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Abstract. On the basis of one engineering non-convex optimization problem – optimization of pile placement sche-
mes in grillage type foundations, several global optimization algorithms are compared. Comparison reveals clear ad-
vantages of stochastic algorithms, among which the simulated annealing is most promising. The prospects of using 
simulated annealing on different computer platforms are shown; the largest solved problem contained 55 decision 
variables. 
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Introduction 

Optimization is an inherent part of all engineering 
practice. In the construction of buildings means that, all 
parts of buildings from foundations to roofs should be 
designed and built optimally and thrifty as much as the 
conditions of safety and comfort allow. Mathematically, a 
number of such optimization problems (e.g., topology 
optimization of roof-supporting truss systems, load carry-
ing structures of bridges, optimization of pile placement 
schemes under grillage-type foundations or under pile 
caps, etc.) can be reduced to global minimization of mul-
timodal functions. Such problems are difficult in the 
sense of algorithmic complexity, and global optimization 
algorithms are computationally very expensive. Aim of 
this paper is to review the capabilities and application 
possibilities of different global optimization algorithms as 
well as techniques in engineering practice. Here the 
optimization of pile placement schemes serves as a really 
good benchmark since the problem is non-convex, highly 
sensitive to the design parameters (i.e., positions of piles 
under the connecting beams), and the global solution (or 
at least the lower bound of solution) is always known in 
advance. Several deterministic and stochastic global 
optimization algorithms without/and including some 
heuristic information on the problem are compared. The 
prospects of an industrial-scale optimization of 
foundation schemes on a single PC, clusters of 
computers, and distributed computing on a GRID are 
shown.     

The grillage-type foundations are ones of the most 
popular and effective schemes of foundations, especially 
in case of weak grounds. The optimal scheme of grillage 
should possess the minimum possible number of piles. 
Theoretically, reactive forces in all piles should approach 
the limit magnitudes of reactions for those piles. This 
goal can be achieved by choosing appropriate pile posi-
tions. However, some problem constraints such a mini-
mum allowable distance between adjacent piles (due to 
the capabilities of pile driver), or so-called immovable 
piles which are introduced into certain positions of pile 
scheme by the analyst and do not participate in the opti-
mization process, may hinder to achieve the global solu-
tion. In all numerical examples of the present paper the 
immovable piles are not dealt with. 

Whereas the beam optimization problems in form of 
optimal sizing of beams in grillage structures under given 
boundary and loading conditions (see, e.g. (Chamoret et 
al. 2008) and references therein) or optimal layout of 
grillages (e.g. (Rozvany 1997)) attracted lot of attention, 
only a few papers deal with the optimization of pile pla-
cements schemes. In (Kim et al. 2005) an optimal pile 
placement scheme under the raft is sought that minimizes 
the differential settlements of the raft using genetic algo-
rithms (GA). In (Chan et al. 2009) the pile groups under 
the solid pile cap together with the cap dimensions are 
optimized using hybrid GA. The local search algorithms 
were employed for optimal placing of piles under a sepa-
rate beam of grillage (Belevičius and Valentinavičius 
2001) and under whole grillage using iterative algorithm 
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on the basis of mentioned work (Belevičius et al. 2002). 
Experience shows that the objective function for practical 
grillage optimization problems possesses many local 
minima points. Due to this the local search obviously is 
not a proper choice, and global optimization algorithms 
are the necessity. The deterministic global optimization 
algorithms proved to require non-realistic computer re-
sources for even small-scale grillage optimization prob-
lems (Čiegis et al. 2006). Promising results for larger-
scale grillages (up to tens of design variables) were 
achieved with stochastic algorithms: GA (Belevičius and 
Šešok 2008), simulated annealing (SA) algorithm (Šešok 
et al. 2010a; Šešok et al. 2010b).  

The paper is organized as follows. In the next chap-
ter the mathematical formulation of the optimization pro-
blem is presented. Chapter 3 provides comparison of 
different optimization algorithms solving 10 real-life 
grillages. In the 4th chapter attention is given to the com-
puting on different computer platforms. Finally, some 
general conclusions on the prospects of application of 
global optimization algorithms to the optimization of 
grillages are drawn.  

Problem formulation 

The optimization problem is formulated as follows: 

 ( )
Dx

xff
∈

= min*  (1) 

where f(x) is a nonlinear objective function of continuous 

variables ℜ→ℜ
nf : , n is the number of design parame-

ters x defining positions of piles, nD ℜ⊂  is a feasible 
region of design parameters. Besides of the global mini-

mum *f  one or all global minimizers ( ) *** : fxfx =  

should be found. No assumptions on unimodality are 
included into formulation of the problem – many local 
minima may exist. 

In this paper the maximal vertical reactive force at a 
pile is considered as the objective function: 

 ( ) ( )xRxf i
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where aN  is the number of piles, ( )xRi  is the reactive 

force at i-th pile.  
Since a supporting pile may reside only under con-

necting beams, there are evident restrictions on the posi-
tions of piles: during the optimization process the piles 
can move only along the connecting beams. Therefore, a 
two-dimensional beam structure of the grillage is “un-
folded” to a one-dimensional construct, and the piles are 
allowed to range through this space freely. 

In such a formulation one design parameter corre-
sponds to a position of one pile in the one-dimensional 
construct (n=Na). The backward transformation restores 
the positions of piles in the two-dimensional beam struc-
ture of the grillage. The constraints for the design pa-
rameters are as follows: 

 ai NiLx ,...,1,0 =≤≤  (3) 

where ix  is a design parameter defining the position of i-

th pile. L is the total length of all beams in the grillage. If 
the minimal possible distance δ  between adjacent piles 
is specified, there are additional constraints 

 ji,xx ji ≠≥−   δ  (4) 

where ix  are two-dimensional coordinates of piles and 

ji xx −  denotes the distance between piles. To cope 

with this constraint a penalty is included in the objective 
function. 

A finite element program is used as a “black-box” 
routine to the optimization program for solution of direct 
problem to find reactive forces in the grillage. In the di-
rect problem the connecting beams in the grillage are 
idealized as the beam elements, while the piles are treated 
as supports, i.e. finite element mesh nodes with given 
elastic boundary conditions. Since time of optimization 
crucially depends on the solution time of the direct prob-
lem, fast problem-oriented original FORTRAN programs 
with a special mesh pre-processor have been developed. 
The finite element and optimization programs interact in 
the following way: optimization program produces a 
guess for pile positions in one-dimensional construct; the 
finite element program transforms it to the two-
dimensional grillage, automatically subdivides the gril-
lage into finite element mesh, solves the statical problem 
and obtains the objective function – maximum reactive 
force among all piles. On basis of this value the optimiza-
tion algorithm produces a new guess, and the loop is re-
peated. 

The beam elements have 2 nodes with 6 degrees of 
freedom each (3 displacements along the coordinate axes 
and 3 rotations about these axes). The stiffness matrix for 
element can be found in many textbooks, e.g. by (Zien-
kiewicz and Taylor 2005). 

The main statics equation is 

 [ ] { } { }aaa FuK =  (5) 

where a stands for the ensemble of elements (not shown 
in eq. below), {u} are the nodal displacements, and {F} 
are the active forces. The reactive forces at piles are avai-
lable after obtaining the nodal displacements: 

 [ ]∑=
j

jiji uKR  (6) 

The finite element program requires the following 
initial data: 

– The geometrical scheme of connecting beams; 
– Cross-section data of all beams (area, moments 

of inertia); 
– Material data of all beams (material in one 

beam is treated as isotropic); 
– Positions of immovable piles (if any); 
– Maximum allowable reactive force at any pile 

Rallw; 
– Minimum possible distance between adjacent 

piles; 
– Stiffnesses of pile (vertical, rotational); 
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– Loading data. Active forces can be applied in 
the form of concentrated loads and moments at 
any point on beam, or in the form of distributed 
trapezoidal loadings at any segment of beam.  

Comparison of optimization algorithms 

The algorithms were compared using the results of 
optimization of pile placement schemes of 10 practical 
grillages. All these grillages are of small-to-medium 
scale, requiring from 17 to 55 piles. Data for these prob-
lems are obtained from several Dutch design bureaus 
(courtesy of Consultancy W. F. O. B.V., Paauw B. V. 
Aannemingsbedrijf, and others) which use the analysis 
and design package MatrixFrame. MatrixFrame has 
some capabilities for optimization of pile placement 
schemes employing local search methods (Belevičius and 
Valentinavičius 2001). One trait is common to all these 
problems: the current optimization routine of Matrix-
Frame was not capable to yield even a rational scheme of 
pile placement. 

The typical grillage is shown in Fig 1. All the char-
acteristics of all 10 grillages are summarized in Table 1. 
There are no immovable piles, therefore the numbers of 
piles Na and design variables n coincide. Rallw denotes the 
allowable reactive force at the piles, it is equal for all 
piles in all problems. The number of piles is obtained 
dividing the total sum of loadings by the allowable reac-
tive force of piles – the number of piles cannot be less 
than this number. Rideal denotes the ideal theoretical valu-
e; the ideal solution is when all reactive forces at the piles 
are equal. In all these problems the proportion between 
the total loading and the allowable reaction is such that 
the engineering solution requires achieving almost the 
ideal solution. This is the main reason, why these prob-
lems are difficult to solve. 

Generally, all global optimization methods can be 
categorized into non-gradients methods which require 
information from the objective function only, and gradi-
ent methods which beside the information about objective 
function use in addition the gradient or higher derivative 
information. Accurate calculation of function gradients is 
usually computationally expensive and problematic. Also, 
the algorithms may be divided into deterministic algo-
rithms which guarantee the same solution on every run of 
algorithm, and stochastic ones. The last algorithms pro-
duce different results on every run therefore the decisions 
about achieved solutions can be made only on the basis of 
several tens of runs.  

Algorithms involved in comparison cover all this 
nomenclature. To make a fair comparison, the total num-
ber of objective function evaluations for each algorithm is 
the same – N = 5000. The following algorithms were 
used: 

– Modified random search (MRS) 
– Simulated annealing (SA) 
– Genetic algorithm (GA) 
– Simplex method (SM) 
– Variable metric method (VM) 
– NEWUOA algorithm  
 

 
Fig 1. Grillage No 1 (according to the Table 1) 

 
Table 1. Characteristics of grillages 

Problem  
No 

Na L Rallw Rideal 

1 25 172.9 325 307.47 

2 18 52.9 110 104.12 

3 31 84.1 105 101.85 

4 31 84.9 105 101.24 

5 30 63.9 100 97.51 

6 37 80.1 100 97.53 

7 23 129.1 300 287.35 

8 34 137.9 250 236.28 

9 17 97.6 250 244.71 

10 55 315.61 350 349.05 

 
MRS is a random search algorithm, where the deci-

sion variables are generated randomly with uniform dis-
tribution, but with one additional constraint: the differ-
ence between two decision variables should be larger 
than some given distance. If the constraint is violated, the 
structure is considered to be non-feasible. Such a heuris-
tic modification is motivated by the fact that due to the 
usual distribution of loading over the grillage beams, the 
piles also should be spread over the whole space of gril-
lage. Reactive forces at the piles are found for N feasible 
random structures and one with the smallest maximal 
reactive force at a pile is considered to be the best solu-
tion found. 

SA is also a stochastic algorithm which was in-
vented for simulation of metal annealing process (Kirkpa-
trick et al. 1983). Here the current solution is replaced by 
a random solution with a probability that depends on the 
difference of the function value and the so-called tem-
perature parameter. In the beginning the temperature 
parameter is large allowing non-improving changes. 
Gradually temperature is decreased and the search be-
comes descent. In our implementation the initial solution 
is obtained using MRS taking the best feasible solution 
out of N_init=200. Then SA algorithm is employed. 

Stochastic GAs (Goldberg 1989; Šešok et al. 2008)  
simulate evolution (selection, mutation, crossover) in 
which a population of solutions evolves improving values 
of the objective function. In our implementation, the ini-
tial population of popsize individuals is generated using 
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MRS. The new generation is obtained from the previous 
one using selection, crossover and mutation operations. 
Besides the population size and generation number, re-
sults of algorithm depend on the probabilities of cross-
over and mutation, and the selection strategy. Here all 
values of these parameters are chosen numerically, on the 
basis of numerous experiments. 

The SM is a general method for optimization of 
nonlinear multidimensional function requiring only func-
tion evaluations, but not derivatives. A simplex is the 
geometrical figure consisting of n + 1 vertices in n di-
mensions. The simplex method takes a series of steps, 
moving the vertex of the simplex where the objective 
function is worst. We use implementation of the method 
form (Press 1992). 

VM is based on the Newton’s method to find the sta-
tionary point of objective function where its gradient is 0. 
Here the BFGS form of method (Press 1992) is used. 
Since variable metric method requires gradient informa-
tion, the results of sensitivity analysis are used. The start-
ing point is the best solution obtained using MRS in the 
given number of iterations N_init. Then the local search 
is performed. Initialization and local search is repeated 
until the overall number of objective function evaluations 
reaches N. 

The NEWUOA algorithm is iterative algorithm for 
nonlinear optimization. A quadratic model is used in a 
trust region procedure for adjusting the variables (Powell 
2006). The quadratic model interpolates the function at 
2n+1 points, only one interpolation point is altered on 
each iteration. The starting point is the best solution ob-
tained using MRS in the given number of iterations 
N_init. The NEWUOA algorithm is stopped when the 
number of objective function evaluations reaches N. 

More thorough description of algorithms is given in 
(Šešok et al. 2010a, 2010b). Parameters for all algorithms 
are summarized in Table 2. Other parameters, for exam-
ple the initial temperature for SA or probabilities of cros-

sover and mutation for GA are tuned to the problems 
under consideration (Šešok et al. 2010a, 2010b). All al-
gorithms are initialized using MRS. This heuristic modi-
fication significantly improves the results and enables 
optimal design of real grillages. If a pure random search 
is used for initialization, the results are much worse. 

 
Table 2. Parameters for algorithms 

Algorithm Parameters 

MRS N = 5000 

SA N_init = 200, N = 5000, t1 = 5, t2 = 2 

GA 
popsize = 20, p_cross = 0.9, p_mut = 0.3, 
G = N/popsize = 5000/20 = 250 

SM N_init = 300, N = 5000 

VM N_init = 300, N = 5000 

NEWUOA N_init = 300, N = 5000 

 
The algorithms were tested on a personal computer 

with Intel(R) Xeon(R) CPU E5420 @ 2.50GHz, 
3069 MB RAM, 32-bit Operating System. 28 independ-
ent runs were performed for each algorithm. 

Table 3 shows the average results of all 28 runs. In 
Table 4 the best obtained results are rendered. The aver-
age times of one run are given in Table 5. In all tables the 
bold type highlights the best achieved results. The last 
column in Tables 3 and 4 presents discrepancies between 
the best obtained results and the corresponding ideal  
value.  

Thus, an ideal solution was not obtained for any 
problem in any of 28 independent runs; in each run the 
objective function was evaluated 5000 times. The best 
objective values found differ from ideal ones from 2.2 % 
(Problem 2, 18 piles) to 46.8 % (Problem 8, 34 piles), 
while the average results – from 4.8 % to 63.4 % for the 
same problems. As it can be expected, generally discrep-
ancy is larger for problems with the larger number of 
piles. 

 
 
 

Table 3. Average of the best values found in 28 runs 

Problem 
No 

Rideal RS MRS SA GA SM VM NEWUOA 
Discrepancy, % 

1 307.47 593.33 470.90 371.55 405.36 486.50 454.01 394.92 20.8 

2 104.12 153.07 125.71 109.10 112.49 131.75 127.64 113.35 4.8 

3 101.85 258.45 144.46 119.06 124.48 153.82 143.60 119.80 16.9 

4 101.24 265.41 141.18 117.10 123.72 147.46 139.82 116.81 15.4 

5 97.51 318.16 126.08 106.25 112.23 133.28 128.13 108.68 9.0 

6 97.53 460.31 160.18 132.22 144.16 172.38 160.85 132.07 35.4 

7 287.35 472.74 379.80 314.11 332.11 402.36 382.45 330.16 9.3 

8 236.28 695.60 494.83 413.57 444.88 520.98 491.25 385.99 63.4 

9 244.71 402.17 343.91 281.12 294.62 369.06 334.90 292.28 14.9 

10 349.05 1321.48 702.53 562.79 636.87 759.33 705.57 559.88 60.4 
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Table 4. The best values found in 28 runs  

Problem 
No 

Rideal RS MRS SA GA SM VM NEWUOA 
Discrepancy, 

% 

1 307.47 503.93 430.67 339.30 360.73 436.68 429.34 370.79 10.4 
2 104.12 136.23 119.16 106.36 106.52 125.83 123.18 107.18 2.2 
3 101.85 181.75 138.37 107.25 115.04 138.58 135.54 109.00 5.3 
4 101.24 175.33 131.15 106.80 112.10 132.10 133.65 108.16 5.5 
5 97.51 170.61 116.88 102.00 104.58 120.42 120.74 101.05 3.6 
6 97.53 364.21 148.24 117.26 119.65 151.95 146.01 125.37 20.2 
7 287.35 409.73 351.71 298.11 310.24 355.82 358.73 306.31 3.7 
8 236.28 538.04 440.42 357.67 363.15 426.74 430.11 346.94 46.8 
9 244.71 354.98 318.38 253.00 274.55 339.68 313.40 270.68 3.4 
10 349.05 1026.48 670.72 463.34 519.07 698.15 648.84 486.46 32.7 

 
Table 5. Average solution times of one experiment, sec 

Problem 
No  

Na RS MRS SA GA SM VM NEWUOA 

1 25 899 943 960 844 821 855 878 

2 18 92 96 91 82 90 91 91 

3 31 835 876 822 732 811 801 753 

4 31 1015 1045 1046 935 910 914 916 

5 30 319 319 302 276 313 318 315 

6 37 811 823 742 718 674 761 750 

7 23 649 695 683 635 622 660 656 

8 34 3009 2982 2956 2668 2467 2455 2489 

9 17 424 417 410 359 413 419 423 

10 55 2198 2136 2125 1934 1826 1811 1850 
 
 

The comparison of algorithms clearly shows the ad-
vantages of SA with tuned parameters both for best ob-
tained as well as for average results of 28 runs. Compar-
ing the average results, only the NEWUOA significantly 
outruns the SA for Problem 8 (34 piles). It shows slightly 
better results also for Problems 4 (31) and 6 (37). As to 
the best results, the NEWUOA obtains the best solutions 
for two problems. Nearly in all cases the GA shows the 
third best solutions; it never outruns the SA or NEWUOA 
algorithms. The results of SM and VM are sometimes 
even worse than that of MRS what means that it is not 
worth to spend time to find local minima for these prob-
lems, but rather to search wider globally since local 
searches do not improve the value of the objective func-
tion significantly.  

One numerical experiment takes from approximately 
1.5 (algorithm GA, Problem 2, 18 piles) to 41 minutes 
(VM, Problem 8, 34 piles). Comparing the timings of all 
algorithms, the clear winners here are the GA and SM. 
However, the other algorithms are not far behind, until 
~18 % in ultimate cases. Thus, the timings can not be 
treated as the decisive factor for comparison of these 
algorithms. 

All these results were obtained evaluating the objec-
tive function for 5000 times and repeating the experiment 
28 times. It can be expected, that longer computations 
may render the relevant solutions. On the basis of this, 

the SA algorithm and the largest optimization problem – 
grillage No 10 with 55 piles, for which the discrepancy 
between average and ideal solutions reaches ~60 %, were 
chosen for further experiments with massive computation 
systems. 

Comparison of solutions on different computer  
platforms 

According to (Mockus 1967), the convergence rate 
of stochastic algorithm is asymptotic and slow, not more 
than log(N), where N is the number of iterations. Theo-
retically, in order to decrease the discrepancy between 
obtained optimization result and the global solution 
twice, we have to perform about 100 times more itera-
tions. Thus, for the 55-pile grillage the number of itera-
tions of ~107 should guarantee the discrepancy between 
obtained and ideal solutions of around 10 %. Since one 
run of SA with 5000 iterations for 55-pile grillage takes 
2125 seconds on PC (Belevičius et al. 2010) and at least 
several tens of independent runs are needed, such a num-
ber of iterations is inconceivable for PC platform. 

SA and GA algorithms ideally suit for parallel com-
putations, because one run of an algorithm can be directly 
allotted for one processor. Any changes are not needed 
for an algorithm, if the intrinsic parallelization of the task 
(e.g. in the solution of a system of linear equations) is not 
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involved; data exchange between processors is not nee-
ded in this case. Two computer platforms were used for 
the solution: GRID and PC cluster. 

 
GRID computing. Solution scheme in GRID is 

shown in Fig 2. Each processor obtains its task, which is 
completely independent from the others. Each process 
reads its data files and produces its result files in ASCII 
format. The produced files are not large therefore it is not 
necessary to store them in storage elements. At the end of 
computations result files are automatically processed in 
order to sort numerical solutions, considering the com-
puted values of objective function, and to store the best 
results. It is quite difficult to handle large amount of tasks 
and result files, therefore good software including graphi-
cal user interface is required for automatic job submis-
sion, monitoring and result processing.  
 

Proc_1 Proc_2 Proc_N

Job_1 Job_2 Job_N

Res_1 Res_2 Res_N

Best results

 
Fig 2. Solution scheme in GRID 

  
Grillage optimization software has been deployed in 

BalticGrid infrastructure by using Gridcom (Šešok et al. 
2010b). It is a simple web interface for launching com-
plex applications on grid. Gridcom splits input data into 
intervals; generates and submits as many jobs as needed. 
It can scatter parametric jobs into simple jobs or resubmit 
aborted jobs. Finally, Gridcom collects, merges and visu-
alizes the computed results. All these functions are per-
formed automatically, including transparent upload of 
large files to storage elements. Gridcom launches spe-
cially developed Gridcom applications. Once created, an 
application can be launched many times with different 
input data. Generally it takes some hours to adapt grid 
application for Gridcom. Web form for grillage optimiza-
tion application is shown in Fig 3. 

 

 
Fig 3.  Web form for grillage optimization application 

 
GRID computations have some limitations: all the 

numerical tests on the nodes of GRID must be accom-
plished in a real time (usually, in a few hours). Since 
some computers in the grid may be incapable, it is not 
possible to explore long lifespan of each run, however, a 
large number of the nodes can be taken. Here we render 
results (Šešok et al. 2010b) of two contrary strategies of 
grillage optimization on the GRIDs that exploit all capa-
bilities of our GRID: first, large number of independent 
runs of SA with a short lifespan of one run, and second, 
less number of independent runs of SA with a maximum 
possible lifespan.  

