VGTU talpykla > Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences > Moksliniai straipsniai / Research articles >

Lietuvių   English
Please use this identifier to cite or link to this item: http://dspace.vgtu.lt/handle/1/818

Title: Momentų ir reakcijų minimizavimas rostverkiniuose pamatų sijynuose genetiniu algoritmu
Other Titles: The Minimization of Moments and Reactive Forces in Grillages with a Genetic Algorithm
Authors: Belevičius, Rimantas
Mačiūnas, Darius
Šešok, Dmitrij
Keywords: globalusis optimizavimas
genetiniai algoritmai
sijynų optimizavimas
baigtinių element metodas
global optimization
genetic algorithms
optimization of grillages
finite element method
Issue Date: 2011
Publisher: Vilniaus Gedimino technikos universitetas
Citation: Belevičius, R.; Mačiūnas, D.; Šešok, D. 2011. Momentų ir reakcijų minimizavimas rostverkiniuose pamatų sijynuose genetiniu algoritmu, Statybinės konstrukcijos ir tehnologijos 3(2): 56–63.
Abstract: Straipsnyje na grinėjamas rostverkinių pamatų optimizavimas, siekiant kuo mažesnių reaktyvinių jėgų poliuose, esant duotajam polių skaičiui, ir kuo mažesnių absoliutiniu dydžiu lenkimo momentų sijyno jungiamosiose sijose. Optimizavimo uždavinio tikslo funkciją sudaro didžiausia visuose poliuose atraminė reakcija ir didžiausias absoliutiniu dydžiu lenkimo momentas jungiamosiose sijose. Abu dėmenys imami su tam tikrais svoriais. Momentai skaičiuojami trijuose kiekvienos sijos taškuose. Uždavinio projektavimo kintamieji yra polių padėtys po jungiamosiomis sijomis. Optimizavimo uždavinys sprendžiamas genetiniu algoritmu, į kurio formulavimą įtraukiama išankstinė žinoma informacija apie uždavinį. Reakcijų ir momentų skaičiavimo uždavinys skaičiuojamas baigtinių elementų metodu. Ši programa jungiama prie optimizavimo algoritmo juodosios dėžės principu. Pateikiami nedidelės apimties sijyno skaitiniai pavyzdžiai. Tokie skaičiavimai galėtų būti kaip bandomieji detalesnio sijyno projektavimo sprendiniai.
Description: Abstract in English. The aim of the article is to report a technology for the optimization of grillage-type foundations seeking for the least possible reactive forces in the piles for a given number of piles and in the absolute value of the bending moments when connecting beams of the grillage. Mathematically, this seems to be the global optimization problem possessing a large number of local minima points. Both goals can be achieved choosing appropriate pile positions under connecting beams; however, these two problems contradict to each other and lead to different schemes for pile placement. Therefore, we suggest using a compromise objective function (to be minimized) that consists of the largest reactive force arising in all piles and that occurring in the absolute value of the bending moment when connecting beams, both with the given weights. Bending moments are calculated at three points of each beam. The design parameters of the problem are positions of the piles. The feasible space of design parameters is determined by two constraints. First, during the optimization process, piles can move only along connecting beams. Therefore, the two-dimensional grillage is “unfolded” to the one-dimensional construct, and supports are allowed to range through this space freely. Second, the minimum allowable distance between two adjacent piles is introduced due to the specific capacities of a pile driver. Also, due to some considerations into the scheme of pile placement, the designer sometimes may introduce immovable supports (usually at the corners of the grillage) that do not participate in the optimization process and always retain their positions. However, such supports hinder to achieve a global solution to a problem and are not treated in this paper. The initial data for the problem are as follows: a geometrical scheme of the grillage, the given number of piles, a cross-section and material data on connecting beams, the minimum possible distance between adjacent supports and loading data given in the form of concentrated loads or trapezoidal distributed loadings. The results of the solution are the required positions of piles. This solution can serve as a pilot project for more detailed design. The entire optimization problem is solved in two steps. First, the grillage is transformed into the one-dimensional construct and the optimizer decides about a routine solution (i.e. the positions of piles in this construct). Second, backward transformation returns pile positions into the two-dimensional grillage and the “black-box” finite element program returns the corresponding objective function value. On the basis of this value, the optimizer predicts new positions of piles etc. The finite element program idealizes connecting beams as beam elements and piles – as mesh nodes of the finite element with a given boundary conditions in the form of vertical and rotational stiff ness. Since the problem may have several tens of design parameters, the only choice for optimization algorithms is using stochastic optimization algorithms. In our case, we use the original elitist real-number genetic algorithm and launch the program sufficient number of times in order to exclude large scattering of results. Three numerical examples are presented for the optimization of 10-pile grillage: when optimizing purely the largest reactive force, purely the largest in the absolute value of the bending moment and both parameters with equal weights.
URI: http://dspace1.vgtu.lt/handle/1/818
ISSN: 2029-2317
Appears in Collections:Moksliniai straipsniai / Research articles

Files in This Item:

File Description SizeFormat
EST_Vol3_No2_56-63_Belevicius.pdf176.35 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback