VGTU talpykla > Elektronikos fakultetas / Faculty of Electronics > Moksliniai straipsniai / Research articles >

Lietuvių   English
Please use this identifier to cite or link to this item: http://dspace.vgtu.lt/handle/1/3846

Title: A Methodology Improving Off-Chip, Lumped RF Impedance Matching Network Response Accuracy
Authors: Vasjanov, Aleksandr
Vaidotas, Barzdėnas
Keywords: algorithm
Cadence
impedance matching
lumped components
OCEAN
RF circuits
SKILL
Virtuoso
Issue Date: 2018
Publisher: MDPI
Citation: Vasjanov, A.; Barzdenas, V. A Methodology Improving Off-Chip, Lumped RF Impedance Matching Network Response Accuracy. Electronics 2018, 7, 188.
Series/Report no.: 7;9
Abstract: Impedance matching is concurrent with any radio frequency (RF) circuit design and is essential for maximizing the gain and efficiency while minimizing the noise of high-frequency amplifiers as well as some mixer topologies. The main impedance matching network components are capacitors, inductors, and RF transformers all of which contain parasitic parameters that influence the matching response S11 curve. After calculating matching network component values using classical matching techniques, the measured and simulated response curves differ depending on the target frequency. This results in multiple calculations and measurement cycles in order to precisely match the source and load at the desired frequency. This article proposes an algorithm and methodology of estimating component parasitic parameters and taking them into account when calculating the main component parameters (capacitance and inductance). The proposed algorithm has been implemented as a toolbox in Cadence Virtuoso and verified through simulation and measurements. Measurement results show, that at 500 MHz 10% tolerance components with parasitics included and values based on classical theory provide a 3.2–9.8% offset from the target frequency. In the same conditions, matching networks with compensated (according to the proposed algorithm) values provide 0.1–8.8% target frequency offset. At 1500 MHz 10% components provided 4–12.3% (non-compensated) and 1–8.7% (compensated) target frequency offset ranges. At 3000 MHz. The frequency offset range of using compensated matching network component values is reduced from 5.5–15.1% to 1.3–8.1%.
URI: http://dspace.vgtu.lt/handle/1/3846
ISSN: 2079-9292
Appears in Collections:Moksliniai straipsniai / Research articles

Files in This Item:

File Description SizeFormat
A Methodology Improving Off-Chip, Lumped RF.pdf4.08 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback