VGTU talpykla > Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences > Moksliniai straipsniai / Research articles >

Lietuvių   English
Please use this identifier to cite or link to this item: http://dspace.vgtu.lt/handle/1/4085

Title: Evolution of Microbial Composition and Enzymatic Activities during the Composting of Textile Waste
Authors: Biyada, Saloua
Merzouki, Mohammed
Dėmčėnko, Taisija
Vasiliauskienė, Dovilė
Urbonavičius, Jaunius
Marčiulaitienė, Eglė
Vasarevičius, Saulius
Benlemlih, Mohamed
Keywords: composting
organic waste
alkaline phosphatase
acid phosphatase
cellulase
next-generation sequencing
Issue Date: 2020
Publisher: MDPI
Citation: Biyada, S.; Merzouki, M.; Dėmčėnko, T.; Vasiliauskienė, D.; Urbonavičius, J.; Marčiulaitienė, E.; Vasarevičius, S.; Benlemlih, M. Evolution of Microbial Composition and Enzymatic Activities during the Composting of Textile Waste. Appl. Sci. 2020, 10, 3758.
Series/Report no.: 10;11
Abstract: The production of stable and mature compost often depends on the performance of microbes and their enzymatic activity. Environmental and nutritional conditions influence the characteristics of microbial communities and, therefore, the dynamics of major metabolic activities. Using three waste mixtures (textile waste mixed with either green, paper, or cardboard waste), the maturity of the compost produced was assessed by following the physico-chemical parameters and enzymatic activities provided by the microorganisms that were identified using next-generation sequencing (NGS). Among the three mixtures used, it was found that the two best mixtures showed C/N ratios of 16.30 and 16.96, total nitrogen of 1.37 and 1.39%, cellulase activities of 50.62 and 52.67 Ug−1, acid phosphatase activities of 38.81 and 68.77 Ug−1, and alkaline phosphatase activities of 51.12 and 56.86 Ug−1. In addition, several lignocellulosic species, together with those that are able to solubilize phosphate, were identified. Among those known for cellulase and acid/alkaline phosphatase activities, bacteria belonging to the Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes phyla were shown. The presence of species belonging to the Ascomycota and Basidiomycota phyla of Fungi, which are known for their ability to produce cellulase and acid/alkaline phosphatases, was demonstrated. These findings provide a basis for the production of stable and mature compost based on textile waste.
Description: This article belongs to the Special Issue Production and Application of Microbial Lignocellulose—Degrading Enzymes)
URI: http://dspace.vgtu.lt/handle/1/4085
ISSN: 2076-3417
Appears in Collections:Moksliniai straipsniai / Research articles

Files in This Item:

File Description SizeFormat
Evolution of Microbial Composition and Enzymatic Activities during the Composting of Textile Waste.pdf9.73 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback