|
VGTU talpykla >
Elektronikos fakultetas / Faculty of Electronics >
Moksliniai straipsniai / Research articles >
Please use this identifier to cite or link to this item:
http://dspace.vgtu.lt/handle/1/4175
|
Title: | Oxidative Effects during Irreversible Electroporation of Melanoma Cells—In Vitro Study |
Authors: | Szlasa, Wojciech Kielbik, Aleksander Szewczyk, Anna Rembialkowska, Nina Novickij, Vitalij Tarek, Mournir Saczko, Jolanta Kulbacka, Julita |
Keywords: | IRE oxidative stress melanoma permeabilization membrane alternations |
Issue Date: | 2021 |
Publisher: | MDPI |
Citation: | Szlasa, W.; Kiełbik, A.; Szewczyk, A.; Rembiałkowska, N.; Novickij, V.; Tarek, M.; Saczko, J.; Kulbacka, J. Oxidative Effects during Irreversible Electroporation of Melanoma Cells—In Vitro Study. Molecules 2021, 26, 154. |
Series/Report no.: | 26;1 |
Abstract: | Irreversible electroporation (IRE) is today used as an alternative to surgery for the excision of cancer lesions. This study aimed to investigate the oxidative and cytotoxic effects the cells undergo during irreversible electroporation using IRE protocols. To do so, we used IRE-inducing pulsed electric fields (PEFs) (eight pulses of 0.1 ms duration and 2–4 kV/cm intensity) and compared their effects to those of PEFs of intensities below the electroporation threshold (eight pulses, 0.1 ms, 0.2–0.4 kV/cm) and the PEFs involving elongated pulses (eight pulses, 10 ms, 0.2–0.4 kV/cm). Next, to follow the morphology of the melanoma cell membranes after treatment with the PEFs, we analyzed the permeability and integrity of their membranes and analyzed the radical oxygen species (ROS) bursts and the membrane lipids’ oxidation. Our data showed that IRE-induced high cytotoxic effect is associated both with irreversible cell membrane disruption and ROS-associated oxidation, which is occurrent also in the low electric field range. It was shown that the viability of melanoma cells characterized by similar ROS content and lipid membrane oxidation after PEF treatment depends on the integrity of the membrane system. Namely, when the effects of the PEF on the membrane are reversible, aside from the high level of ROS and membrane oxidation, the cell does not undergo cell death. |
Description: | This article belongs to the Special Issue Novel Physical and Chemical Methods for Facilitated Drug Delivery |
URI: | http://dspace.vgtu.lt/handle/1/4175 |
ISSN: | 1420-3049 |
Appears in Collections: | Moksliniai straipsniai / Research articles
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|