For the first strategy, as in case of solution on a sin-
gle PC, we choose the total number of iterations N = 
5000, but 1000 independent runs. For the second strategy, 
100 independent runs were performed with 100,000 itera-
tions each. Other parameters used in the solution are gi-
ven in (Šešok et al. 2010a, 2010b).  

Obtained results show, the 35 times larger number of 
numerical tests as compared to the calculations on a sin-
gle PC allows improving solution from 463.34 to the 
value 449.93, i.e. for only ~4%. The second strategy gave 
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the best solution of 433.42, or improving of an error by 
~8 %.  

 
Cluster computing. We used the PC cluster VILKAS 

(Rocks Cluster Distribution v 5.0, CentOS release 5, 
x86_64) at Vilnius Gediminas Technical University. The 
cluster consisted of 18 PCs connected by Gigabit Ether-
net (D-Link DGS 1224T Gigabit Smart Switch, 24-Ports 
10/100/1000Mbps Base-T Module). Hardware character-
istics of the PC are listed below: Intel® Core2Quad 
Q6600 2.40GHz CPU (2x4MB L2 cache and bus fre-
quency equal 1067 MHz), 2x2GB DDR2 800 RAM, 
300GB HDD (SATA II Extensions and 16 MB cache), 
Gigabit Ethernet NIC. 340 Gflop/s performance was 
measured running HPL benchmark. 40 VILKAS’ proces-
sors were employed in computations; each of them solved 
the task once. The total CPU time was about 50 hours. 
The average results of 40 independent samples for each 
of the cluster computers are in Table 6 (Šešok et al. 
2010a). 

 
Table 6. Optimization of 55-pile grillage: cluster, 1,000,000 
iterations  

Sample Value Sample Value 

1 426.88 21 467.01 

2 388.64 22 423.25 

3 421.98 23 463.05 

4 455.17 24 468.59 

5 429.52 25 480.05 

6 464.72 26 418.57 

7 408.67 27 423.29 

8 425.45 28 462.71 

9 440.74 29 420.65 

10 461.86 30 441.54 

11 417.97 31 455.12 

12 488.54 32 417.27 

13 458.99 33 403.18 

14 456.22 34 416.97 

15 458.31 

 

35 457.97 

16 457.55  36 385.15 

17 462.85  37 430.81 

18 417.69  38 460.69 

19 397.27  39 460.87 

20 379.35  40 461.78 

 
The best result (379.35) differs from global mini-

mum (349.05) by 9 %. Thus, this error is better than the 
theoretical estimation of error for the number of iterations 
performed. From the engineering point of view, this is an 
acceptable error. Fig 4 shows the graph of this decision. 
The average results of 40 samples are  438.37.  

 
Fig 4. Best decision (55 piles, 106 iterations) 

Conclusions 

From several global optimization algorithms belong-
ing to the stochastic algorithms (genetic algorithms, 
simulated annealing, modified random search, and also 
the simplex since it is launched from a random initial 
start) and to the gradient ones (BFGS, NEWUOA), the 
simulated annealing gives the most promising results in 
optimization of grillages. 

Computer hardware that is common to a typical civil 
engineering design bureaus and a reasonable computation 
time for engineering practice do not allow solution of the 
problem of pile placement to the very end with any global 
optimization algorithm applied. However, first, the fact 
that ideal solution usually is not required for the engineer-
ing purposes, and second, the increasing accessibility and 
popularity of  the distributed computing in contemporary 
engineering practice makes it possible solving global 
optimization problems possessing to 30–40 design pa-
rameters. 

The larger optimization problem with 55 decision 
variables was solved only to a discrepancy between ob-
tained result and ideal one of 9% using a cluster of PC 
and 50 hours of computations. 
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