VGTU talpykla > Fundamentinių mokslų fakultetas / Faculty of Fundamental Sciences > Moksliniai straipsniai / Research articles >

Lietuvių   English
Please use this identifier to cite or link to this item:

Title: Automated Expert System Knowledge Base Development Method for Information Security Risk Analysis
Authors: Vitkus, Donatas
Steckevičius, Žilvinas
Goranin, Nikolaj
Kalibatienė, Diana
Čenys, Antanas
Keywords: information security risk analysis,
knowledge base
expert sys-tem
Issue Date: 2019
Publisher: Agora University Press
Citation: Vitkus, D., Steckevičius, Ž., Goranin, N., Kalibatienė, D., Čenys, A. (2019) Automated Expert System Knowledge Base Development Method for Information Security Risk Analysis.INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 14(3). doi:10.15837/ijccc.2019.6.3668
Series/Report no.: 14;3
Abstract: Information security risk analysis is a compulsory requirement both from the side of regulating documents and information security management decision making process. Some researchers propose using expert systems (ES) for process automation, but this approach requires the creation of a high-quality knowledge base. A knowledge base can be formed both from expert knowledge or information collected from other sources of information. The problem of such approach is that experts or good quality knowledge sources are expensive. In this paper we propose the problem solution by providing an automated ES knowledge base development method. The method proposed is novel since unlike other methods it does not integrate ontology directly but utilizes automated transformation of existing information security ontology elements into ES rules: The Web Ontology Rule Language (OWL RL) subset of ontology is segregated into Resource Description Framework (RDF) triplets, that are transformed into Rule Interchange Format (RIF); RIF rules are converted into Java Expert System Shell (JESS) knowledge base rules. The experiments performed have shown the principal method applicability. The created knowledge base was later verified by performing comparative risk analysis in a sample company.
ISSN: 1841-9844
ISSN-L 1841-9836
Appears in Collections:Moksliniai straipsniai / Research articles

Files in This Item:

File Description SizeFormat
Automated Expert System Knowledge Base Development Method for Information Security Risk Analysis.pdf1.23 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback