 = (𝑜𝑑1, 𝑜𝑑2, … , 𝑜𝑑𝑛) is greater 

than three meters, the robot receives no penalty. However, if the distance between 

𝑤𝑝𝑖 and 𝑜𝑑𝑗 is two meters, the robot receives one penalty point. If the distance is 

0.25 m, the robot receives a penalty of 2.75, and so forth. The considered 

measurement variance of this criterion is set to ±0.2. 

Finally, one of the social aspects of SAR missions (namely, the robot’s ability 

to consider the status tracking of the detected survivors) is proposed to be 

modelled by the estimated danger to the hypothesised survivor. This criterion is 

expected to attract the robot to the detected survivors and prioritise the ones who 

are in danger. To determine the value of this criterion, the Euclidean distance 𝑑𝑣 

from the planned route to the detected survivor is measured. If 𝑑𝑣 < 6, the 

Euclidean distance 𝑑𝑑 between the survivor and the nearest known dangerous area 

𝑂𝑑 = (𝑜𝑑1, 𝑜𝑑2, … , 𝑜𝑑𝑛) is measured. The criterion value is equal to 6 −
𝑑𝑑  𝑖𝑓 𝑑𝑑 ≤ 6. 
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The criteria that define the proposed candidate frontier assessment strategy 

are presented in Table 3.6. The criteria weights are determined by applying the 

SWARA method, introduced in the second chapter of this thesis. 

Table 3.6. Proposed strategy for the assessment of candidate frontiers 

Criterion Criterion name Optimum Weight 
Estimated 

variance 

𝑐1 

The estimated distance from the 

candidate frontier to the robot 

control station, m. 

Min 0.270 ±1 

𝑐2 

The estimated amount of new 

information that is considered to be 

gained after reaching the candidate 

frontier (length of the frontier), m. 

Max 0.217 ±0.1 

𝑐3 
Estimated danger to the detected 

survivor, units. 
Max 0.186 ±0.2 

𝑐4 
Estimated damage for following the 

computed path, units. 
Min 0.143 ±0.2 

𝑐5 
Estimated time needed to reach the 

candidate frontier, s. 
Min 0.099 ±10 

𝑐6 
Distance to the candidate frontier, 

m. 
Min 0.085 ±1 

 

It is worth noting that although the estimated variance of the criteria values 

is application-specific and modelled by considering the parameters of the 

deployed autonomous robot, it can be adjusted to consider the expected 

inaccuracies of the input data characteristics as defined by the experts or robot 

operators. Thus, this approach introduces additional flexibility when modelling 

input data characteristics applied by the autonomous robot in the candidate 

assessment task. 

3.2.2. Assessment of Similar Candidate Frontiers 

To highlight the practical application of the proposed WASPAS-IVNS method, 

an example solution to one of the autonomous robot decision-making iterations is 

presented. In this example, the indoor environment with a loop type topology is 

considered and presented in Fig. 3.3. Here, the dangerous areas and survivors are 

placed at random positions throughout the environment and are represented by the 

red and yellow markers, respectively. The multi-purpose Pioneer 3-AT robot 

platform is deployed in this example. 
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The area searched and mapped by the robot at the discussed candidate 

assessment example is provided in Fig. 3.4. In this example, one survivor and one 

dangerous object have already been discovered and marked by the yellow and red 

markers, respectively. The robot is located at the position marked by a black 

marker, and the black line represents its previous movement trajectory. The 

available frontier regions are depicted as blue lines, and the green markers 

represent candidate frontiers 𝑎𝑖(𝑥, 𝑦). At this iteration, the robot has to measure 

the utility of seven candidates. 

 
First, the criteria values are estimated for each candidate frontier. At this 

decision-making step, no new dangerous areas were detected around the candidate 

frontiers or survivors; hence, 𝑐3 and 𝑐4 criteria values are null. Although these 

criteria do not influence the decision-making process, it is highly recommended 

to change the null values to a small positive number to stabilise the numerical 

 
Fig. 3.3. Test environment with a loop type topology. The red markers indicate the 

positions of dangerous areas. The yellow markers indicate the positions of the 

survivors (Semenas & Bausys, 2020) 

 

 
Fig. 3.4. Area searched and mapped at the considered candidate frontier assessment 

example. The blue lines indicate candidate frontiers (𝑎1, 𝑎2, … , 𝑎7). The red and 

yellow markers represent the discovered dangerous object and survivor (Semenas & 

Bausys, 2020)  
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computational procedure of neutrosophic algebra. The constructed decision 

matrix for the sample iteration is presented in Table 3.7. 

Table 3.7. Decision matrix of the considered candidate assessment example 

Candidate 

frontier 

Criterion 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 

𝑎1 18.89 12.7 0.10 0.10 25.27 12.94 

𝑎2 11.84 9.10 0.10 0.10 37.58 7.13 

𝑎3 16.54 4.00 0.10 0.10 39.09 10.28 

𝑎4 12.15 10.3 0.10 0.10 33.04 14.27 

𝑎5 18.54 16.4 0.10 0.10 60.89 21.80 

𝑎6 29.33 15.5 0.10 0.10 31.59 23.57 

𝑎7 16.47 4.00 0.10 0.10 63.49 20.61 

 

The utility of each candidate frontier is measured by applying the algebraic 

functions of WASPAS-IVNS introduced in the second chapter of this thesis. The 

same candidate assessment problem is solved by applying the WASPAS-SVNS 

method. Compared to the WASPAS-SVNS method, the modelling of candidate 

frontier evaluation problems under the interval-valued neutrosophic set provides 

additional tools for assessing similar candidates. Therefore, the proposed 

WASPAS-IVNS method enables the autonomous robot to make more accurate 

estimates when ranking the candidate frontiers. This difference is illustrated in 

Table 3.8, which represents the utility scores obtained by applying the WASPAS-

SVNS method. In this example, the scores of the 𝑎2 and 𝑎4  frontiers are very 

similar. However, by applying the WASPAS-IVNS method, candidate 𝑎2  is 

chosen as the next-best candidate the robot should reach. 

Table 3.8. Candidate ranks by the WASPAS-IVNS and WASPAS-SVNS methods 

Candidate 

frontier 

WASPAS-IVNS WASPAS-SVNS 

𝑆(𝑄) Rank 𝑆(𝑄) Rank 

𝑎1 [2.002, 2.286] 3 0.6655 3 

𝑎2 [2.014, 2.312] 1 0.6708 2 

𝑎3 [1.877, 2.172] 5 0.5982 5 

𝑎4 [2.015, 2.306] 2 0.6719 1 

𝑎5 [1.898, 2.174] 4 0.6171 4 

𝑎6 [1.853, 2.117] 6 0.5812 6 

𝑎7 [1.743, 2.027] 7 0.5193 7 
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The quality of the environment exploration strategy can be affected by the 

small variations in the input data characteristics present due to the imprecise 

environment representation model or faulty sensor readings. Therefore, the 

proposed WASPAS-IVNS method is introduced to address this issue. The 

assessment of the proposed method indicates that WASPAS-IVNS can be applied 

to solve complex decision-making tasks and show potential when applied in SAR 

missions. When compared to the standard WASPAS-SVNS method, the proposed 

WASPAS-IVNS method provides additional reliability when comparing similar 

candidates. This is achieved by considering the possible imprecisions in the input 

data characteristics. 

3.3. Candidate Frontier Assessment by  
WASPAS-mGqNS Method 

As the proposed candidate-assessment-based autonomous navigation and 

environment exploration strategies show potential in SAR environments, an 

additional candidate assessment strategy is proposed. This strategy considers the 

possibility of a priori information, which enables the robot operator to indicate the 

priority areas that should be explored. Also, a criterion that defines the spatial 

clutter around the candidate frontier is introduced to reduce the chance of selecting 

the frontier around which most of the information has already been discovered. 

However, different real-world missions might require a slightly different 

approach when measuring the utility of a candidate. Therefore, a novel extension 

modelled under the m-generalised q-neutrosophic environment is proposed for the 

WASPAS method, namely, WASPAS-mGqNS. This extension enables the robot 

operator to shift between the fuzzy sets that govern the aggregation process of the 

applied criteria and introduces additional flexibility when modelling environment 

exploration strategies. Identically to the previously discussed frontier-based 

approach, the proposed candidate assessment strategy is applied by a simulated 

Pioneer-3AT robot. The obtained test results highlight how the proposed approach 

could be used to minimise the distance travelled by the robot and maximise the 

size of the area searched by the robot when the search must be performed around 

the several priority locations that are set in advance by the robot operator. 

3.3.1. Priority-Based Candidate Frontier Assessment Strategy 

The strategies discussed in the previous chapters of this thesis are applied in 

situations where no a priori information about the environment is known to the 

autonomous robot. Yet, considering some real-world situations, it is likely that 

robot operators can obtain some information about the environment and apply it 
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to make more efficient decisions (e.g., as in Calisi et al., 2007; Roa-Borbolla et al., 

2017). Therefore, for the candidate assessment problem, a novel strategy is 

proposed to enable the robot to explore areas around the set priority locations and 

reduce the amount of input data needed to filter the frontiers surrounded by mostly 

explored space. The main objective of the proposed strategy is to maximise the 

amount of discovered information around a set of priority locations while 

minimising the average distance travelled by the autonomous robot. Thus, the 

candidate frontier assessment strategy is modelled by applying six criteria, i.e., 

the distance from the robot to the candidate frontier, the estimated amount of new 

information that is considered to be gained after reaching the candidate frontier, 

the estimated time needed to reach the candidate frontier, the distance between the 

frontier and robot control station, the distance from the candidate frontier to the 

set priority location and the ratio between the number of unknown cells and the 

sample population size around the candidate frontier.  

The distance from the candidate frontier to the set priority location is a novel 

minimised criterion introduced to enable more exhaustive exploration around the 

set priority location without directly moving the autonomous robot to the 

designated area. The main idea behind introducing this criterion is that in real-

world search and rescue missions, it is very likely that the rescue teams can obtain 

some information about the environment and focus the exploration effort around 

the prioritised locations (e.g., Calisi et al., 2007; Roa-Borbolla et al., 2017). The 

criterion value is measured by the shortest Euclidean distance between each 

priority location and the considered candidate. 

The ratio between the free cells around the frontier and the sample population 

is a maximised criterion that is introduced to reduce the chance of selecting 

frontiers that are unreachable or are surrounded by already discovered space (e.g., 

candidates that are detected near the corners of a room or, due to the faulty 

environment representation model, in the middle of the wall). This criterion is also 

applied to address the issue of inaccurate or noisy robot-constructed environment 

representation model (Zakiev et al., 2019). As the MCDM methods are vulnerable 

to numerical instability, this problem can have a notable influence on the 

performance of the proposed strategy. The criterion value is measured by 

sampling a total of 100 cells within a set radius around each frontier as presented 

in Fig. 3.5 (in the considered setup, the set radius is equal to 1.5 m) and applying 

the following equation: 

 𝑐6 =
𝜑

𝜆⋅2𝑛 , (3.5) 

where 𝜑 is the number of sampled cells that are yet to be discovered, 𝜆 is the real 

number, representing the sample population size and 𝑛 is the number of sampled 

cells that are occupied. Although the approach of estimating the amount of free 
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space that would be visible by considering parameters of robot perception sensors 

(Basilico & Amigoni, 2011; Taillandier & Stinckwich, 2011) can also be applied 

to determine the value of this criterion, this approach requires additional 

computational resources as more input data must be evaluated by the autonomous 

robot. 

  
The proposed strategy for the assessment of candidate frontiers is presented 

in Table 3.9. The criteria weights are determined by applying the previously 

introduced SWARA method. 

Table 3.9. Proposed (PS) candidate assessment strategy 

Criterion Criterion name Optimum Weight 

𝑐1 Distance to the candidate frontier, m. Min 0.07 

𝑐2 

The estimated amount of new information that 

is considered to be gained after reaching the 

candidate frontier, m. 

Max 0.13 

𝑐3 Estimated time needed to reach the frontier, s. Min 0.24 

𝑐4 Distance to the robot control station, m. Min 0.04 

𝑐5 
Distance from the candidate frontier to the set 

priority location, m. 
Min 0.37 

𝑐6 

The ratio between the number of unknown cells 

and the sample population size around the 

candidate frontier, %. 

Max 0.15 

 

 

Fig. 3.5. Proposed cell sampling method. Here, the blue line indicates the chain of 

cells between the explored and unknown space. The green marker indicates the 

location of the candidate frontier 𝑝𝑓(𝑥, 𝑦)𝑖. The red markers indicate samples that 

fall into the explored or occupied space. Yellow markers indicate samples located on 

the undiscovered cells (Semenas, Bausys & Zavadskas, 2020) 
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To evaluate the performance of the proposed strategy (PS), two additional 

autonomous navigation and environment exploration strategies are considered, 

i.e., the direct control (WS) strategy and the information gain (IG) strategy, which 

is based on the cost–benefit candidate assessment approach, presented in 

Table 3.10. 

Table 3.10. Information gain (IG) candidate assessment strategy 

Criterion Criterion name Optimum Weight 

𝑐1 Distance to the candidate frontier, m.  Min 0.25 

𝑐2 

The estimated amount of new information that 

is considered to be gained after reaching the 

candidate frontier, m. 

Max 0.30 

𝑐3 Estimated time needed to reach the frontier, s. Max 0.35 

𝑐4 Distance to the robot control station, m. Min 0.10 

 

In this evaluation, the IG and the PS strategies are modelled by applying the 

frontier-based candidate assessment approach, in which the utility of a candidate 

is determined by applying the proposed WASPAS-mGqNS method. The direct 

control strategy WS is modelled by applying the approach in which the robot 

operator sets the order of priority locations to be visited, and the robot follows the 

shortest path between them. 

3.3.2. Performance Evaluation of the Proposed Priority-Based 
Candidate Assessment Strategy 

To highlight how the proposed priority-based candidate assessment strategy and 

the WASPAS-mGqNS method could be applied in autonomous navigation and 

environment exploration tasks, they are evaluated in a simulated search and rescue 

environment, presented in Fig. 3.6. Here, the white markers indicate four priority 

locations the autonomous robot is expected to visit and around which the robot 

should focus the exploration effort. The blue marker indicates the robot’s starting 

position (considered as the robot’s control station). The primary objective of the 

proposed candidate-assessment-based environment exploration strategy is to 

minimise the distance travelled by the robot and increase the size of the searched 

environment around a set of priority locations that are identified by the robot 

operators before deploying the autonomous SAR robot. The navigation and 

environment exploration task is terminated when the autonomous robot visits all 

four priority locations or the time limit of ten minutes is reached. 
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As in the previous tests, the autonomous robot deployed in a Gazebo 

simulator is controlled by applying the ROS robot operating system and using a 

similar navigation framework and sensor setup as discussed in the previous 

section of this thesis. The decision on where to move next is made, and the frontier 

with the highest utility is determined by applying the proposed WASPAS-mGqNS 

method. The performance of the three environment exploration strategies (PS, IG, 

and WS) is evaluated in this assessment. As the robot movement trajectories can 

differ between multiple simulations due to the inaccurate input data characteristics 

and errors in the environment representation model (which is used for path 

planning), a total of ten simulation runs were performed for each environment 

exploration strategy to obtain the averaged results. The results obtained in these 

tests are presented in Fig. 3.7. 

 
Considering the average distance travelled by the autonomous robot, the WS 

strategy shows the best performance in the simulated environment. However, by 

applying this approach, the robot searched the smallest area when compared to the 

 
Fig. 3.6. Simulated indoor environment. White markers indicate the priority 

locations the robot is expected to visit. The blue marker indicates the robot’s starting 

position (Semenas, Bausys & Zavadskas, 2020) 

  

a) b) 

Fig. 3.7. Results of tested navigation strategies: (a) the size of the searched area, m2; 

(b) the length of the distance travelled by the robot, m 
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IG and PS strategies. Considering the average distance travelled by the 

autonomous robot, the worst performance is observed when applying the IG 

strategy. Although this strategy enables the autonomous robot to search most of 

the exploration space, it also significantly increases robot backtracking and does 

not guarantee the visitation of all priority locations within the considered time 

window of ten minutes. As such, the addition of 𝑐5 and 𝑐6 criteria show potential 

in keeping the robot close to the prioritised locations while also minimising its 

chance to select the candidates that are surrounded by a previously searched 

environment. 

These results are also represented by the robot movement trajectory 

presented in Fig. 3.8. For example, (a) represents the robot movement trajectory 

when the WS strategy is applied. In this example, the robot follows the shortest 

route between the set priority locations and finishes the exploration mission when 

the last priority location is visited. In contrast, it is common for the IG strategy to 

never visit all the priority locations and exhaustively explore the SAR 

environment until the given time limit is reached and the robot is stopped, as 

highlighted in (b). However, the proposed environment exploration strategy, 

presented in (c), indicates that the robot that applies the proposed candidate 

assessment strategy searched a lesser area when compared to the IG strategy. 

However, the robot is directed to the priority locations, enabling it to explore the 

frontiers around these positions and, thus, discover more environment information 

(when compared to the WS strategy) while simultaneously constructing a time-

efficient navigation path (when compared to the IG strategy). 

 

 
The obtained results indicate that the proposed candidate assessment strategy 

enables the autonomous robot to maximise the searched area around the prioritised 

locations while travelling a relatively short distance. Thus, the proposed MCDM 

method extension can be applied to solve such complex decision-making 

problems as candidate assessment tasks in autonomous environment exploration. 

   
a) b) c) 

Fig. 3.8. Robot movement trajectories when applying the PS, IG and WS strategies: 

(a) robot movement trajectory when WS strategy is applied; (b) robot movement 

trajectory when the IG strategy is applied; (c) robot movement trajectory when the 

PS strategy is applied (Semenas, Bausys & Zavadskas, 2020) 
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However, it is worth noting that the robot’s navigational behaviour strongly 

depends on the physical features of the explored environment. For example, if 

there is a lack of available frontiers in the space around the prioritised location, 

the autonomous robot might not increase the amount of the discovered 

environment information before the mission termination conditions are met. 

3.4. Environment Exploration by the Adaptive MCDM 
Approach 

Considering the complexity of the candidate assessment problem in SAR missions 

and the inherent complexity of real-world environments, it can be argued that an 

efficient autonomous robot must be capable of swapping between the rules that 

govern the candidate assessment task rather than applying the same rules for each 

candidate assessment iteration. Therefore, an adaptive environment exploration 

strategy is proposed, which implements the multi-criteria decision-making 

methods to decide on where to move next, and the fuzzy logic controller, which 

is applied to determine the most appropriate strategy for the candidate assessment 

problem. Differently from the previously discussed strategies, the proposed 

approach enables the autonomous robot to apply the most appropriate candidate 

frontier assessment strategy based on the currently discovered environment 

information and robot surroundings. Specifically, the decision on where to move 

next is made by applying one of the pre-set strategies defined by differently 

modelled criteria weights. The criteria are aggregated, and the utility of a 

candidate frontier is measured by applying the previously discussed neutrosophic 

WASPAS method extension, i.e., WASPAS-IVNS. 

3.4.1. Fuzzy Logic Controller for Adaptive Environment 
Exploration 

In general, a basic fuzzy logic controller can be constructed from the four core 

components: the fuzzification module, fuzzy inference machine, fuzzy rule base, 

and the defuzzification module (Klir & Yuan, 1995). The first component, the 

fuzzification module, is responsible for processing and mapping a set of crisp 

input data values to the linguistic terms, called fuzzy sets, and determining the 

degree of membership of each input data value in the unit interval of [0, 1]. A 

fuzzy logic controller is a popular approach to modelling autonomous robot 

systems that is successfully applied in many different designs (e.g., Din et al., 

2018; Hong et al., 2012; Seraji & Howard, 2002; Singh & Thongam, 2018; 

Kahraman et al., 2020; Sreekumar 2016; and Khurpade et al., 2011, just to name 

a few). 
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The inference machine is applied to assess the fuzzified input data by a set of 

fuzzy IF-THEN rules (called the fuzzy rule base), which govern the output of the 

module. These rules can be defined by the experts, built on the knowledge base or 

just by referencing successful system tests. However, as there may be multiple 

rules that are activated due to the overlaps in the inference machine output, the 

defuzzification module is applied to convert the obtained results to a crisp output 

value. This value is further applied in selecting the appropriate candidate 

assessment strategy. The defuzzification process can be performed by applying 

several methods. For example, the centre of sums method (which is used in the 

proposed system), the centre of gravity method, first, last or mean of maxima, just 

to name a few. 

The proposed fuzzy logic controller is applied to determine which candidate 

frontier assessment strategy should be applied considering the current robot’s state 

and known environment information. It is also worth noting that the proposed 

fuzzy logic controller showcases applicational principles of the proposed adaptive 

strategy and is not aimed to define how the robot should realistically operate in 

every search and rescue mission. In this case, the proposed approach describes 

how the output value of the fuzzy logic controller can be assigned to the unique 

candidate assessment strategies. However, this process can be further extended by 

introducing a fully autonomous or rule-based approach. The fuzzy logic controller 

uses two input arguments, namely, 𝐸(𝑠) – the distance from the robot to the 

hypothesised survivor and 𝐸(𝑑) – the distance from the robot to the closest 

dangerous area. One output parameter is provided, namely, the candidate frontier 

assessment strategy 𝑆𝑡 that should be applied by the autonomous robot at the 

current environment exploration step. 

The input membership functions for the 𝐸(𝑠) are defined as contact (SC), 

near (SN), medium (SM), far (SF), and very far (SVF). The input membership 

functions of the distance to the 𝐸(𝑑) are defined as critical (DC), very near 

(DVN), near (DN), medium (DM), far (DF), very far (DVF), and safe to ignore 

(DSI). Here, triangular membership functions are used for the inputs as presented 

in Fig. 3.9 and Fig. 3.10. 

 

Fig. 3.9. Input membership function for the distance to the hypothesised survivors 
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Fig. 3.10. Input membership function for the distance to the dangerous objects 

In the proposed adaptive candidate assessment strategy, the output of the 

fuzzy logic controller is mapped to the candidate frontier assessment strategies, as 

presented in Fig. 3.11. Here, the proposed candidate assessment strategies are 

defined as the danger avoidance strategy (DA), which represents the egoistic 

behaviour model and is expected to direct the autonomous robot away from the 

dangerous paths and areas; the restrictive reach survivor strategy (RRS), which is 

expected to balance the robots survivability requirements with the need to explore 

the frontiers around the hypothesised survivor; the reach survivor strategy (RS), 

which represents the altruistic behaviour model and prioritises candidate frontiers 

that are relatively close to the hypothesised survivor; and the information gain 

strategy (IG), which is applied for directing the robot to the set prioritised 

locations. It is also worth noting, that the list of the proposed candidate assessment 

strategies is not finite and can be easily extended depending on the specific 

environment exploration task and the needs of robot operator. 

 

Fig. 3.11. Output membership functions for selecting the candidate frontier  

assessment strategy 

Since five fuzzy membership functions are defined for 𝐸(𝑠) and seven fuzzy 
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Table 3.11. Fuzzy rule-base for selecting candidate frontier assessment strategy 

Membership 

terms 
DC DVN DN DM DF DVF DSI 

SC DA RRS RRS RRS RS RS RS 

SN DA RRS RRS RRS RS RS RS 

SM DA DA RRS RRS RS RS RS 

SF DA DA DA RRS RS IG IG 

SVF DA DA DA DA RS IG IG 

 

Several of the fuzzy rules applied by the proposed fuzzy logic controller are 

defined: 

− IF 𝐸(𝑠) is SC AND 𝐸(𝑑) is DC THEN 𝑆𝑡 is DA; 

− IF 𝐸(𝑠) is SN AND 𝐸(𝑑) is DVN THEN 𝑆𝑡 is RRS; 

− IF 𝐸(𝑠) is SF AND 𝐸(𝑑) is DF THEN 𝑆𝑡 is RS; 

− IF 𝐸(𝑠) is SVF AND 𝐸(𝑑) is DSI THEN 𝑆𝑡 is IG. 

 

To determine the output value of the proposed fuzzy logic controller, the 

defuzzification step is performed by applying the centre of sums method. The 

obtained output value is then mapped to the candidate assessment strategies (that 

are presented in Table 3.13) according to the thresholded membership value. In 

this case, the obtained output value is applied to determine if the membership to 

the candidate frontier selection strategy is weak or strong. The membership is 

considered strong, and the selected candidate frontier assessment strategy applies 

the criteria weights represented as 𝑤𝑠, when the obtained output value 𝑆𝑡 satisfies 

the following condition: 

𝑤𝑠 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑖𝑓 {
𝑆𝑡 ≤ 𝑏 + 0.25
𝑆𝑡 ≥ 𝑏 − 0.25

, (3.6) 

where 𝑏 is the integer value, which is closest to the fuzzy controller output value 

𝑆𝑡. Likewise, the membership is determined as weak, and the selected candidate 

assessment strategy applies the criteria weights represented by 𝑤𝑣 when the 

obtained output value 𝑆𝑡 satisfies the following condition: 

𝑤𝑣  𝑖𝑠 𝑡𝑟𝑢𝑒 𝑖𝑓 {
    𝑆𝑡 > 𝑏 + 0.25  

𝑆𝑡 ≤ 𝑏 + 0.5
 𝑜𝑟 {

   𝑆𝑡 < 𝑏 − 0.25
𝑆𝑡 ≥ 𝑏 − 0.5

, (3.7) 

where 𝑏 is the integer value, which is closest to the fuzzy controller output value 

𝑆𝑡. Here, the four main candidate assessment strategies 𝑆𝑇(𝐶, 𝑊) are modelled 

by applying the criteria presented in Table 3.12. 
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Table 3.12. Criteria applied to model the candidate frontier assessment strategy 

Criterion Criterion name Optimum 
Estimated 

variance 

𝑐1 Length of the frontier, m. Max ±0.6 

𝑐2 

The ratio between the number of unknown cells 

and the sample population size around the 

candidate frontier, %. 

Max ±3 

𝑐3 
Distance from the robot to the candidate 

frontier, m. 
Min ±0.3 

𝑐4 
Estimated time for reaching the candidate 

frontier, s. 
Min ±1.2 

𝑐5 
Distance from the candidate frontier to the 

robot control station, m. 
Max ±0.3 

𝑐6 
The estimated danger for following the 

computed path, units. 
Min ±0.3 

𝑐7 Estimated survivor hypothesis confirmation, %. Min ±5 

 

Similar to the previously discussed approach, the 𝑐2 criterion is applied to 

determine if the frontier is surrounded by already explored areas or if it borders 

the edge of the unexplored space. However, in this strategy, the criterion value is 

estimated by sampling the grid map cells around the candidate frontier in the 

radius of 4 m with a sample population of 880. If the cell is thresholded as 

unknown, it is added to the sum of unknown cells, and the obtained result is 

divided by the sample population. As the applied WASPAS-IVNS method 

enables the robot to evaluate the possible inaccuracies in the input data, the 

considered variance of this criterion is set to ±3%. 

The estimated survivor hypothesis confirmation is defined as 𝑐7 and is an 

important criterion when considering autonomous environment exploration tasks 

in search and rescue missions. The criterion can be minimised to urge the 

decision-making module to choose a path to the frontier, which is near the 

detected hypothesised survivor. This feature can assist the rescue teams in 

determining if the detected object is a survivor that needs help and not a false 

positive. However, as human and dangerous object recognition introduces many 

problems that are out of the scope of this thesis, it is assumed that the robot can 

ideally recognise these objects when they are detected in the robot’s field of view. 

In real-world situations, this can be achieved by recognising heat signatures to 

identify hot objects, such as humans (Cakmak et al., 2017), or Geiger-muller 

sensors to detect dangerous objects, such as radioactive substances (Zakaria et al., 

2017), etc. The survivor confirmation rate is measured by the distance between 

the autonomous robot and the hypothesised survivor and increases (with an 
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estimated variance of ±5%) as the robot approaches the detected object. The 

increase is measured by the linguistic fuzzy approach in which the distance 

between the robot and survivor is mapped to the percentage value. To address the 

specifics of neutrosophic sets, the default value of a criterion is set to a high 

randomised value. Later this value is switched to the exact measure whenever the 

survivor is detected. The 100% confirmation rate is achieved when the distance 

between the robot and the survivor is less than 1.5 meters (Aghababa et al., 2019). 

The four distinctive frontier assessment strategies that are modelled by 

applying the proposed criteria set are provided in Table 3.13. The relative weights 

of criteria are determined by applying the SWARA method. 

Table 3.13. Proposed set of candidate frontier assessment strategies 

Criterion Optimum 

Candidate assessment strategy 

DA RRS RS IG 

𝑤𝑠 𝑤𝑣 𝑤𝑠 𝑤𝑣 𝑤𝑠 𝑤𝑣 𝑤𝑠 𝑤𝑣 

𝑐1 Max 0.15 0.14 0.08 0.09 0.10 0.10 0.12 0.12 

𝑐2 Max 0.19 0.16 0.09 0.10 0.13 0.12 0.16 0.14 

𝑐3 Min 0.08 0.09 0.06 0.07 0.09 0.09 0.11 0.09 

𝑐4 Min 0.06 0.11 0.14 0.12 0.21 0.15 0.22 0.16 

𝑐5 Max 0.05 0.07 0.05 0.20 0.05 0.07 0.25 0.21 

𝑐6 Min 0.34 0.24 0.35 0.28 0.08 0.20 0.08 0.20 

𝑐7 Min 0.13 0.19 0.22 0.16 0.35 0.28 0.05 0.07 

 

It is hypothesised that the adaptive candidate assessment strategy will 

provide more balanced results when compared to the four individual candidate 

assessment strategies. As a result, the robot should evade dangerous areas while 

visiting detected survivors. 

3.4.2. Evaluation of the Adaptive Candidate Frontier 
Assessment Strategy 

As previously discussed, the fuzzy logic controller is the main component of the 

proposed adaptive environment exploration strategy, which enables the robot to 

select the appropriate frontier assessment strategy based on the current state of the 

robot and the discovered environment information. Thus, an example of robot 

movement trajectory when applying the proposed strategy is presented in 

Fig. 3.12. Here, the robot travelled path is represented by a black line. Dangerous 

areas are presented by the red markers. Yellow markers indicate survivors, and 

the white markers are the prioritised locations robot should visit. In this example, 
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the proposed WASPAS-IVNS method is applied for the assessment of candidate 

frontiers. 

 
The exploration process is managed by the online candidate frontier 

assessment and selection process, which is directly controlled by the fuzzy logic 

controller as schematically presented in Fig. 2.1. Considering the provided 

example of the robot movement trajectory, the input parameters for the fuzzy logic 

controller, namely, the Euclidean distance between the robot and the closest 

dangerous object 𝐸(𝑑), and the distance between the robot and the closest 

hypothesised survivor 𝐸(𝑠), are presented in Fig. 3.13. 

 
Fig. 3.13. E(d) and E(s) values over time in the considered environment  

exploration example 

Each exploration sequence begins by applying the basic cost–benefit strategy 
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Fig. 3.12. Example of a robot movement trajectory by applying the proposed 

strategy and the proposed WASPAS-IVNS method. The black marker indicates the 

current robot position, red markers indicate dangerous areas and yellow markers 

indicate detected survivors (Semenas & Bausys, 2021) 
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logic controller. This strategy activation and de-activation process is presented in 

Fig. 3.14. 

 
Fig. 3.14. Applied frontier assessment strategy over time. The index of 1 corresponds to 

the DA strategy, 2 – to the RRS strategy, 3 – to the RS strategy, and 4 – to the IG 

strategy 

Here, “1” indicates that the danger avoidance strategy DA is applied for the 

assessment of candidate frontiers. Identically, the index value of “2” indicates the 

application of the RRS strategy, the value “3” indicates the application of the RS 

strategy, and the value “4” indicates the application of the IG strategy. The 

example shows that the proposed fuzzy logic controller allows the autonomous 

robot to swap between the candidate assessment strategies 𝑆𝑇(𝐶, 𝑊) throughout 

the SAR mission. 

The example suggests that the autonomous SAR robot that applies the 

proposed environment exploration strategy is actively avoiding the dangerous 

areas detected at the early stages of exploration. Also, the detected survivor 

attracts the robot to the candidate frontiers located on the right side of the 

simulated environment. The robot then explores nearby frontiers until the task 

termination conditions are met. However, in the considered example, one frontier 

that is located in the right-bottom area, between the two dangerous objects, was 

not visited during the exploration process. Although such behaviour in this 

situation reduces the amount of penalty received by the robot, it might also be 

unwanted in real-world SAR missions as the robot can ignore unsafe paths that 

could possibly lead to discovering more important environment features. 

Therefore, the autonomous robot operators should carefully consider how safely 

the robot should move in the environment and what are the effects of premature 

termination of the environment exploration process, as it may lead to situations 

where portions of the disaster site are not explored exhaustively. 

The assessment of each strategy’s performance considers the average penalty 

received by the robot for traversing dangerous areas and the average rates of the 
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survivor hypothesis confirmation. Fig. 3.15 presents the results that indicate the 

amount of penalty received by the autonomous search and rescue robot when 

applying each of the proposed individual strategies (IG, RS, RRS and DA). The 

results obtained by applying the adaptive candidate assessment strategy are 

represented by FC. 

 
Fig. 3.15. Average penalty received by the autonomous robot when applying each 

candidate assessment strategy, units (Semenas & Bausys, 2021) 

The considered test results indicate that the proposed adaptive environment 

exploration strategy (FC) shows more balanced results when compared to the four 

strategies that can be applied individually. For example, the FC method shows 

better performance when compared to the RS and IG strategies when the average 

of the received penalty is considered. In this case, the autonomous robot, operating 

by applying the proposed environment exploration strategy, reduces the received 

average penalty by 70%. However, the egoistic DA and RRS strategies that 

prioritise robot safety can reduce this average by up to 91%. The performed 

assessment also indicates that there is no noteworthy difference between the 

average percentage of survivor confirmation hypothesis (which reaches 80–83% 

by applying all four strategies) when comparing the proposed adaptive navigation 

strategy FC and the DA, RRS, RS and IG strategies.  

This result can be explained by considering the topology of the simulated 

SAR environment. As the robot can discover all environment information within 

the given time interval, every survivor is detected. However, the proposed 

adaptive environment exploration strategy that can swap between the rules that 

govern the candidate assessment process actively directs the robot farther away 

from dangerous areas (when the DA strategy is applied) and leads it to the areas 

that are near the hypothesised survivors (when the RRS and RS strategies are 

applied). The proposed approach shows potential in providing more balanced 

robot behaviour when compared to the non-adaptive application of each strategy. 
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3.5. Generalised Autonomous Robot Navigation 
Strategy 

As the proposed fuzzy logic controller shows potential in autonomous navigation 

and environment exploration tasks, the proposed strategy is further tested by 

developing a generalised candidate assessment strategy, which enables the 

evaluation of the previously proposed MCDM methods, namely, WASPAS-IVNS 

and WASPAS-mGqNS. The proposed autonomous navigation and environment 

exploration strategy is also compared to the common environment exploration 

strategies. The generalised environment exploration strategy for search and rescue 

missions is evaluated in three simulated indoor environments representing 

hypothetical SAR environments. The primary aims of this assessment are: 

− To test the performance and stability of the proposed WASPAS-IVNS and 

WASPAS-mGqNS methods against the WASPAS-SVNS and 

MULTIMOORA-SVNS methods. 

− To examine the capabilities of the proposed generalised navigation 

strategy in the simulated search and rescue mission and compare the 

results against the baseline candidate-assessment-based strategies, 

namely, the classical Closest Frontier (CF) strategy and the Standard 

Information Gain (SIG) strategy. 

When applying the CF strategy, the autonomous robot evaluates the utility of 

the multiple candidates solitary on the estimated time needed to reach them. The 

SIG strategy is based on the multi-criteria decision-making approach and is 

derived from previously introduced candidate assessment strategies (Basilico & 

Amigoni, 2011; Taillandier & Stinckwich, 2011; Bausys, Cavallaro & Semenas, 

2019; Visser & Slamet, 2008). The criteria and their relative weights that define 

the SIG strategy are presented in Table 3.14. The WASPAS-SVNS method is 

applied to aggregate criteria values and measures the utility of candidates when 

the SIG strategy is applied. 

Table 3.14. Standard information gain (SIG) strategy 

Criterion name Optimum Weight 

The estimated length of the frontier. Max 0.50 

The estimated time needed to reach the candidate frontier. Min 0.30 

The estimated distance from the candidate frontier to the robot 

control station. 
Min 0.20 

 



3. ASSESSMENT OF THE PROPOSED AUTONOMOUS ROBOT NAVIGATION… 69 

 

Five parameters were considered to compare the proposed autonomous 

navigation and environment exploration strategy and the baseline candidate 

assessment methods. Three of them are measured on an ordinal scale: the robot 

travelled distance, the size of the searched area, and the amount of the received 

penalty for traversing dangerous areas. Two of them are measured in a ratio scale, 

i.e., the ratio between the robot travelled distance and the size of the searched area, 

and the ratio between the received penalty for traversing dangerous areas and the 

size of the searched area.  

It is also worth noting that the autonomous robot will not necessarily display 

identical navigational behaviour in the same environment when considering the 

different simulation runs. This is due to the various robot movement imprecisions 

and the inaccurate environment representation model used by the robot to decide 

on where to move next. Therefore, each individual candidate assessment strategy 

is tested for a total of twenty simulation runs in a single environment, and the 

averaged results are considered. 

3.5.1. Generalised Candidate Frontier Assessment 

The key part of the proposed generalised candidate frontier assessment strategy is 

the adaptive decision-making approach applied to measure the utility of candidate 

frontiers. In this case, the utility is determined by applying one of the modelled 

strategies from a group of criteria and their relative weights that define different 

candidate assessment strategies. It is also worth noting that the proposed criteria 

list is not exhaustive and can be extended to include more objective-related 

requirements that are important when deciding on where the autonomous robot 

should move next. 

As previously discussed, one of the possible approaches for modelling 

candidate assessment strategies is to embed the optimisation requirements by 

enabling the autonomous robot to make altruistic or egoistic decisions. This can 

be achieved by defining different criteria optimums and weights to the same 

criteria set. For example, by forcing the robot to prioritise the frontiers with the 

computed path that also enables the robot to reach and monitor detected survivors 

and minimise the robot’s priority to avoid penalties, the robot will essentially be 

controlled by an altruistic strategy that prioritises survivors over the safety of the 

robot. On the other hand, the egoistic frontier assessment strategy ensures that the 

robot prioritises its safety and survivability above other objectives. Therefore, in 

situations where the decision-making module must compare the safety of the 

computed path to the candidate frontiers and the ability to make contact with the 

survivor, the robot would prefer to select the safer alternative from the robot’s 

perspective. 
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These generalised behaviour models are not intended to exhaustively define 

how the robot should behave in realistic search and rescue missions but rather 

provide an example of how different behaviours can be modelled for candidate 

assessment tasks. As the author already highlighted in the previous chapters of 

this thesis, other frontier assessment strategies can be modelled to address the 

specific optimisation requirements by introducing differently modelled criteria 

groups and their weights. 

In total, eight criteria are proposed for the frontier assessment task to model 

technical, social and safety requirements of search and rescue missions. The 

criteria set is built from the two key groups. The first group includes three criteria 

that were derived from the previously discussed next-best candidate assessment 

strategies (Basilico & Amigoni, 2011; Taillandier & Stinckwich, 2011): the 

amount of new information that could be obtained after reaching the candidate 

frontier (defined by the length of a frontier), the estimated cost of reaching the 

candidate frontier (defined by the estimated time needed to reach the frontier), the 

ability to transmit information from the candidate location to the robot control 

station (defined by the Euclidean distance between the robot and robot control 

station). 

The second group includes five criteria that address the technical, safety and 

social aspects of search and rescue missions: the estimated penalty for following 

the computed path to the candidate frontier, the ratio between the free cells around 

the candidate frontier and the sample population, the distance from the candidate 

frontier to the closest priority location, the current lowest recognition rate of a 

hypothesised survivor near the robot-computed path to the candidate frontier, and 

the estimated overall recognition rate of the hypothesised survivors that could be 

monitored while following the computed path to the candidate frontier. The last 

criterion is maximised to prioritise paths that allow the autonomous robot to 

monitor the discovered survivors. As the physical state of the survivors can change 

during the search and rescue mission, it can be reasoned that the autonomous robot 

should prioritise paths that enable it to monitor detected survivors and provide the 

rescue team with the latest information about their physical condition. In the 

context of this thesis, the criterion value of the total recognition rate of survivors 

that can be monitored by following the computed path is estimated by measuring 

the Euclidean distance 𝑑𝑣 from each waypoint 𝑤𝑝𝑖 in the robot-planned path to 

the known survivor locations. If 𝑑𝑣 < 3 𝑚, it is assumed that the survivor is 

observable and can be monitored by the passing autonomous robot. The survivor 

recognition rates are summed to determine the value of a criterion. The final 

criteria set that defines the generalised candidate frontier assessment approach is 

presented in Table 3.15. The candidate frontier assessment strategies that define 

the adaptive environment exploration strategy are presented in Table 3.16. 
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Table 3.15. Criteria set for the generalised frontier assessment strategy 

Criterion Criterion name 
Considered 

variance 

𝑐1 The estimated length of the frontier, m. ±0.6 

𝑐2 
The estimated distance from the candidate frontier to the 

robot control station, m. 
±0.3 

𝑐3 The estimated time needed to reach the candidate frontier, s. ±7 

𝑐4 
The estimated penalty for following the computed path, 

units. 
±(n * 0.3) 

𝑐5 
The total recognition rate of hypothesised survivors that 

could be monitored by following the computed path, %. 
±(n * 10) 

𝑐6 Current lowest hypothesised survivor recognition rate, %. ±10 

𝑐7 Distance from the frontier to the closest priority location, m. ±0.3 

𝑐8 
The ratio between the free cells around the frontier and 

sample population, %. 
±10 

Table 3.16. Strategies that define the generalised environment exploration strategy 

Criterion Optimum 
Candidate assessment strategy 

DA RRS RS IG 

𝑐1 Max 0.056 0.029 0.043 0.213 

𝑐2 Max 0.061 0.073 0.019 0.075 

𝑐3 Min 0.197 0.203 0.131 0.322 

𝑐4 Min 0.394 0.373 0.395 0.043 

𝑐5 Min 0.037 0.039 0.065 0.033 

𝑐6 Min 0.112 0.125 0.234 0.081 

𝑐7 Min 0.078 0.070 0.025 0.137 

𝑐8 Max 0.065 0.089 0.088 0.097 

 

The generalised candidate assessment strategy is implemented into the 

autonomous robot decision-making module, as presented in Fig. 2.1. It is expected 

that the proposed strategy will provide a balanced robot movement trajectory, 

evading dangerous objects, visiting detected survivors and exploring around the 

priority areas. 
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3.5.2. Autonomous Robot Design 

The proposed autonomous environment exploration strategy is employed by the 

simulated multi-purpose four-wheeled Pioneer 3-AT (P-3AT) robot platform 

(ROS Robots, 2020). The base parameters of the robot are set by considering the 

existing manual (MobileRobots Inc., 2006). The P-3AT platform is selected for 

its wide-ranging application in the context of academic autonomous mobile robot 

research, including the field of search and rescue missions. The Robot Operating 

System (ROS, 2020) libraries and packages are applied to set up the robot 

navigation stack and other essential components, including environment 

perception, localisation, movement and mapping modules. However, the robot 

navigation stack is extended by implementing the proposed generalised candidate 

frontier assessment strategy. 

The simulated P-3AT robot is equipped with several simulated sensors that 

enable it to obtain environment information. The main sensor the robot uses to 

perceive spatial information (e.g., walls and other physical obstacles) is the 

Hokuyo laser range scanner sensor. This simulated sensor is mounted on the top-

front part of the robot frame, enabling it to scan the environment at the 360-degree 

field of view at a 30-meter distance. The data obtained from this sensor is applied 

to build the partial map of the currently explored SAR environment. For this task, 

the simulated P-3AT robot applies the ROS-provided grid-map environment 

representation model (ROS Gmapping, 2020). In this model, the obtained spatial 

information is projected on a two-dimensional occupancy map, which is 

constructed from a set of equally-sized cells (in this thesis, the size of each cell is 

set to 0.1 𝑚2). In this case, each individual cell contains its estimated occupancy 

value, which can be thresholded as occupied (if the cell is considered to contain 

an obstacle), free (when the robot can traverse the cell freely) or unknown (if the 

corresponding search area was not yet observed by the autonomous robot). By 

applying this grid map model, frontier regions can be defined as the chain of 

connected free cells that are adjacent to the unknown cells. The centre cell of the 

frontier, denoted as a point 𝑝𝑓(𝑥, 𝑦), is considered a candidate frontier and all of 

the criteria values that are applied to determine the utility of the candidate are 

estimated according to this point. 

It is also worth noting that object recognition and image analysis problems 

(such as survivor or dangerous object identification) pose a set of problems that 

are out of the scope of this thesis. Therefore, it is assumed that the simulated P-

3AT robot can accurately identify and mark dangerous objects and hypothesised 

survivors whenever they are detected in the robots’ field of view. However, in 

real-world situations, robots can additionally be equipped with thermal cameras 

or other heat sensors (Cakmak et al., 2017) and use vision-based recognition 

methods or other sensors and strategies for the identification of these objects. 



3. ASSESSMENT OF THE PROPOSED AUTONOMOUS ROBOT NAVIGATION… 73 

 

3.5.3. Simulated SAR Environments 

The simulated Pioneer-3AT robot platform, which implements the proposed 

candidate frontier assessment strategy, is deployed in three indoor environments, 

which have distinctive topology and are simulated in the Gazebo simulation 

software (Gazebo, 2021). These environments define clear exploration bounds for 

the autonomous robot. The different environment sizes and topology also provide 

bigger and more diverse sets of candidates that could be assessed when testing the 

proposed autonomous navigation strategies. Several of these environments were 

also tested in previously discussed results. The top-down structures of these SAR 

environments are presented in Fig. 3.16. Here, the blue marker represents the 

robot’s starting location. The red markers represent dangerous areas that the robot 

must avoid during the navigation and environment exploration process. However, 

these areas must be marked on the built environment representation model for 

further use by the search and rescue teams. The yellow markers represent 

survivors that the robot should reach to enable a close-up evaluation of their 

physical status. The white markers represent priority locations that were set by the 

robot operators before the navigation process to direct the autonomous robot to 

the areas that are expected to provide important information for responder teams.  

 
As portrayed in Fig. 3.16, the first environment is 26 m by 17 m with 

dominant open spaces. This topology enables the robot to traverse exploration 

space without following the specific paths between the areas, meaning that the 

robot can cover the exploration space without the need to backtrack. Six areas are 

considered dangerous to the robot and, thus, should be avoided if possible. The 

locations of the four survivors are initially hidden from the robot’s field of view. 

The two priority locations were set to direct the robot to the left and right sides of 

the map. Due to the location of the dangerous objects, it is expected that the 

   
a) b) c) 

Fig. 3.16. Simulated SAR environments: (a) the 1st environment with the 26 m by 

17 m exploration space and an open topology; (b) the 2nd environment with the 

32 m by 26 m exploration space and a separated area topology; (c) the 3rd 

environment with the 43 m by 28 m exploration space with a loop-type topology. 

The red markers indicate dangerous areas the robot should avoid, white markers 

represent priority locations, and yellow markers represent the position of survivors. 

The blue marker represents the robot’s starting position (Semenas & Bausys, 2022) 
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proposed environment exploration strategy will first lead the robot to the right 

side of the environment. 

The second environment represents the 32 m by 26 m exploration space, with 

multiple separated areas. This topology is expected to force the autonomous robot 

to apply backtracking behaviour as there is only one corridor that connects the 

separated areas. In this simulated exploration space, four areas are considered 

dangerous to the robot. The five survivor locations are initially hidden from the 

robot’s field of view, and the detection of three of them requires the robot to go 

out of its way and exhaustively explore further located parts of the environment. 

The third environment represents the 43 m by 28 m disaster site with a 

mirrored loop-type topology. In the environments with this topology, the 

autonomous robot can visit multiple areas while moving between the 

interconnecting corridor loops. Eleven dangerous areas block multiple corridors, 

and seven survivors are distributed throughout the environment. In this scenario, 

it is expected that the autonomous robot will prioritise safe paths but will not avoid 

traversing dangerous areas if such a decision will enable the autonomous robot to 

monitor or reach detected survivors. 

To simplify the simulations, it is assumed that the survivors do not change 

their positions and the dangerous areas do not expand. Also, several additional 

assumptions are made: 

1. It is assumed that the robot operators have limited information that allows 

them to set the coordinates of priority locations that the robot should visit. 

However, no additional information about the current state of the 

environment is known to the autonomous robot or its operator in advance, 

meaning that the set location might be unreachable during the SAR 

mission. Hence, this information must be discovered by the autonomous 

robot at runtime. 

2. No additional moving objects that could damage the robot are present in 

the environment. The robot’s field of view is also unobstructed by vision-

obscuring objects or events, e.g., smoke, which can be a common issue 

considering the real-world search and rescue missions (Marjovi, Marques 

& Penders, 2009). 

3. The autonomous robot must cancel its current task and reach the detected 

hypothesised survivor if it is nearby. The survivor is considered 

successfully reached, and its status can be evaluated when the distance 

between the survivor and the current robot position is less than 1.5 m 

(Aghababa et al., 2019). 

4. The autonomous robot must also cancel its current task and reach the 

prioritised location if it is nearby. The prioritised location is considered 

successfully visited when the distance between it and the current robot 

position is less than 1.5 m. If there are two unvisited objects near the 



3. ASSESSMENT OF THE PROPOSED AUTONOMOUS ROBOT NAVIGATION… 75 

 

exploring robot, specifically, the hypothesised survivor and the prioritised 

location, the robot will always prioritise the closest survivor. 

5. The autonomous robot can change its navigation goal if a higher-valued 

candidate is detected while moving to the previously selected frontier. 

However, such decisions are made at constant simulation-time intervals 

to minimise the computational load on the robot decision-making module 

and reduce the likelihood of indecisive robot behaviour when several 

similar-valued frontiers are detected. 

6. The autonomous robot continues the environment exploration process 

until one of the mission termination conditions is met. Specifically, if 

either the 10-minute simulation-time limit has passed or the robot has 

visited all of the priority locations set by the robot operators. 

The final step in the proposed generalised autonomous navigation and 

environment exploration strategy is the assessment of candidate frontiers. 

However, as was previously discussed, there is a lack of flexible MCDM methods 

that allow assessing the inaccurate input data characteristics. This is a prominent 

issue, considering that inaccuracies can have a notable influence on the quality of 

the multi-criteria decision-making process and, consequently, on the proposed 

autonomous navigation strategy. Therefore, the proposed WASPAS-IVNS and 

WASPAS-mGqNS methods are applied and compared to the WASPAS-SVNS 

method to determine their computational stability and ability to consider the 

inaccurate input data characteristics. 

3.5.4. Assessment of the WASPAS-IVNS and WASPAS-mGqNS 
Methods 

The proposed WASPAS method extensions modelled under the interval-valued 

neutrosophic set and the m-generalised q-neutrosophic set enable the autonomous 

robot to consider the uncertainty of the input data characteristics. Thus, the 

performance of the proposed neutrosophic WASPAS method extensions, namely 

WASPAS-IVNS and WASPAS-mGqNS, are compared to the state-of-the-art 

neutrosophic WASPAS-SVNS and MULTIMOORA-SVNS (Stanujkic 

et al., 2017) methods. 

The proposed method extensions are expected to introduce minor 

improvements and slight autonomous robot performance differences when 

comparing the previously discussed parameters of the average size of the area 

searched by the autonomous robot, the average penalty received by the 

autonomous robot for moving through the dangerous areas, and the average 

distance travelled by the autonomous robot. In other words, the result variations 

obtained between the three MCDM methods in the three simulated environments 

are expected to be generally insignificant, irrespective of the increased or 
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diminished robot performance. The averaged simulation results obtained by 

evaluating the three MCDM methods are presented in Table 3.17. 

Table 3.17. Average results obtained in the three simulated environments. The 

considered parameters: the area size searched by the robot, the received penalty for 

moving through dangerous areas, and the distance travelled by the robot  

Environment Method 
Searched 

area, m2 

Penalty, 

units 

Distance, 

m 

1st 

WASPAS-SVNS 

WASPAS-IVNS 

WASPAS-mGqNS 

MULTIMOORA-SVNS 

367 

367 

367 

366 

5.47 

7.20 

5.85 

7.49 

66.11 

68.92 

70.36 

67.23 

2nd 

WASPAS-SVNS 

WASPAS-IVNS 

WASPAS-mGqNS 

MULTIMOORA-SVNS 

556 

562 

557 

564 

4.73 

8.85 

6.03 

19.67 

149.41 

147.67 

151.14 

160.61 

3rd 

WASPAS-SVNS 

WASPAS-IVNS 

WASPAS-mGqNS 

MULTIMOORA-SVNS 

643 

644 

639 

628 

14.47 

11.70 

5.36 

33.54 

137.03 

130.94 

128.03 

131.63 

 

Considering the results obtained in the simulated environments, it is observed 

that the autonomous robot applying the proposed WASPAS-IVNS and WASPAS-

MGQNS multi-criteria decision-making methods provides similar results to the 

ones that uses the state-of-the-art WASPAS-SVNS and MULTIMOORA-SVNS 

methods. 

When the developed WASPAS-IVNS and WASPAS-mGqNS methods are 

applied in the first simulated environment, the robot searches an almost identical 

sized area between the assessed multi-criteria decision-making methods. Also, in 

this environment, the autonomous search and rescue robot travelled a nearly 

identical distance (with a 4–6% increase between the average results). When the 

proposed WASPAS-IVNS and WASPAS-mGqNS methods were applied in the 

second simulated environment, the size of the searched area was increased by 0.3–

1%, and the average distance travelled by the robot fluctuated from a 1% decrease 

to a 1% increase in value. When applying the proposed WASPAS-IVNS and 

WASPAS-mGqNS methods in the third environment, the autonomous robot 

travelled by up to 4.5–6.5% less distance when compared to the one that applied 

the WASPAS-SVNS method. However, the size of the searched area fluctuates 

up to less than 1% between the WASPAS-SVNS and the proposed WASPAS-

IVNS and WASPAS-mGqNS methods.  
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As average results indicate similar navigational behaviour when applying the 

considered MCDM methods, the ANOVA test was performed to evaluate the 

significance of the observed variations between MULTIMOORA-SVNS, 

WASPAS-SVNS, WASPAS-IVNS and WASPAS-mGqNS. The obtained p 

values with a considered threshold of 0.05 indicate that there is no statistical 

significance between the averaged results of the size of the area searched by the 

autonomous robot. Also, there is no statistical significance between the distance 

travelled by the robot when applying WASPAS-SVNS, WASPAS-IVNS and the 

WASPAS-mGqNS methods. These results are stable in all three simulated 

environments. 

When the proposed WASPAS-IVNS and WASPAS-mGqNS methods are 

compared to the state-of-the-art neutrosophic MULTIMOORA-SVNS method, 

the slight variations in the average distance travelled by the autonomous robot are 

observed. In the first simulated environment, the value of this parameter is 

increased by up to 4.6% when the WASPAS-mGqNS method is applied and by 

up to 2.5% when the WASPAS-IVNS is applied. A decrease of 3% is observed in 

the third simulated environment, and a decrease of up to 8% is observed in the 

second environment. However, the increase in the distance travelled by the 

autonomous robot does not notably affect the size of the searched area. A slight 

value increase of 0.2–2.6% can be observed in the first and third environments, as 

well as a reduction of up to 1% in the second environment. However, the observed 

variation is statistically insignificant in all simulated environments (with 

p values > 0.05).  

Considering the average amount of penalty received by the autonomous robot 

for moving through the dangerous areas, the proposed WASPAS-IVNS and 

WASPAS-mGqNS methods show notable performance improvements in the 

second and third simulated environments when compared to the 

MULTIMOORA-SVNS method. These results indicate that the proposed 

WASPAS method extensions could be more suitable for candidate assessment 

tasks in autonomous search and rescue missions as they provide additional 

reliability when balancing between the set optimisation priorities. Considering the 

averaged results between the assessed MCDM methods, it could also be reasoned 

that when applied in environments with different spatial topologies, the proposed 

neutrosophic WASPAS-IVNS and WASPAS-mGqNS methods can provide as 

stable results as the WASPAS-SVNS method. The proposed extensions also allow 

the autonomous robot to consider the inaccurate input data characteristics that can 

be present due to the inaccurate sensor readings, imprecise environment model 

built by the exploring robot, and other errors in the criteria assessment process. 

Consequently, this ability can have a visible impact on the robot’s long-term 

performance as it enables the autonomous robot to occasionally make better 

decisions when measuring the utility of similar candidates. 
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This ability is also highlighted by providing a computational example of the 

candidate frontier assessment problem presented in Fig. 3.17. In this example, the 

frontiers are presented by the blue chains of the connected grid map cells that are 

located between the known and the unknown exploration space. The green 

markers represent the candidate frontiers 𝑝𝑓(𝑥, 𝑦)𝑖. The white markers represent 

the priority locations set by the robot operators. The red markers indicate 

dangerous areas the robot should avoid. The yellow markers represent the detected 

survivors. The autonomous robot is located at the position marked by a black 

marker, and the black line indicates the robot’s movement trajectory. 

 

 
Fig. 3.17. Candidate frontier assessment problem. Frontier regions are defined by the 

blue lines, and the candidate frontiers 𝑝𝑓(𝑥, 𝑦)𝑖 are marked by green markers. The white 

markers represent priority locations that should be visited by the robot. The red markers 

represent dangerous areas. The yellow marker represents the detected survivor (Semenas 

& Bausys, 2022) 

In this example, the autonomous robot decision-making module has to assess 

18 candidate frontiers and select the one with the highest utility. This frontier will 

then become the next spatial goal for the robot. In the current state of the 

environment exploration task, the autonomous robot is located near the detected 

survivor and is near the dangerous areas, meaning that the adaptive fuzzy logic 

controller will instruct the decision-making module to apply the RRS strategy for 

the candidate assessment task. Also, the prioritised location set by the robot 

operator is situated on the right side of the simulated environment. As the 

autonomous robot is expected to explore and map the area around the detected 

survivor, avoid the dangerous areas, and also reach the prioritised location, it is 

predicted that the robot will choose the candidate that allows it to get closer to the 

prioritised location. 
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The initial decision matrix that is constructed for the considered decision-

making problem is presented in Table 3.18. In this instance, the autonomous robot 

is located very close to the detected survivor, and no other survivors are visible, 

meaning that there are no survivors that could be actively considered for the 

monitoring task. Therefore, in this specific candidate assessment example, the 𝑐5 

and 𝑐6 criteria have no significant influence on the decision-making process. 

However, to address some specifics of the neutrosophic number normalisation, 

and avoid undecisive robot behaviour, the 𝑐5 criterion value is set to a small 

positive constant, and the 𝑐6 criterion value is set to a high randomised value. 

Table 3.18. Initial decision matrix for the candidate frontier assessment problem 

Candidate 

frontier 

Criterion 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 

𝑝𝑓(𝑥, 𝑦)1 2.1 12.09 14.69 0.001 0.001 327.0 7.66 0.14 

𝑝𝑓(𝑥, 𝑦)2 2.0 13.17 20.49 0.001 0.001 423.3 5.12 0.28 

𝑝𝑓(𝑥, 𝑦)3 7.2 9.35 36.78 80.32 0.001 446.9 8.65 0.06 

𝑝𝑓(𝑥, 𝑦)4 8.8 17.14 50.12 111.1 0.001 494.9 3.78 0.57 

𝑝𝑓(𝑥, 𝑦)5 2.1 7.02 29.39 90.39 0.001 207.6 8.09 0.16 

𝑝𝑓(𝑥, 𝑦)6 3.5 15.18 43.72 111.1 0.001 324.1 4.15 0.50 

𝑝𝑓(𝑥, 𝑦)7 2.8 4.76 38.27 107.5 0.001 363.7 5.31 0.53 

𝑝𝑓(𝑥, 𝑦)8 1.5 10.91 47.15 91.15 0.001 298.8 7.89 0.01 

𝑝𝑓(𝑥, 𝑦)9 6.3 10.03 48.87 175.27 0.001 452.9 8.12 0.08 

𝑝𝑓(𝑥, 𝑦)10 3.8 9.01 50.78 135.26 0.001 389.1 1.90 0.51 

𝑝𝑓(𝑥, 𝑦)11 3.5 13.62 51.67 90.72 0.001 326.7 8.43 0.53 

𝑝𝑓(𝑥, 𝑦)12 3.9 11.68 58.89 128.5 0.001 204.3 6.96 0.51 

𝑝𝑓(𝑥, 𝑦)13 2.1 12.02 59.87 135.3 0.001 375.5 3.29 0.14 

𝑝𝑓(𝑥, 𝑦)14 3.1 14.69 53.34 91.08 0.001 468.9 11.95 0.46 

𝑝𝑓(𝑥, 𝑦)15 2.0 12.91 63.38 135.3 0.001 360.5 5.15 0.27 

𝑝𝑓(𝑥, 𝑦)16 6.3 15.58 75.24 258.8 0.001 280.2 11.18 0.15 

𝑝𝑓(𝑥, 𝑦)17 1.5 14.85 58.78 91.12 0.001 487.1 12.79 0.36 

𝑝𝑓(𝑥, 𝑦)18 2.2 17.49 89.78 258.6 0.001 410.1 12.26 0.62 
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After the initial decision matrix is computed, the criteria values are 

normalised and transformed to the neutrosophic numbers by applying the 

previously discussed methods. Then, the first and the second WASPAS objectives 

are computed for WASPAS-SVNS, WASPAS-IVNS and WASPAS-mGqNS 

methods. Then, the utility of each candidate frontier is measured and ranked by 

applying WASPAS-SVNS, WASPAS-IVNS and WASPAS-mGqNS score 

functions, introduced in the second chapter of this thesis. The candidate frontier 

with the highest utility is then chosen as the next goal for an autonomous SAR 

robot. The results of this step are presented in Table 3.19. 

Table 3.19. Utility scores of the candidate frontiers 

Candidate 

frontier 

WASPAS-SVNS WASPAS-IVNS WASPAS-mGqNS 

Score Rank Score Rank Score Rank 

𝑝𝑓(𝑥, 𝑦)1 0.839 1 [2.467, 2.636] 2 0.711 1 

𝑝𝑓(𝑥, 𝑦)2 0.838 2 [2.492, 2.620] 1 0.707 2 

𝑝𝑓(𝑥, 𝑦)3 0.743 9 [2.181, 2.494] 11 0.607 6 

𝑝𝑓(𝑥, 𝑦)4 0.763 5 [2.354, 2.507] 6 0.604 7−8 

𝑝𝑓(𝑥, 𝑦)5 0.766 4 [2.325, 2.558] 4 0.632 3 

𝑝𝑓(𝑥, 𝑦)6 0.761 6 [2.352, 2.513] 5 0.609 5 

𝑝𝑓(𝑥, 𝑦)7 0.775 3 [2.384, 2.539] 3 0.623 4 

𝑝𝑓(𝑥, 𝑦)8 0.691 14 [2.119, 2.438] 15 0.586 12 

𝑝𝑓(𝑥, 𝑦)9 0.676 16 [2.049, 2.400] 16 0.558 16 

𝑝𝑓(𝑥, 𝑦)10 0.746 8 [2.338, 2.493] 8 0.598 9 

𝑝𝑓(𝑥, 𝑦)11 0.754 7 [2.331, 2.513] 7 0.604 7−8 

𝑝𝑓(𝑥, 𝑦)12 0.737 10 [2.321, 2.487] 9 0.590 10 

𝑝𝑓(𝑥, 𝑦)13 0.689 15 [2.174, 2.397] 14 0.568 14 

𝑝𝑓(𝑥, 𝑦)14 0.729 11 [2.278, 2.465] 10 0.587 11 

𝑝𝑓(𝑥, 𝑦)15 0.692 13 [2.219, 2.402] 13 0.566 15 

𝑝𝑓(𝑥, 𝑦)16 0.598 17 [2.057, 2.312] 17 0.522 17 

𝑝𝑓(𝑥, 𝑦)17 0.700 12 [2.208, 2.414] 12 0.572 13 

𝑝𝑓(𝑥, 𝑦)18 0.581 18 [2.068, 2.288] 18 0.516 18 

 

When applying the WASPAS-SVNS and WASPAS-mGqNS methods, the 

candidate frontier 𝑝𝑓(𝑥, 𝑦)1 is considered to be the highest-valued frontier and the 

next goal the robot should reach. However, when the candidate is evaluated by 

applying the WASPAS-IVNS method, the frontier 𝑝𝑓(𝑥, 𝑦)2 is chosen as the next 
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goal the robot should reach. A similar switch between the computed utility values 

is also observed when considering the frontiers ranked as the third- and the fourth-

best candidate. This candidate assessment example showcases how the proposed 

WASPAS method extensions can address the issue of the inaccurate input data 

and, thus, make better assessments throughout the SAR environment exploration 

task when multiple similar candidates are present. 

3.5.5. Comparison to the Baseline Strategies 

The proposed generalised candidate assessment strategy, which applies the fuzzy 

logic controller and the proposed WASPAS-IVNS or WASPAS-mGqNS methods 

for measuring the utility of a candidate frontier, is compared to the two commonly 

applied strategies: the Closest Frontier strategy (CF) and the previously discussed 

standard information-gain strategy (SIG). It is hypothesised that the proposed 

generalised strategy will significantly increase the robot’s performance when 

considering the size of the searched area, the distance travelled by the robot and 

the penalty received by the robot for traversing dangerous areas. To test this 

hypothesis, the examined strategies are applied in autonomous environment 

exploration tasks within the previously discussed simulated environments, and the 

averaged results are presented in Table 3.20. 

Table 3.20. Averaged test results by the proposed environment exploration strategy 

when applying WASPAS-IVNS or WASPAS-mGqNS methods and the CF, SIG 

strategies 

Environment Method 
Searched area, 

m2 

Penalty, 

units 
Distance, m 

1st  

WASPAS-IVNS 

WASPAS-mGqNS 

SIG 

CF 

367 

367 

360 

365 

7.20 

5.85 

57.32 

55.72 

68.92 

70.36 

77.18 

77.84 

2nd  

WASPAS-IVNS 

WASPAS-mGqNS 

SIG 

CF 

562 

557 

498 

509 

8.85 

6.03 

52.68 

60.07 

147.67 

151.14 

142.33 

124.97 

3rd  

WASPAS-IVNS 

WASPAS-mGqNS 

SIG 

CF 

644 

639 

569 

521 

11.70 

5.36 

95.74 

93.18 

130.94 

128.03 

113.30 

97.98 
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When comparing the proposed adaptive generalised candidate assessment 

strategy that applies WASPAS-IVNS to the CF and SIG strategies, the discovered 

information in the first environment is increased by 1.8% and 0.5%, respectively. 

When comparing the proposed strategy that applies the WASPAS-mGqNS 

method to the SIG and CF strategies, the size of the searched area is increased by 

1.8% and 0.5%. Such similar results can be explained by considering the topology 

of a simulated search and rescue space and the theoretical aspects of the frontier-

based environment exploration strategy. As the simulated environment is 

relatively small and has an open topology, the autonomous robot can discover its 

spatial characteristics by visiting every available frontier within the set time limit 

of ten minutes. Therefore, in this type of environment, the ability to balance 

multiple optimisation priorities could be considered the most important 

performance evaluation metric of the proposed candidate-assessment-based 

autonomous navigation and environment exploration strategy. 

When comparing the results of the proposed adaptive generalised strategy 

that applies the WASPAS-IVNS method to the results of the SIG and CF 

strategies, the penalty for traversing dangerous areas is reduced by 87.4% and 

87.1%, respectively. This average is reduced by 89.8% and 89.5% when 

comparing the proposed strategy that applies the WASPAS-mGqNS method to 

the SIG and CF strategies, respectively.  

When comparing the proposed environment exploration strategy, the robot 

travel distance in this environment is reduced from a minimum of 8.84% to a 

maximum of 11.5%. However, it is worth noting that this improvement strongly 

depends on the position of dangerous areas and the topology of the environment. 

In the considered SAR environment, the autonomous robot can reach most areas 

without backtracking, and this can significantly reduce the average distance 

travelled by the autonomous robot. 

The increase in the average distance travelled by the autonomous search and 

rescue robot is also observed in the second simulated environment. As the 

considered exploration space is divided into multiple regions that are connected 

by a single corridor, the autonomous robot must backtrack to the previously 

discovered areas to reach the frontiers skipped in the early stages of environment 

exploration. Therefore, the total distance travelled by the autonomous robot is 

expected to increase when applying the proposed generalised candidate-

assessment-based strategy. When comparing the results obtained by the proposed 

environment exploration strategy that applies the WASPAS-IVNS method to the 

results obtained by the SIG and CF strategies, the distance travelled by the robot 

is increased by 3.8% and 18.2%. When the results of the proposed adaptive 

strategy that applies WASPAS-mGqNS are compared to the results of the SIG 

and CF strategies, an increase of 6.2% and 21% is observed. 
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The average, minimum and maximum values of the area size searched in the 

second environment are presented in Fig. 3.18. The obtained results indicate that 

the maximum value obtained by applying the SIG strategy is somewhat above the 

average obtained by the proposed environment exploration strategy when 

applying the WASPAS-mGqNS method. However, the minimum size of the 

searched area by the proposed strategy when applying WASPAS-IVNS is above 

the average obtained by applying the baseline SIG strategy. In general, when the 

proposed generalised candidate-assessment-based navigation strategy is applied, 

the average size of the area searched by the autonomous robot is increased by a 

minimum of 9.5% and a maximum of 12.7%. These results highlight that the 

performance of the autonomous search and rescue robot is increased when 

applying the proposed navigation strategy. 

 
Fig. 3.18. Size of the searched area in the second environment, m2 

Considering the results presented in Fig. 3.19, it can be reasoned that the SIG 

and CF strategies display less stable navigational behaviour when compared to the 

proposed generalised adaptive environment exploration strategy. When 

comparing the results, the penalty received by the autonomous robot for crossing 

dangerous areas in the three simulated SAR environments is reduced by 83.2% 

and 85.3% when applying the WASPAS-IVNS method and by 88.6% and 89.9% 

when applying the WASPAS-mGqNS method. It can also be observed that the CF 

strategy is the least stable when considering the robot received penalty and 

provides the worst results among the examined methods. As the robot will always 

be directed to the closest frontier, small inaccuracies in the input data 

characteristics may lead to situations where between the different simulation runs, 

the robot movement trajectory is significantly different. This, in turn, can lead the 

autonomous robot into dangerous areas, forcing it to stay in a dangerous situation 

for unspecified periods of time. 
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Fig. 3.19. Penalty received in the second environment, units 

The results presented in Fig. 3.20 indicate that the average size of the 

searched area is increased when applying the proposed generalised strategy. 

Although the maximum size of the searched area when applying the CF and SIG 

strategies is close to the average presented by the proposed generalised strategy, 

these baseline methods show performance issues when considering the average of 

the multiple simulation runs. When comparing the results of the proposed 

environment exploration strategy to the results of the SIG and CF strategies, the 

amount of the discovered information is increased by 13.2–23.6% when applying 

the WASPAS-IVNS method and 12.3–22.6% when applying the WASPAS-

mGqNS. This increase is also observable when considering the results obtained 

in other simulated environments, indicating that the robot performance is 

increased when the proposed generalised strategy is applied. 

 
Fig. 3.20. Size of the searched area in the third environment, m2 
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Considering the results presented in Fig. 3.21, the SIG and CF strategies 

display similar stability issues as in the other simulated environments. It can be 

reasoned that the baseline strategies are more sensitive to the inaccurate input data 

characteristics that are used by the autonomous robot decision-making module. 

This sensitivity can reduce the stability of the baseline methods, resulting in 

different navigational behaviour between the multiple simulation runs. 

This issue is most noticeable when considering the average amount of penalty 

received by the autonomous robot for crossing dangerous areas. When comparing 

the results of the proposed environment exploration strategy to the results of the 

baseline SIG and CF strategies, a decrease of 87.8–87.4% and 94.4–94.3% is 

observed when the WASPAS-IVNS and WASPAS-mGqNS methods are applied, 

respectively. 

 
Fig. 3.21. Penalty received in the third environment, units 

The obtained results provide that the autonomous robot performance is 

improved in all simulated environments when the proposed generalised 

autonomous navigation and environment exploration strategy is applied. 

However, it could be argued that the proposed strategy also increases the average 

distance travelled by the robot. For example, when comparing the results of the 

proposed environment exploration strategy to the results of the SIG and CF 

strategies, the average distance travelled by the robot was increased by 15.6–

33.6% when the WASPAS-IVNS method was applied and by 13–30.7% when the 

WASPAS-mGqNS method was applied to deciding on where the robot should 

move next. Therefore, to determine the significance of the obtained results, the 

ANOVA statistical analysis test is performed. The p values were obtained when 

comparing the SIG and CF strategies to the proposed generalised autonomous 

navigation and environment exploration strategy. The considered threshold in this 

analysis is 0.05. 
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The test results allow maintaining that the increase in the average size of the 

area searched by the robot and the reduction in the distance travelled by the robot 

are equally statistically significant when the proposed generalised strategy is 

compared to the CF and SIG strategies in the second and third simulated 

environments (with p values < 0.05). The increase in the average distance 

travelled by the autonomous robot is also significant in the second and third 

simulated environments (with p values < 0.05) when the proposed strategy is 

compared to the CF. Also, improvements are statistically significant in the third 

simulated environment when compared to the SIG. 

However, considering the experiment results, there is no notable increase in 

the robot’s performance in the first environment. This lack of considerable 

performance improvements by the proposed autonomous navigation strategy 

when compared to CF and SIG strategies can be explained by considering the size 

and topology of the environment. As such result was achieved due to the small 

size of the first environment, which generally means that the list of candidates that 

is generated by the autonomous robot will also be small. Therefore, the 

autonomous robot is observing similar information during the navigation process 

and is computing similar lists of candidates that, if visited, will eventually lead 

the robot to all key areas. Thus, an almost identical amount of information is 

discovered, and similar distances are travelled by all the assessed autonomous 

navigation strategies. 

However, in larger environments with multiple separated corridors and 

rooms (such as the second and third simulated environments), the autonomous 

robot movement trajectories start to differ from SIG and CF strategies, as the 

proposed generalised candidate assessment strategy is leading the robot to more 

valuable frontiers that are near the attraction zones, such as prioritised locations 

or detected survivors. It is also worth noting that this improvement can be 

considered dependable on the physical structure of the search and rescue 

environment and the position of the attraction zones and objects. Therefore, the 

proposed optimisation short-term decision-making could actually lead the 

autonomous robot to the dead-ends or dangerous areas, requiring the robot to 

backtrack. Nevertheless, the ability to balance competing criteria is an important 

factor of the proposed autonomous navigation strategy, which shows the potential 

of increasing the autonomous robot performance in environment exploration 

tasks. 

To determine if the proposed generalised strategy is balancing between the 

optimisation priorities and the increased distance that is travelled by the 

autonomous robot is not significant, two additional parameters are taken into 

consideration. Namely, the ratio between the distance travelled by the robot and 

the size of the searched area and the ratio between the received penalty for 
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crossing dangerous areas and the size of the searched area. These ratios are 

presented in Table 3.21. 

Table 3.21. Averaged relative results obtained in the three simulated environments 

Environment Method 
Distance / 

Searched area 

Penalty / 

Searched area 

1st 

WASPAS-IVNS 

WASPAS-mGqNS 

SIG 

CF 

0.19 

0.19 

0.21 

0.21 

0.02 

0.02 

0.16 

0.15 

2nd 

WASPAS-IVNS 

WASPAS-mGqNS 

SIG 

CF 

0.26 

0.27 

0.29 

0.25 

0.02 

0.01 

0.11 

0.12 

3rd 

WASPAS-IVNS 

WASPAS-mGqNS 

SIG 

CF 

0.20 

0.20 

0.20 

0.19 

0.02 

0.01 

0.17 

0.18 

 

The average results indicate that the penalty received by the autonomous 

robot for each travelled meter can be reduced from 85% by up to 90% when the 

autonomous robot applies the proposed generalised strategy. This performance 

improvement is notable in all the simulated environments. However, when 

considering the ratio between the distance travelled by the robot and the size of 

the searched area, this value is decreased by up to 12% in the first environment 

and increased by up to 9% and by up to 7% in the second and third simulated 

environments, respectively. The obtained results suggest that the application of 

the proposed adaptive navigation and environment exploration strategy can 

notably reduce the average of the robot received penalty relative to the distance 

travelled by the autonomous robot. Also, when the results of the proposed 

generalised strategy are compared to the results obtained by applying the SIG 

strategy, the increased average of the distance travelled in the third environment 

is not significant as the robot discovers more environment information. 

The test results confirm that the proposed adaptive generalised autonomous 

navigation and environment exploration strategy can significantly increase the 

autonomous robot’s performance when compared to the baseline CF and SIG 

strategies. The robot’s ability to avoid danger while also increasing the size of the 

searched area is a significant feature that can be employed in search and rescue 

missions. However, it is worth noting that the results obtained by the online 

strategies strongly depend on the geometrical features of the exploration space 
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and the positions of task-related objects that attract or push away the autonomous 

robot. For example, if the corridors or areas are blocked by dangerous objects, the 

robot will try to protect itself and choose to explore around the frontiers that are 

considered to be safer from the robot’s viewpoint. However, such decisions may 

lead the autonomous robot to the dead-ends (as in the second environment, the 

top-left corridor) that require the robot to move back to the previously discovered 

locations, reducing the performance of the autonomous robot in the long run. 

3.6. Conclusions of Chapter 3  

Considering the results obtained by testing the proposed environment exploration 

strategies and WASPAS method extensions, the following conclusions can be 

drawn: 

1. Introduction of non-standard cost–benefit criteria for a candidate assessment 

task shows the potential of increasing the robots’ performance in SAR 

missions. By introducing safety requirements into the candidate assessment 

process, the autonomous robot is capable of avoiding dangerous objects 

present in its field of view without additional movement rules. 

2. The developed WASPAS-IVNS method allows considering the issue of 

inaccurate input data characteristics when deciding on where the robot should 

move next. This improvement shows potential when the numerical criteria 

value differences are minimal between the two candidates. 

3. The introduction of the area prioritisation criterion and the assessment of the 

occupancy around the candidate frontier show potential in enabling the robot 

to increase the size of the searched area (when compared to the direct control 

approach) while also reducing the distance travelled by the robot (when 

compared to the greedy cost–benefit frontier assessment strategy. 

4. The introduction of the fuzzy logic controller enables the SAR robot to switch 

between the rules that govern the candidate assessment process. The 

development of four distinctive candidate assessment strategies highlights 

that different robot behaviour patterns (e.g., altruistic or egoistic) can be 

modelled and applied in SAR missions. The strategies that are modelled to 

prioritise the danger avoidance (egoistic) decrease the robot received penalty 

by up to 91% when compared to the ones that direct the robot to the detected 

survivors (altruistic). However, the adaptive strategy is capable of balancing 

between the egoistic and altruistic behaviours and thus receives 70% less 

penalty when compared to the altruistic ones. 

5. The proposed neutrosophic WASPAS-IVNS and WASPAS-mGqNS methods 

show computational stability when compared to the WASPAS-SVNS and 

MULTIMOORA-SVNS methods. By applying the proposed candidate 
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frontier assessment strategy, a generally insignificant robot performance 

increase is observed, highlighting that the ability to deal with the inaccuracies 

in the input data characteristics enables the robot to make slightly better 

decisions which can have a long-term impact on the robot’s performance in 

larger SAR environments. 

6. When compared to the SIG and CF strategies, the proposed adaptive 

generalised autonomous navigation and environment exploration strategy that 

applies the proposed distinctive candidate assessment strategies and the 

WASPAS-IVNS and WASPAS-mGqNS methods provide notable 

improvements to the autonomous robot performance: 

6.1. When compared to the SIG strategy, the proposed generalised 

environment exploration strategy increases the average size of the 

searched area by up to 1.8%, 12.7% and 13.2% when applying the 

WASPAS-IVNS method, and up to 1.8%, 11.8% and 12.3% when 

applying the WASPAS-mGqNS method. The increase is significant in 

the second and third environments at the p values < 0.05. 

6.2. When compared to the CF strategy, the proposed generalised 

environment exploration strategy increases the average size of the 

searched area by up to 0.5%, 10.4% and 23.6% when applying the 

WASPAS-IVNS method, and by up to 0.5%, 9.5% and 22.6% when 

applying the WASPAS-mGqNS method. The increase is significant in 

the second and third environments at the p values < 0.05. 

6.3. Comparing the proposed generalised environment exploration strategy 

to the baseline SIG and CF strategies, the penalty received by the robot 

for crossing dangerous areas decreased by up to 87.1−89.8%, 

83.2−98.9% and 87.4−94.4%. 

6.4. The increase in the distance travelled by the autonomous robot by up to 

3.8−21% and 15.6−33.6% is observed in the second and third 

environments, respectively. However, considering the ratio between the 

distance travelled by the autonomous robot and the average size of the 

searched area, this increase is only noteworthy when compared to the CF 

strategy. 
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General Conclusions 

1. The review of commonly applied online next-best-view environment 

exploration strategies, which measure the utility of each candidate goal by 

considering the given optimisation priorities, failed to address the inaccurate 

input data characteristics when deciding on where the robot should move next. 

Moreover, the applied candidate assessment strategies are commonly based 

on a non-adaptive approach that applies identical candidate assessment rules, 

disregarding the current state of the robot and the discovered environment 

information. 

2. Extension of the candidate assessment strategy by non-standard cost–benefit 

criteria, namely the safety and social requirements of SAR missions, shows 

the potential of increasing robots’ performance in SAR missions. Also, the 

introduction of area prioritisation and the assessment of the occupancy around 

the candidate frontier indicate the increased robot performance when 

compared to the standard cost–benefit strategies. 

3. The developed adaptive autonomous navigation strategy that combines fuzzy 

logic controller with the proposed MCDM methods enables the SAR robot to 

switch between the strategies that govern the candidate assessment process in 

the environment exploration task, depending on the dynamic environment 

information. The proposed adaptive approach, which applies modern 

neutrosophic sets in the decision-making process, optimises the robot 
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navigation trajectories and increases the robot performance when compared 

to the non-adaptive application of the proposed individual egoistic, altruistic 

and impartial information gain strategies. The adaptive approach enables the 

robot to avoid dangerous areas and reduce the received penalty by up to 70% 

when compared to the altruistic strategies and the strategies that prioritise 

information gain. However, purely egoistic candidate assessment strategies 

can reduce the penalty received by the robot by up to 91%. 

4. The developed WASPAS extensions modelled under the interval-valued 

neutrosophic set environment (WASPAS-IVNS) and the q-neutrosophic m-

generalised environment (WASPAS-mGqNS) allow considering the 

inaccurate input data characteristics when deciding on where the robot should 

move next. This improvement shows potential when the numerical criteria 

value differences are slight between the two assessed candidates. The 

comparison between the proposed WASPAS-IVNS, WASPAS-mGqNS and 

the state-of-the-art WASPAS-SVNS and MULTIMOORA-SVNS methods 

indicates the computational stability of the proposed MCDM method 

extensions. 

5. The proposed adaptive generalised autonomous navigation and environment 

exploration strategy introduce a notable performance increase when 

compared to the Closest Frontier (CF) and the Standard Information Gain 

(SIG) strategies: 

5.1. The quantitative comparison of the proposed generalised environment 

exploration strategy performance regarding the size of the searched area 

in the second and third exploration space shows an increase in the 

parameter value of up to 12.7−13.2% when considering the SIG strategy 

and up to 10.4−23.6% when considering the CF strategy. 

5.2. The quantitative comparison of the proposed generalised environment 

exploration strategy performance regarding the robot obtained penalty 

for traversing the dangerous areas shows a decrease in the parameter 

value of up to 94.4%. The highlighted performance is stable across the 

simulated environments. 

5.3. The increase in the distance travelled by the robot when applying the 

proposed generalised environment exploration strategy depends on the 

topology of the exploration space and the location of dangerous areas. 

Although the parameter value is increased by up to 33.6%, considering 

the ratio between the robot travel distance and the size of the searched 

area, the increase of the distance travelled by the robot more often 

increases the amount of obtained environment information.
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Summary in Lithuanian 

Įvadas 

Problemos formulavimas 

Autonominių robotų naudojimas paieškos ir gelbėjimo operacijose gali padidinti 

gelbėjimo komandų efektyvumą ir saugumą, nes autonominės sistemos gali būti 

naudojamos nelaimės vietos žemėlapiui sudaryti, pavojingiems įvykiams identifikuoti, 

nukentėjusiems asmenims aptikti ir kitoms sudėtingoms užduotims atlikti (Jacoff et al., 

2003; Pfitzner & Merkl, 2013; De Cubber et al., 2017). Tikimasi, kad robotai šias užduotis 

sugebės atlikti autonomiškai arba operatoriui tik minimaliai įsikišus (Bahadori et al., 2015; 

Sheh et al., 2016). Kita vertus, visiškai autonominių robotų taikymą apsunkina tai, kad 

aplinkos tyrinėjimo efektyvumas yra tiesiogiai priklausomas nuo robotui prieinamo 

pradinių duomenų kiekio. Pavyzdžiui, jei apie tyrinėjamą aplinką yra žinoma visa 

informacija, optimalus paieškos kelias gali būti sudarytas taikant išankstinio maršruto 

sudarymo strategijas. Tačiau, kai tyrinėjamos nežinomos aplinkos, šis uždavinys 

sprendžiamas taikant realiojo laiko navigacijos strategijas, kurios ieško artimo optimaliam 

sprendimo, remdamosi tik tuo laiko momentu žinoma aplinkos informacija ir roboto 

būsena. 

Tokiam aplinkos tyrinėjimui galima pritaikyti įvairias strategijas, tačiau dauguma jų 

pagrįstos grafo arba tinklelio struktūros sudarymu ir analize. Viena iš populiarių aplinkos 

tyrinėjimo strategijų yra Yamauchi (1997) pasiūlyta roboto nukreipimo į artimiausią 

regioną tarp žinomos ir nežinomos erdvės strategija. Ši strategija gali būti išplėsta taikant 

kandidatų vertinimo metodiką. Kitaip tariant, sprendimas, kur robotas turėtų judėti toliau 
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(Amigoni, Basilico & Quattrini Li, 2014),  gali būti priimtas pritaikius vykdomai 

užduočiai aktualią kriterijų aibę, kuri apibrėžia kandidatų vertinimo prioritetus. Kadangi 

kriterijų aibės dydis yra baigtinis, bet iš esmės neribojamas, sprendimams priimti galima 

taikyti daugiakriterinius sprendimų priėmimo (MCDM) metodus. Pagrindinis šios 

disertacijos tikslas – išplėsti autonominio roboto taikomas autonominės navigacijos ir 

aplinkos tyrinėjimo strategijas, grindžiamas kandidatų vertinimu, kai įvesties duomenys 

gali būti nepatikimi. 

Darbo aktualumas  

Autonominės navigacijos strategijos apibrėžia, kaip robotas juda ir renka informaciją 

nežinomoje erdvėje. Kadangi nežinomoje paieškos erdvėje neįmanoma numatyti ir 

įvertinti visų galimų roboto ir aplinkos būsenų, itin svarbia problema tampa efektyvios 

aplinkos tyrinėjimo strategijos sukūrimas ir roboto trumpalaikių sprendimų priėmimas, 

vertinant nepatikimus įvesties duomenis ir konkuruojančius optimizacijos prioritetus. 

Tyrimo objektas 

Disertacinių tyrimų objektas – autonominių robotų navigacijos strategijos, paremtos 

daugiakriterinių sprendimų priėmimo metodais. 

Darbo tikslas  

Išplėsti autonominio paieškos ir gelbėjimo roboto taikomas ir kandidatų vertinimu 

pagrįstas navigacijos strategijas, kai sprendimas kur judėti toliau, yra priimamas 

priklausomai tik nuo esamos roboto ir tyrinėjamos aplinkos būsenos, o sprendimui priimti 

naudojami įvesties duomenys gali būti netikslūs. 

Darbo uždaviniai 

Darbo tikslui pasiekti sprendžiami šie uždaviniai: 

1. Išanalizuoti navigacijos ir aplinkos tyrinėjimo strategijas, taikomas autonominių 

robotų sistemose ir išskirti dažniausius šių strategijų trūkumus paieškos ir 

gelbėjimo uždavinių kontekste. 

2. Suformuoti originalias kandidatų vertinimo strategijas, kai sprendimai, kur 

robotas turėtų judėti toliau, priimami remiantis tik tuo metu žinoma aplinkos 

informacija. 

3. Sukurti adaptyvią autonominės navigacijos strategiją, kuri paieškos ir gelbėjimo 

robotui suteiktų galimybę pakeisti taikomas kandidatų vertinimo taisykles. 

4. Sukurti naujus daugiakriterinius sprendimų priėmimo metodų plėtinius, kurie 

suteiktų galimybę įvertinti netikslius įvesties duomenis, taikomus sprendimų 

priėmimo procese. 

5. Įvertinti siūlomų daugiakriterinių sprendimų priėmimo metodų plėtinių 

efektyvumą. 

6. Įvertinti sukurtų autonominių navigacijos strategijų efektyvumą skirtingose 

simuliuojamose paieškos ir gelbėjimo operacijose. 
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Tyrimų metodika 

Darbe taikomi literatūros analizės metodai, taikomi siekiant ištirti analizuojamą objektą. 

Autonominės navigacijos, daugiakriterinių sprendimų priėmimo, neutrosofinių ir 

neraiškiųjų aibių teorijos žinios buvo taikomos nežinomos aplinkos tyrinėjimo 

strategijoms kurti. Kiekybiniai ir kokybiniai vertinimo metodai buvo taikyti siekiant ištirti 

siūlomų navigacijos strategijų ir daugiakriterinių sprendimų priėmimo metodų 

efektyvumą. 

Darbo mokslinis naujumas 

1. Siūlomi du nauji klasikinio WASPAS (angl. Weighted Aggregated Sum Product 

Assessment) MCDM metodo plėtiniai, sukurti taikant neutrosofines aibes: 

WASPAS, modeliuojamas taikant intervalines neutrosofines aibes – WASPAS-

IVNS, bei WASPAS, modeliuojamas taikant m apibendrintas q neutrosofines 

aibes – WASPAS-mGqNS. 

2. Autonominiam paieškos ir gelbėjimo robotui siūlomos naujos egoistinės, 

altruistinės ir nešališkos kandidatų vertinimo strategijos, taikytinos autonominės 

navigacijos metu.  

3. Autonominiam paieškos ir gelbėjimo robotui sukurta nauja adaptyvi 

autonominės navigacijos strategija, jungianti neraiškiosios logikos valdiklį ir 

daugiakriterinių sprendimų priėmimo metodus. 

Darbo rezultatų praktinė reikšmė 

Tyrimo rezultatai gali būti naudingi kuriant ir išplečiant autonominės navigacijos bei 

aplinkos tyrinėjimo strategijas, kurias taiko autonominiai robotai. Praktinis siūlomų 

strategijų pritaikymas gali būti naudingas siekiant surinkti duomenis apie pavojingas 

nelaimės vietas, nerizikuojant žmogiškojo personalo saugumu. Siūlomi autonominės 

navigacijos metodai leidžia robotui priimti sprendimus realiuoju laiku ir pasirinkti 

taikomas navigacijos taisykles. Pavyzdžiui, navigacijos metu robotas gali taikyti egoistinį 

elgsenos modelį ir taip vengti pavojaus, taikyti altruistinį modelį ir teikti pirmenybę 

nukentėjusių asmenų paieškai arba taikyti nešališką elgsenos modelį, kuris gali būti 

naudingas situacijose, kai skubus vietovės žemėlapio sudarymas yra svarbiausia roboto 

užduotis. Siūlomi skirtingas navigacijos strategijas apibrėžiantys kriterijų rinkiniai yra 

lankstūs ir nebaigtiniai. Įvedant naujus kriterijus ar koreguojant esamų kriterijų svorius, 

siūlomas strategijas galima nesunkiai išplėsti taip, kad būtų atsižvelgta į naujus 

autonominės navigacijos reikalavimus ir strategijos būtų pritaikytos konkrečioms realaus 

pasaulio situacijoms. Rezultatai taip pat apima sukurtus WASPAS-IVNS ir WASPAS-

mGqNS daugiakriterinius sprendimų priėmimo metodus, kurie sumodeliuoti taikant 

intervalines neutrosofines ir m apibendrintas q neutrosofines aibes. Šiuos šiuolaikinius 

metodus galima pritaikyti, kai siekiama atsižvelgti į netikslias įvesties duomenų 

charakteristikas, kurios dažnai pasitaiko dėl netikslių sensorių rodmenų ir įvairių 

matavimo klaidų nustatant kriterijų reikšmę. Šios siūlomų metodų savybės gali būti 

pritaikytos ne tik autonominių robotų navigacijos užduočių kontekste, bet ir gali būti 

taikomos įvairioms sprendimų priėmimo problemoms spręsti, kai tikėtinos netiksliai 

nustatytos kriterijų reikšmės. 
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Ginamieji teiginiai 

1. Sukurti WASPAS metodų plėtiniai, taikantys intervalines neutrosofines ir m 

apibendrintas q neutrosofines aibes, yra stabilūs, palyginti su klasikiniu 

WASPAS-SVNS metodu, ir suteikia galimybę atsižvelgti į neišsamius ar 

netikslius įvesties duomenis.  

2. Sukurtos egoistinės ir altruistinės autonominės navigacijos ir aplinkos tyrinėjimo 

strategijos kurios įvertina roboto saugumo problemas, aptiktų nukentėjusių 

asmenų aplankymo reikalavimus, roboto gebėjimą prisitaikyti ir ištyrinėti 

prioritetines vietoves, yra efektyvesnės, lyginant jas su standartinėmis aplinkos 

tyrinėjimo strategijomis, pagrįstomis kainos ir naudos vertinimu. 

3. Sukurta adaptyvi autonominės navigacijos ir aplinkos tyrinėjimo strategija, kuri 

sujungia neraiškiosios logikos valdiklį ir MCDM metodus, leidžia paieškos ir 

gelbėjimo robotui efektyviai tarpusavyje keisti taikomas skirtingas kandidatų 

vertinimo strategijas, šitaip padidindama autonominio roboto efektyvumą. 

Darbo rezultatų aprobavimas  

Tyrimų rezultatai disertacijos tematika buvo atspausdinti šešiose publikacijose. Keturi 

straipsniai atspausdinti recenzuojamuose moksliniuose žurnaluose, indeksuotuose WoS 

duomenų bazėse (Semenas & Bausys, 2022; Semenas, Bausys & Zavadskas, 2021; 

Semenas & Bausys, 2020; Bausys, Cavallaro & Semenas, 2019); ir dviejose publikacijose, 

atspausdintose pranešimo medžiagos pagrindu (Semenas & Bausys, 2021; Semenas & 

Bausys, 2018). 

 Tyrimų rezultatai buvo pristatyti trijose tarptautinėse konferencijose: 

− „2nd International Conference on Communication and Intelligent Systems 

(ICCIS 2020)“, India, December 26−27, 2020. 

− „10th International Workshop Data Analysis Methods for Software Systems 

(DAMSS 2018)“, Druskininkai, Lithuania, November 29 − December 1, 2018. 

− „2018 Open Conference of Electrical, Electronic and Information Sciences 

(eStream)“, Vilnius, Lithuania, April 26, 2018. 

Disertacijos struktūra 

Darbą sudaro įvadas, trys pagrindiniai skyriai, bendrosios išvados, literatūros sąrašas ir 

autoriaus publikacijų disertacijos tema sąrašas. Darbo apimtis − 121 puslapis, tekste yra 

57 formulės, 23 paveikslai ir 22 lentelės. Rašant disertaciją buvo pacituoti 126 literatūros 

šaltiniai. 

1. Autonominių robotų navigacijos strategijų apžvalga 

Šiame skyriuje apžvelgtos autonominių robotų pritaikymo galimybės ir nauda paieškos ir 

gelbėjimo operacijose, dažnai taikomos nežinomos aplinkos tyrinėjimo strategijos. 

Atlikta nežinomų aplinkų tyrinėjimo strategijų, skirtų autonominiams paieškos ir 

gelbėjimo robotams, apžvalga parodė, kad dėl išankstinės informacijos trūkumo 

nežinomos aplinkos tyrinėjimo uždaviniams spręsti dažniausiai taikomos realiojo laiko 
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sprendimų priėmimo strategijos (angl. Online strategies), grindžiamos ciklišku roboto 

nukreipimu į dar neištyrinėtas erdves. Taikant šias strategijas, kiekviename sprendimo 

priėmimo cikle robotas turi priimti sprendimą, kur judėti toliau, kai žinoma tik esama 

roboto ir tyrinėjamos erdvės būsena. Šiuo atveju sprendimą galima priimti taikant 

maksimizuojamų ir minimizuojamų parametrų rinkinį, kuris apibrėžia taikomą aplinkos 

tyrinėjimo strategijos tikslą (pavyzdžiui, padidinti navigacijos metu roboto ištirtą erdvę, 

kartu sumažinant jo nukeliautą atstumą). 

Tokios sprendimų priėmimo problemos, kurių metu yra siekiama subalansuoti keletą 

kriterijų ir pasirinkti vertingiausią kandidatą, gali būti įvertintos taikant daugiakriterinių 

sprendimų priėmimo teoriją ir metodus. Visgi šiuo metu taikomos navigacijos ir aplinkos 

tyrinėjimo strategijos yra ne lanksčios ir paremtos tik techniniais kandidatų vertinimo 

kriterijais, neatsižvelgiant į kitus paieškos ir gelbėjimo operacijų aspektus. Be to, 

praktikoje dažniausiai taikomos kandidatų vertinimo strategijos neįvertina galimo įvesties 

duomenų nepatikimumo. Tikimasi, kad darbo metu suformuotos kandidatų vertinimo 

strategijos ir neutrosofiniai WASPAS sprendimų priėmimo metodo plėtiniai padės 

išspręsti šias literatūros analizės metu identifikuotas problemas. 

2. Neutrosofinių daugiakriterinių sprendimų priėmimo metodų 
taikymas autonominių robotų navigacijoje 

Antrajame darbo skyriuje detaliai aprašoma autoriaus siūloma nežinomos aplinkos 

tyrinėjimo strategija, taip pat sukurti neutrosofiniai WASPAS daugiakriterinių sprendimų 

priėmimo metodo plėtiniai, taikantys intervalines neutrosofines aibes (WASPAS-IVNS) 

bei m apibendrintas q neutrosofines aibes (WASPAS-mGqNS). 

Siūlomos autonominės nežinomos aplinkos tyrinėjimo strategijos pagrindą sudaro 

Yamauchi (1997) pasiūlyta strategija, kuri paremta ciklišku roboto nukreipimu į regionus 

(kandidatus), esančius tarp jau ištyrinėtos ir dar neatrastos erdvės. Šiuo atveju roboto 

sukuriamas aplinkos modelis yra nuolat papildomas naujai atrasta informacija, o bet 

kuriuo metu paieškos erdvėje gali būti m kandidatų 𝑃𝑓 = {𝑝1, 𝑝2, … , 𝑝𝑚}, kuriuos robotas 

turi įvertinti ir pasirinkti vertingiausią. Siekiant optimizuoti šį procesą, kiekvieno 

kandidato 𝑝𝑓(𝑥, 𝑦) vertė 𝑈 nustatytų prioritetų atžvilgiu apskaičiuojama įvertinant 

kriterijų rinkinį 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}, kuriame kiekvienam kriterijui yra priskirtas svorio 

koeficientas 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛}. Kadangi skirtingi kriterijų svorio koeficientai ir 

optimumai apibrėžia skirtingas kandidatų vertinimo strategijas, ši savybė gali būti 

pritaikyta modeliuojant skirtingus roboto elgsenos modelius. Šių skirtingų strategijų 

rinkinys gali būti apibrėžtas kaip 𝑆𝑇 = {𝑆𝑡1(𝐶1, 𝑊1), 𝑆𝑡2(𝐶2, 𝑊2), … , 𝑆𝑡𝑘(𝐶𝑘, 𝑊𝑘)}, čia 

𝑆𝑡𝑖(𝐶𝑖 , 𝑊𝑖) – individuali kandidato vertinimo strategija, 𝑘 nurodo, kiek strategijų yra 

rinkinyje 𝑆𝑇. Sprendimas, kurią kandidato vertinimo strategiją pasirinkti, yra priimamas 

taikant siūlomą neraiškiosios logikos valdiklį. Skirtingai nei kiti praktikoje taikomi 

neraiškiosios logikos valdikliai, šiame darbe siūlomas valdiklis kontroliuoja ne roboto 

judesius, o nustato, kokia sprendimų priėmimo strategija turėtų būti taikoma, vertinant 

kandidatus, esančius 𝑃𝑓 rinkinyje. Siūloma adaptyvi kandidatų vertinimo strategija 

schemiškai pavaizduota S2.1 paveiksle. 
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S2.1 pav. Siūloma adaptyvi kandidatų vertinimo strategija, taikanti neraiškiosios logikos valdiklį 

ir sukurtus neutrosofinius WASPAS metodo plėtinius. Čia 𝐸(𝑠) – atstumas tarp roboto ir aptikto 

nukentėjusio asmens, 𝐸(𝑑) – atstumas tarp roboto ir pavojingo regiono, 𝑆 žymi parinktą kandidatų 

vertinimo strategiją, P – galimų kandidatų sąrašą, o 𝑈(𝑝∗) – apskaičiuotą naudingiausio kandidato 

vertę (Semenas & Bausys, 2021). 

Viena pagrindinių problemų, su kuriomis gali susidurti autonominis paieškos ir 

gelbėjimo robotas, yra nepatikimi įvesties parametrų duomenys, kurie naudojami priimant 

sprendimus. Sukurtas WASPAS-IVNS metodas suteikia galimybę spręsti šią problemą 

skaičiavimų metu, įvertinant galimus įvesties parametrų nuokrypius. Toliau pateikiami 

pagrindiniai intervalinių neutrosofinių aibių apibrėžimai (Zhang et al., 2014), taikyti 

kuriant WASPAS-IVNS metodą. 

S1 apibrėžimas. Intervalinė neutrosofinė aibė (IVNS) išreiškiama trimis 

intervalinėmis priklausomybės funkcijomis: tiesos funkcija − 𝑇𝑖𝑣(𝑥), neapibrėžtumo 

funkcija − 𝐼𝑖𝑣(𝑥), netiesos funkcija − 𝐹𝑖𝑣(𝑥). 

S2 apibrėžimas. Intervalinė neutrosofinė aibė gali būti išreikšta taip: 

𝐼𝑉𝑁𝑆 = {〈𝑇𝑖𝑣(𝑥), 𝐼𝑖𝑣(𝑥), 𝐹𝑖𝑣(𝑥)〉 ∶ 𝑥 ∈ 𝑋}, (S2.1) 

čia trys priklausomybės funkcijos tenkina šias sąlygas: 

𝑇𝑖𝑣(𝑥) = [𝑇𝑖𝑣(𝑥)−, 𝑇𝑖𝑣(𝑥)+] ⊆ [0,1]; (S2.2) 

𝐼𝑖𝑣(𝑥) = [𝐼𝑖𝑣(𝑥)−, 𝐼𝑖𝑣(𝑥)+] ⊆ [0,1]; (S2.3) 

𝐹𝑖𝑣(𝑥) = [𝐹𝑖𝑣(𝑥)−, 𝐹𝑖𝑣(𝑥)+] ⊆ [0,1]; (S2.4) 

0 ≤  𝑇𝑖𝑣(𝑥)+ + 𝐼𝑖𝑣(𝑥)+ + 𝐹𝑖𝑣(𝑥)+ ≤ 3. (S2.5) 

S3 apibrėžimas. Intervalinis neutrosofinis skaičius (IVNN) gali būti išreikštas taip: 

𝑁𝑖𝑣 = 〈[𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ], [𝑖𝑖𝑣
− , 𝑖𝑖𝑣

+ ], [𝑓𝑖𝑣
−, 𝑓𝑖𝑣

+]〉. (S2.6) 
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S4 apibrėžimas. Intervalinius neutrosofinius skaičius galima palyginti taikant vertės 

𝑆(𝑄), tikslumo 𝑎(𝑄) ir užtikrintumo 𝑐(𝑄) funkcijas: 

𝑆(𝑄) = [𝑡𝑖𝑣
− + 1 − 𝑖𝑖𝑣

+ + 1 − 𝑓𝑖𝑣
+, 𝑡𝑖𝑣

+ + 1 − 𝑖𝑖𝑣
− + 1 − 𝑓𝑖𝑣

−]; (S2.7) 

𝑎(𝑄) = [𝑚𝑖𝑛{𝑡𝑖𝑣
− − 𝑓𝑖𝑣

−, 𝑡𝑖𝑣
+ − 𝑓𝑖𝑣

+}, 𝑚𝑎𝑥{𝑡𝑖𝑣
− − 𝑓𝑖𝑣

−, 𝑡𝑖𝑣
+ − 𝑓𝑖𝑣

+}]; (S2.8) 

𝑐(𝑄) = [𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ]. (S2.9) 

S5 apibrėžimas. Intervalinių neutrosofinių skaičių palyginimas gali būti atliktas 

taikant tikimybės laipsnį 𝑝, kurį apibrėžia šios taisykles: 

− Jei 𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) > 0,5, tada 𝑄1 ≻ 𝑄2; 

− Jei 𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) = 0,5 ir 𝑝(𝑎(𝑄1) ≥ 𝑎(𝑄2)) > 0,5, tada 𝑄1 ≻ 𝑄2; 

− Jei 𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) = 0,5 ir 𝑝(𝑎(𝑄1) ≥ 𝑎(𝑄2)) = 0,5, ir 𝑝(𝑐(𝑄1) ≥
𝑐(𝑄2)) > 0,5, tada 𝑄1 ≻ 𝑄2; 

− Jei 𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) = 0,5 ir 𝑝(𝑎(𝑄1) ≥ 𝑎(𝑄2)) = 0,5, ir 𝑝(𝑐(𝑄1) ≥
𝑐(𝑄2)) = 0,5, tada 𝑄1 ∼ 𝑄2. 

S6 apibrėžimas. Tikimybės laipsnis 𝑝 apskaičiuojamas taikant nelygybę: 

𝑝(𝑆(𝑄1) ≥ 𝑆(𝑄2)) =  

max {1 − max (
𝑆(𝑄2)+−𝑆(𝑄1)−

(𝑆(𝑄1)+−𝑆(𝑄1)−)+(𝑆(𝑄2)+−𝑆(𝑄2)−)
, 0) , 0}. 

(S2.10) 

 

Kadangi vienas pagrindinių autonominių paieškos ir gelbėjimo operacijų aspektų, į 

kuriuos privalu atkreipti dėmesį, yra naudojamos strategijos lankstumas, m apibendrintų 

q neutrosofinių aibių taikymas robotų operatoriui suteikia galimybę pasirinkti, kokias 

neraiškiąsias aibes taikyti priimant sprendimą. Šis funkcionalumas realizuojamas 

pasirenkant atitinkamas 𝑚 ir 𝑞 parametrų reikšmes. Pavyzdžiui, klasikinės SVNS aibės 

taikomos, kai 𝑚, 𝑞 = 1. Pagrindinius m apibendrintų q neutrosofinių aibių apibrėžimus 

galima pateikti taip: 

S7 apibrėžimas. m apibendrinta q neutrosofinė aibė (mGqNS) išreiškiama trimis 

m apibendrintomis q neutrosofinėmis priklausomybės funkcijomis: tiesos funkcija − 

𝑇𝑚𝑞(𝑥), neapibrėžtumo funkcija − 𝐼𝑚𝑞(𝑥), ir netiesos funkcija − 𝐹𝑚𝑞(𝑥). 

S8 apibrėžimas. m apibendrinta q neutrosofinė aibė gali būti išreikšta taip: 

𝑚𝐺𝑞𝑁𝑆 = {〈𝑇𝑚𝑞(𝑥), 𝐼𝑚𝑞(𝑥), 𝐹𝑚𝑞(𝑥)〉 ∶ 𝑥 ∈ 𝑋}, (S2.11) 

čia trys priklausomybės funkcijos tenkina sąlygas: 

𝑇𝑚𝑞(𝑥), 𝐼𝑚𝑞(𝑥), 𝐹𝑚𝑞(𝑥): 𝑋 → [0, 𝑟], (0 ≤ 𝑟 ≤ 1); (S2.12) 

0 ≤  (𝑇𝑚𝑞(𝑥))𝑞  + (𝐼𝑚𝑞(𝑥))𝑞 + (𝐹𝑚𝑞(𝑥))𝑞 ≤
3

𝑚
; (S2.13) 

𝑚 = 1 || 3, 𝑞 ≥ 1. (S2.14) 
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S9 apibrėžimas. m apibendrintas q neutrosofinis skaičius (mGqNN) gali būti 

išreikštas šia išraiška: 

𝑁𝑚𝑞 = 〈𝑡𝑚𝑞 , 𝑖𝑚𝑞 , 𝑓𝑚𝑞〉. (S2.15) 

S10 apibrėžimas. Taikant m apibendrintas q neutrosofines aibes kandidatui parinkti 

taikoma vertės funkcija, kuri išreiškiama kaip: 

𝑆(𝑁𝑚𝑞) =
3+3𝑡𝑚𝑞

𝑞
−2𝑖𝑚𝑞

𝑞
−𝑓𝑚𝑞

𝑞
 

6
. (S2.16) 

Originalus svertinės agreguotos sumos (WASPAS) metodas buvo sukurtas WPM 

(angl. Weighted Product Model) ir WSM (angl. Weighted Sum Model) pagrindu 

(Zavadskas et al., 2012). Toliau pateikiamas standartinio WASPAS metodo etapų aprašas, 

taikytinas sukurtuose WASPAS-IVNS ir WASPAS-mGqNS metoduose. 

Pirmiausia kiekvienam galimam kandidatui yra apskaičiuojamos taikomą 

navigacijos strategiją apibrėžiančių kriterijų reikšmės ir sukuriama sprendimo matrica 𝐷. 

Matricos duomenys sudaryti iš [𝑑]𝑖𝑗  elementų, čia 𝑖 = 1, 2, … , 𝑛 atitinka kandidato, o 𝑗 =

1, 2, … , 𝑘 kriterijaus indeksus. 

Tada atliekamas sprendimo matricos 𝐷 normalizavimas. Taikant WASPAS-IVNS 

metodą normalizavimo funkcija išreiškiama taip: 

[𝑑𝑖𝑣]𝑖𝑗
−  =

[𝑑𝑖𝑣]𝑖𝑗
−  

max[𝑑𝑖𝑣]𝑖𝑗√𝑘
, [𝑑𝑖𝑣]𝑖𝑗

+  =
[𝑑𝑖𝑣]𝑖𝑗

+  

max[𝑑𝑖𝑣]𝑖𝑗√𝑘
, (S2.17) 

o taikant WASPAS-mGqNS metodą naudojama tokia funkcija: 

[𝑑𝑚𝑞]
𝑖𝑗

=
[𝑑𝑚𝑞]

𝑖𝑗

√∑ ([𝑑𝑚𝑞]
𝑖𝑗

)𝑘
𝑗=1

2
. 

(S2.18) 

Tuomet normalizuotos matricos elementai yra konvertuojami į neutrosofinę formą, 

taikant antrame šio darbo skyriuje pristatytą neutrosofikacijos lentelę (Zavadskas et al., 

2015a). Po šio etapo matricos elementai įgauna atitinkamą neutrosofinę formą: [𝑑̅𝑖𝑣]
ij

=

〈[𝑡𝑖𝑣
− , 𝑡𝑖𝑣

+ ], [𝑖𝑖𝑣
− , 𝑖𝑖𝑣

+ ], [𝑓𝑖𝑣
−, 𝑓𝑖𝑣

+]〉 (taikant WASPAS-IVNS metodą) arba  [𝑑̅𝑚𝑞]
ij

=

〈𝑡𝑚𝑞 , 𝑖𝑚𝑞 , 𝑓𝑚𝑞〉 (taikant WASPAS-mGqNS metodą). 

Kandidatų reikšmės apskaičiuojamos pagal pirmąjį WASPAS kriterijų, kuriame 

maksimizuojamų (𝑂𝑚𝑎𝑥) ir minimizuojamų (𝑂𝑚𝑖𝑛) matricos elementų [𝑑̅]𝑖𝑗 reikšmės 

padauginamos iš svorių koeficientų 𝑤𝑗  ir sudedamos: 

𝑄𝑖
(1)

= (∑ [𝑑̅]𝑖𝑗 ⋅ 𝑤𝑗
𝑂𝑚𝑎𝑥
𝑗=1 ) + (∑ [𝑑̅]𝑖𝑗 ⋅ 𝑤𝑗

𝑂𝑚𝑖𝑛
𝑗=1 )

𝑐

. (S2.19) 

Kandidatų reikšmės skaičiuojamos pagal antrąjį WASPAS kriterijų: 

𝑄𝑖
(2)

= (∏ ([𝑑̅]𝑖𝑗)𝑤𝑗  𝑂𝑚𝑎𝑥
𝑗=1 ) ⋅ (∏ ([𝑑̅]𝑖𝑗)𝑤𝑗  𝑂𝑚𝑖𝑛

𝑗=1 )
𝑐
. (S2.20) 

Galiausiai apskaičiuojama apibendrinta funkcija: 
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𝑄𝑖 = 0,5𝑄𝑖
(1)

+ 0,5𝑄𝑖
(2)

 . (S2.21) 

Taikant vertės funkcijas aprašytas S6 ir S10 apibrėžimuose, apskaičiuotos 

neutrosofinės reikšmės konvertuojamos į paprastuosius skaičius, kurie nusako kandidato 

vertę. 

3. Siūlomų autonominių robotų navigacijos strategijų 
vertinimas 

Trečiajame darbo skyriuje pateikti siūlomos autonominės roboto navigacijos nežinomoje 

SAR aplinkoje strategijos tyrimai. Darbo metu buvo atlikti penki tyrimai, kuriuose 

siūlomos skirtingos kandidato vertinimo metodikos, kai sprendimui priimti taikomi 

autoriaus siūlomi WASPAS metodo plėtiniai – WASPAS-IVNS ir WASPAS-mGqNS. 

Pirmajame tyrime siūloma roboto matymo zonoje esančių kandidatų vertinimo 

strategija. Ji sudaryta modeliuojant šešių kriterijų rinkinį: atstumo nuo kandidato iki 

artimiausio pavojingo objekto, numatomos erdvės, kurią robotas gali ištirti pasiekęs 

kandidatą, galimo nukeliauti kelio ilgį, numatomo laiko, per kurį robotas gali pasiekti 

kandidatą, atstumo iki artimiausio roboto matymo lauką užstojančio objekto, ir santykio 

tarp aptikto pravažiavimo ir standartinio durų pločio. Siūlomų kriterijų optimumai ir 

svoriai nustatyti taikant SWARA metodą, o sprendimui, kur robotas turėtų judėti toliau, 

priimti taikomas klasikinis WASPAS-SVNS metodas. Tyrimo metu nustatyta, kad 

siūloma kandidatų vertinimo strategija gali padidinti roboto sprendimų priėmimo modulio 

efektyvumą. Standartinės kandidatų vertinimo metodikos išplėtimas integruojant roboto 

saugos kriterijus, paieškos ir gelbėjimo robotui suteikia galimybę aplinkos tyrinėjimo 

metu vengti pavojingų objektų, netaikant papildomų roboto judėjimo taisyklių ir padeda 

pasirinkti nustatytą strategiją atitinkančią judėjimo kryptį roboto lokalioje erdvėje. Nors 

siūloma strategija gali būti taikoma tyrinėjant nežinomą aplinką, svarstytini patobulinimai, 

kurie galėtų išplėsti esamos kandidatų vertinimo strategijos efektyvumą SAR aplinkose. 

Pavyzdžiui, pakeitus kandidatų aptikimo strategiją iš lokalios į globalią, robotas gali 

įvertinti kandidatus, atsižvelgdamas į visą atrastą aplinkos informaciją. Todėl antrajame 

tyrime siūloma globali navigacijos strategija, išplečiama atsižvelgiant ne tik į roboto 

saugumo reikalavimus, bet ir įterpiant nukentėjusių asmenų įvertinimo kriterijus. 

Siūloma strategija sudaryta modeliuojant šešių kriterijų rinkinį: atstumo iki roboto 

valdymo centro, numatomos erdvės, kurią robotas galėtų ištirti pasiekęs kandidatą, 

numatomo laiko, reikalingo pasiekti kandidatą, atstumo tarp roboto ir kandidato, 

numatomo pavojaus aptiktam nukentėjusiam asmeniui ir numatomo pavojaus robotui, jei 

jis iki kandidato judėtų numatytu keliu. Kriterijų optimumai ir svoriai nustatyti taikant 

SWARA metodą. Sprendimas, kur robotas turėtų judėti toliau, priimamas taikant siūlomą 

WASPAS-IVNS metodą. Tyrimų metu nustatyta, kad dėl galimybės įvertinti galimas 

kriterijų reikšmių variacijas WASPAS-IVNS sprendimų priėmimo metodas yra tinkamas, 

siekiant efektyviai palyginti itin panašius kandidatus. Pavyzdžiui, S3.1 paveiksle 

pavaizduoti kandidatai (𝑎1, 𝑎2, . . . , 𝑎7) buvo įvertinti, klasikiniu WASPAS-SVNS ir naujai 

siūlomu WASPAS-IVNS metodais. 
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Kandidatų vertinimo rezultatai, kurie buvo nustatyti taikant siūlomą WASPAS-

IVNS ir standartinį WASPAS-SVNS metodus, yra pavaizduoti S3.1 lentelėje. Šiame 

pavyzdyje parodoma, kad WASPAS-IVNS metodas suteikia papildomus įrankius siekiant 

įvertinti itin panašios reikšmės kandidatus. Šiuo atveju pirmųjų dviejų kandidatų rangai 

apsikeitė vietomis. Nors, taikant WASPAS-SVNS metodą, 𝑎2 ir 𝑎4 kandidatų reikšmės 

yra itin artimos, robotas pasirinktų 𝑎4 kandidatą, esantį toliau nuo esamos roboto 

pozicijos. WASPAS-IVNS šiuo atveju prioritetą teiktų artimesniam, 𝑎2 kandidatui. 

S3.1 lentelė. Kandidatų vertinimo rezultatai taikant WASPAS-IVNS ir WASPAS-SVNS 

metodus 

Kandidatas 
WASPAS-IVNS WASPAS-SVNS 

𝑆(𝑄) Rangas 𝑆(𝑄) Rangas 

𝑎1 [2,002; 2,286] 3 0,6655 3 

𝑎2 [2,014; 2,312] 1 0,6708 2 

𝑎3 [1,877; 2,172] 5 0,5982 5 

𝑎4 [2,015; 2,306] 2 0,6719 1 

𝑎5 [1,898; 2,174] 4 0,6171 4 

𝑎6 [1,853; 2,117] 6 0,5812 6 

𝑎7 [1,743; 2,027] 7 0,5193 7 

 

Trečiajame tyrime siūloma globali kandidatų vertinimo strategija sudaryta 

modeliuojant šešių kriterijų rinkinį: atstumo nuo kandidato iki roboto valdymo centro, 

numatomos aplinkos erdvės dydžio, kurią robotas galėtų ištirti pasiekęs kandidatą, 

numatomo laiko, reikalingo kandidatui pasiekti, atstumo tarp roboto ir kandidato, atstumo 

nuo kandidato iki artimiausio prioritetinio regiono bei santykio tarp nežinomų celių, 

esančių aplink kandidatą, ir mėginio dydžio. Skirtingai nei prieš tai pasiūlytos kandidatų 

vertinimo strategijos, ši strategija skirta situacijoms, kai roboto operatoriui žinomas 

 
S3.1 pav. Pateikiamas kandidatų vertinimo pavyzdys. Robotas pažymėtas juodu kvadratu. 

Kandidatai pažymėti žaliais žymekliais (𝑎1, 𝑎2, . . . , 𝑎7). Raudona spalva pažymėtas pavojingas 

objektas, geltona – aptiktas nukentėjęs asmuo (Semenas & Bausys, 2020) 
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nedidelis kiekis išankstinės informacijos apie SAR aplinką, kuris leidžia nustatyti 

prioritetinius paieškos regionus. Kriterijų optimumai ir svoriai nustatyti taikant SWARA 

metodą, o sprendimas, kur robotas turėtų judėti toliau, priimamas taikant sukurtą 

WASPAS-mGqNS metodą. Tyrimo metu siūloma aplinkos tyrinėjimo strategija (PS) yra 

lyginama su dviem strategijomis: standartine kainos ir naudos strategija (IG), ir 

trumpiausio kelio (tiesioginio maršruto sudarymo) strategija (WS), kurioje roboto 

operatorius nustato prioritetinių zonų aplankymo eiliškumą, o robotas jas aplanko, 

taikydamas trumpiausio kelio paieškos metodus. Tikėtasi, kad paieškos ir gelbėjimo 

roboto gebėjimas įvertinti užimtos erdvės, esančios aplink kandidatą, kiekį bei galimybė 

teikti prioritetą nustatytiems regionams leis padidinti roboto efektyvumą ištirtos erdvės 

dydžio atžvilgiu. Tyrimo metu surinkti rezultatai pavaizduoti S3.2 paveiksle patvirtina šią 

hipotezę. Tyrimo rezultatai išryškina, kad siūloma aplinkos tyrinėjimo strategija gali būti 

taikoma siekiant padidinti roboto ištirtą erdvę, sumažinti nukeliautą atstumą, ir kartu 

nukreipti robotą į prioritetinį paieškos regioną, kurį identifikavo roboto operatorius. 

Tyrimo metu daugiausia aplinkos erdvės ištyrė robotas, taikantis standartinę kainos ir 

naudos strategiją (IG). Tačiau, taikant šią strategiją, pastebimas ir ilgiausias roboto 

nukeliauto atstumo vidurkis. Priešingai, taikant trumpiausio kelio strategiją, autonominis 

robotas nukeliauja trumpiausią atstumą, tačiau ištiria mažiausiai paieškos erdvės. 

Taikydamas siūlomą kandidatų vertinimo strategiją, autonominis robotas elgiasi 

subalansuotai ir gali ištyrinėti erdves, esančias netoliese prioritetinių zonų, ir šitaip 

padidinti ištirtą paieškos erdvę (lyginant su WS strategija), bei sumažinti roboto 

nukeliautą atstumą (lyginant su IG strategija). 

 
Kadangi skirtingos kandidatų vertinimo strategijos nukreiptos į skirtingus 

autonominės navigacijos prioritetus, adaptyvi aplinkos tyrinėjimo strategija buvo sukurta 

siekiant suteikti robotui galimybę autonomiškai pakeisti kandidato vertinimo strategiją, 

atsižvelgiant į atrastą aplinkos informaciją. Sprendimas, kuri strategija turi būti pritaikoma 

vertinant kandidatus, yra priimamas taikant neraiškiosios logikos valdiklį, pavaizduotą 

S2.1 paveiksle. Kandidatams vertinti taikomos keturios skirtingos strategijos: pavojingo 

regiono vengimo strategija (DA), nukreipianti robotą nuo pavojingų regionų; atsargi 

aptikto asmens aplankymo strategija (RRS), prioritetą teikianti kandidatams, esantiems 

  
a) b) 

S3.2 pav. Navigacijos strategijų vertinimo rezultatai: a) roboto ištirta erdvė, m2;  

b) roboto nukeliautas atstumas, m 
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netoli aptiktų nukentėjusių asmenų ir toli nuo pavojingų regionų; aptikto asmens 

aplankymo strategija (RS), prioritetą teikianti kandidatams, esantiems netoli aptiktų 

nukentėjusių asmenų; informacijos paieškos strategija (IG), prioritetą teikianti roboto 

ištirtos erdvės padidinimui. Kandidatų vertinimo strategijos parenkamos įvertinant 

atstumus tarp roboto ir pavojingų regionų bei atstumus tarp roboto ir tyrinėjamoje SAR 

aplinkoje aptiktų nukentėjusių asmenų. 

Vertinant tyrimo rezultatus, galima daryti išvadą, kad siūloma adaptyvi kandidatų 

vertinimo strategija aktyviai nukreipia robotą nuo pavojingų regionų ir traukią jį prie 

aptiktų galimai nukentėjusių asmenų. Roboto judėjimo trajektorija indikuoja, kad robotas 

nevengia pavojingų regionų tuo atveju, kai netoliese jų aptinkami nukentėję asmenys, ir 

patvirtina roboto gebėjimą subalansuoti skirtingus optimizavimo parametrus, vykdant 

kandidatų parinkimo užduotį. Vertinant individualių strategijų pateikiamus rezultatus, 

pažymėtina, kad egoistinių pavojingų regionų vengimui prioritetą teikiančių strategijų 

taikymas sumažina robotui skirtos nuobaudos kiekį iki 91 %, lyginant su RS ir IG 

kandidatų vertinimo strategijomis. Kitą vertus, siūloma adaptyvi aplinkos tyrinėjimo 

strategija yra pajėgi subalansuoti abu elgsenos modelius, o kartu ir sumažinti robotui 

skirtos nuobaudos dydį iki 70 %. 

Siekiant palyginti sukurtus daugiakriterinius sprendimo priėmimo metodus, siūloma 

apibendrinta aplinkos tyrinėjimo strategija, jungianti potencialą rodančius kandidato 

vertinimo kriterijus ir kandidatų vertinimo strategijas, taikytas keturiuose aptartuose 

tyrimuose. Penktojo tyrimo metu buvo iškelti šie pagrindiniai tikslai: 

1. Palyginti WASPAS-IVNS ir WASPAS-mGqNS metodų efektyvumą su 

klasikiniais WASPAS-SVNS ir MULTIMOORA-SVNS metodais. 

2. Ištestuoti siūlomos autonominės aplinkos tyrinėjimo strategijos efektyvumą 

simuliacijoje ir gautus rezultatus palyginti su atskaitiniais, kandidato parinkimu 

grindžiamais metodais: artimiausio kandidato parinkimo metodu (angl. Closest 

frontier – CF), bei standartine aplinkos tyrinėjimo strategija (angl. Standard 

information gain – SIG). 

Taikant CF strategiją, robotas parenka artimiausią galimą kandidatą, remdamasis tik 

tuo, kiek laiko prireiks robotui, kad pasiektų kandidatą. Taikant SIG strategiją, kandidatas 

parenkamas remiantis dažnai taikomu kriterijų rinkiniu (Basilico & Amigoni, 2011; 

Taillandier & Stinckwich, 2011; Bausys, Cavallaro & Semenas, 2019; Visser & Slamet, 

2008), o sprendimas priimamas klasikiniu WASPAS-SVNS metodu. Siūloma 

apibendrinta kandidatų vertinimo strategija modeliuojama taikant aštuonis kriterijus, 

nukreiptus į roboto saugos, socialinius ir techninius SAR aplinkos tyrinėjimo aspektus: 

erdvės tarp žinomo ir nežinomo regiono ilgis (c1); atstumas tarp kandidato ir roboto 

valdymo stoties (c2); laikas, per kurį robotas gali pasiekti kandidatą (𝑐3); numatoma 

nuobauda robotui, jei kandidatas būtų pasiektas judant suplanuotu keliu (c4); bendras 

nukentėjusių asmenų, esančių šalia suplanuoto roboto kelio, atpažinimo rodiklis (c5); 

žemiausias nukentėjusio asmens, esančio netoli suplanuoto kelio, atpažinimo rodiklis (c6); 

atstumas nuo kandidato iki artimiausio prioritetinio regiono (c7); santykis tarp nežinomų 

celių aplink kandidatą ir mėginio populiacijos dydžio (𝑐8). Kandidatų vertinimo 

strategijas apibrėžiantys svoriai ir optimumai pateikti S3.2 lentelėje. 
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S3.2 lentelė. Kriterijai, apibrėžiantys apibendrintą adaptyvią navigacijos strategiją 

Žymėjimas Optimumas DA RRS RS IG 

𝑐1 Max 0,056 0,029 0,043 0,213 

𝑐2 Max 0,061 0,073 0,019 0,075 

𝑐3 Min 0,197 0,203 0,131 0,322 

𝑐4 Min 0,394 0,373 0,395 0,043 

𝑐5 Min 0,037 0,039 0,065 0,033 

𝑐6 Min 0,112 0,125 0,234 0,081 

𝑐7 Min 0,078 0,070 0,025 0,137 

𝑐8 Max 0,065 0,089 0,088 0,097 

 
WASPAS-IVNS ir WASPAS-mGqNS metodai vertinti simuliuojamose aplinkose, 

pavaizduotose S3.3 paveiksle. Pirmoji SAR aplinka apima 26×17 m paieškos erdvę, 

antroji aplinka – 32×26 m paieškos erdvę, o trečioji – 43×28 m paieškos erdvę. Siekiant 

palyginti tyrimo metu surinktus rezultatus tarp siūlomos aplinkos tyrinėjimo strategijos, 

CF ir SIG strategijų yra taikomi penki parametrai. Trys parametrai yra matuojami 

ordinalioje skalėje: atstumas kurį nukeliavo robotas, roboto ištirtos SAR aplinkos erdvės 

dydis, ir nuobauda, kurią robotas gavo kirtęs pavojingais laikomas vietoves. Kiti du 

parametrai matuojami pagal santykinę skalę: santykis tarp roboto nukeliauto atstumo ir 

ištirtos erdvės dydžio bei santykis tarp robotui skirtos nuobaudos ir ištirtos erdvės dydžio. 

 
Pirmoje aplinkoje, taikant WASPAS-SVNS, WASPAS-IVNS, WASPAS-mGqNS ir 

MULTIMOORA-SVNS metodus, roboto ištirta SAR aplinkos erdvė yra beveik identiška. 

Pagrindinis skirtumas šiuo atveju yra roboto nukeliautas atstumas, kuris yra padidintas 

nuo 4 iki 6 % taikant WASPAS-IVNS ir WASPAS-mGqNS metodus. Panašūs rezultatai 

matomi vertinant duomenis surinktus antroje ir trečioje aplinkose. Antroje aplinkoje 

roboto ištirta erdvė buvo padidinta iki 1 %, o nukeliautas atstumas, taikant WASPAS-

IVNS ir WASPAS-mGqNS metodus, atitinkamai svyruoja nuo 1 % reikšmės sumažinimo 

iki 1 % reikšmės padidinimo. Trečioje aplinkoje roboto nukeliautas atstumas sumažintas 

iki 4,5−6,5 %, tačiau ištirta aplinkos erdvė buvo padidinta iki 1 %. Kadangi skirtumai tarp 

   
a) b) c) 

S3.3 pav. Simuliuojamos SAR aplinkos: a) pirmoji SAR aplinka, kuriai būdinga atvira 

topologija; b) antroji SAR aplinka, kurioje atskiros erdvės sujungtos centriniu koridoriumi; 

c) trečioji SAR aplinka, kuriai būdinga kilpinė topologija. Čia mėlynas žymeklis nurodo 

roboto pradžios poziciją, raudoni žymekliai – pavojingus regionus, kurių robotas turi vengti, 

geltoni žymekliai indikuoja nukentėjusių asmenų buvimo pozicijas, balti žymekliai – 

prioritetinius regionus, kuriuos turėtų aplankyti robotas (Semenas & Bausys, 2022) 
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surinktų duomenų yra minimalūs, įvertinus šiuos rezultatus, galima daryti išvadą, kad 

siūlomi WASPAS-IVNS ir WASPAS-mGqNS metodai yra stabilūs, lyginant juos su 

klasikiniais WASPAS-SVNS ir MULTIMOORA-SVNS metodais. Be to, papildomas šių 

metodų funkcionalumas, kuris suteikia galimybę įvertinti sprendimui priimti reikalingų 

duomenų nuokrypius, gali sudaryti sąlygas pagerinti kandidatų vertinimo rezultatus. 

Pavyzdžiui, taikant WASPAS-IVNS ir WASPAS-mGqNS metodus, vidutinis robotui 

skirtos nuobaudos kiekis reikšmingai sumažėja, lyginant su MULTIMOORA-SVNS 

pateikiamais rezultatais. 

Lyginant siūlomą aplinkos tyrinėjimo strategiją taikant WASPAS-IVNS ir 

WASPAS-mGqNS metodus, su bazinėmis CF ir SIG aplinkos tyrinėjimo strategijomis yra 

pastebimas siūlomos adaptyvios strategijos pranašumas. Pirmoje simuliuojamoje 

aplinkoje roboto rezultatai išlieka panašūs. Taikant siūlomą strategiją bei WASPAS-IVNS 

ir WASPAS-mGqNS metodus, roboto ištirta aplinkos erdvė padidinama iki 1,8 % lyginant 

su ištirta erdve taikant SIG ir CF strategijas. Rezultatų panašumą galima paaiškinti 

įvertinus santykinai nedidelį šios aplinkos dydį, jos atvirą topologiją ir taikomą kandidato 

vertinimu pagrįstą strategiją. Šiuo atveju robotas yra pajėgus padengti visą paieškos erdvę 

per paieškos ir gelbėjimo misijai skirtą laiko intervalą, nepaisant taikomos strategijos 

efektyvumo. Todėl pagrindinis strategijos vertinimo kriterijus tokiu atveju gali būti roboto 

gebėjimas subalansuoti užduoties reikalavimus, pavyzdžiui, gebėjimas užtikrinti roboto 

saugumą ir sumažinti nukeliautą atstumą. Taikant WASPAS-IVNS ir WASPAS-mGqNS 

metodus, pastebimas roboto surinktos nuobaudos sumažėjimas iki 89,80 %, o roboto 

nukeliautas atstumas pirmoje aplinkoje sumažinamas iki 11,46 %. 

Lyginant SIG ir CF aplinkos tyrinėjimo strategijas su siūlomais neutrosofiniais 

WASPAS plėtiniais, pastebima, kad antroje aplinkoje nukeliautas kelias pailgėja iki 21 %. 

Kitą vertus, siūloma aplinkos tyrinėjimo strategija padeda robotui ištirti iki 12,7 % daugiau 

erdvės. Vertinant roboto nukeliautą atstumą ir ištirtos erdvės kiekį trečioje aplinkoje, šie 

parametrai padidėja atitinkamai iki 33,6 % ir 23,6 %. Atlikus ANOVA statistinės analizės 

testus, nustatyta, kad šie rezultatai yra statistiškai reikšmingi antroje ir trečioje aplinkoje, 

kai p < 0,05. Įvertinus santykį tarp roboto nukeliauto atstumo ir ištirtos erdvės dydį bei 

santykį tarp robotui skirtos nuobaudos ir ištirtos erdvės dydį, buvo nustatyta, kad, taikant 

siūlomą aplinkos tyrinėjimo strategiją, padidėjęs roboto nukeliautas kelias tiesiogiai 

veikia ir ištirto ploto dydį. Kitaip tariant, aplinkos tyrinėjimo metu robotas elgiasi 

subalansuotai. 

Lyginant siūlomos strategijos ir SIG bei CF strategijų surinktą vidutinį nuobaudos 

dydį pastebimas siūlomos strategijos pranašumas. Lyginant SIG ir CF strategijas su 

siūloma aplinkos tyrinėjimo strategija, taikant WASPAS-IVNS metodą, maksimalus šio 

parametro reikšmės sumažinimas siekia 87,8 %. Taikant WASPAS-mGqNS metodą, 

pastebimas šios reikšmės sumažinimas siekia iki 94,4 %. Vertinant tyrimo rezultatus, 

galima daryti išvadą, kad siūloma nežinomos aplinkos tyrinėjimo strategija reikšmingai 

padidina autonominio roboto efektyvumą, lyginant ją su CF ir SIG strategijomis, o siūlomi 

WASPAS-IVNS ir WASPAS-mGqNS metodai yra stabilūs, lyginant juos su klasikiniu 

WASPAS-SVNS metodu. 
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Bendrosios išvados 

1. Atlikta dažniausiai taikomų aplinkos tyrinėjimo strategijų apžvalga atskleidė, kad 

kandidatams vertinti taikomos strategijos neįvertina galimų nepatikimų įvesties 

parametrų, kai priimamas sprendimas, kur robotas turėtų judėti toliau. Be to, 

kandidatų vertinimas dažnai atliekamas taikant ne adaptyvias kandidatų vertinimo 

metodikas, kai sprendimui priimti taikomos tos pačios vertinimo taisyklės, 

neatsižvelgiant į esamą roboto ar aplinkos būseną. 

2. Siūloma kandidatų vertinimo strategija, integruojanti roboto saugumo ir nukentėjusių 

asmenų įvertinimo kriterijus pagerina autonominio roboto rodomus autonominės 

navigacijos ir aplinkos tyrinėjimo rezultatus. Be to, kriterijų, įvertinančių užimtos 

erdvės, esančios aplink kandidatą, kiekį bei suteikiančių galimybę nustatyti 

prioritetinius tyrinėjimo regionus, integravimas sukuria efektyvesnę kandidatų 

vertinimo strategiją, lyginant ją su standartinėmis kainos ir naudos strategijomis. 

3. Sukurta autonominės navigacijos strategija, jungianti neraiškiosios logikos valdiklį ir 

sukurtus MCDM metodus, leidžia SAR robotui navigacijos metu atsižvelgti į 

dinamišką aplinkos informaciją ir pakeisti kandidatų vertinimo strategijas. Siūloma 

adaptyvi autonominės navigacijos strategija, kuri priimant sprendimus taiko 

modernias neutrosofines aibes, optimizuoja roboto judėjimo trajektoriją ir padidina 

jo efektyvumą, lyginant su neadaptyviomis egoistinėmis, altruistinėmis ir 

nešališkomis kandidatų vertinimo strategijomis. Lyginant altruistines ir nešališkas 

kainos ir naudos strategijas su siūloma adaptyvia strategija, robotui skirtos nuobaudos 

dydis gali būti sumažintas iki 70 %, o su visiškai egoistinėmis strategijomis iki 91 %. 

4. Sukurti neutrosofiniai WASPAS metodo plėtiniai, WASPAS-IVNS ir WASPAS-

mGqNS metodai, suteikia galimybę įvertinti galimus nepatikimus įvesties duomenis. 

Ši galimybė užtikrina sprendimų priėmimo efektyvumą kai lyginami itin panašūs 

kandidatai. WASPAS-IVNS, WASPAS-mGqNS ir standartinių WASPAS-SVNS ir 

MULTIMOORA-SVNS metodų palyginimas parodė, kad siūlomi daugiakriterinių 

sprendimų priėmimo metodai yra stabilūs skirtingose paieškos erdvėse. 

5. Siūloma adaptyvi apibendrinta aplinkos tyrinėjimo strategija yra efektyvesnė, 

lyginant ją su artimiausio kandidato strategija (CF) ir standartine aplinkos tyrinėjimo 

strategija (SIG): 

5.1. Kiekybinis rezultatų palyginimas tarp siūlomos apibendrintos aplinkos 

tyrinėjimo strategijos ir SIG strategijos parodė, kad, taikant siūlomą strategiją, 

autonominis robotas ištiria iki 12,7−13,2 % daugiau SAR erdvės. Lyginant 

siūlomą ir CF strategijas, robotas ištiria iki 10,4−23,6 % daugiau erdvės, kai 

taikoma siūloma strategija. 

5.2. Kiekybinis rezultatų palyginimas, kai vertinamas roboto surinktos nuobaudos 

dydis, rodo, kad, taikant siūlomą apibendrintą aplinkos tyrinėjimo strategiją, šis 

parametras sumažinamas iki 94,4 %. Šis reikšmės sumažėjimas yra stabilus 

visose simuliuojamose aplinkose. 

5.3. Taikant siūlomą apibendrintą aplinkos tyrinėjimo strategiją, roboto nukeliautas 

atstumas padidėja iki 33,6 %. Įvertinus santykį tarp roboto nukeliauto atstumo 

ir ištirtos erdvės dydžio, šis padidėjimas nėra reikšmingas, nes autonominis 

robotas kartu padidina ir ištirtą plotą.
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